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Generating a Condensed Representation for Assoiation RulesNiolas Pasquier (niolas.pasquier�unie.fr)I3S (CNRS UMR 6070) - Université de Nie-Sophia Antipolis, 06903 Sophia Antipolis, FraneRa�k Taouil (taouil�univ-tours.fr)LI - Université Franois Rabelais de Tours, 3 plae Jean Jaurès, 41000 Blois, FraneYves Bastide (yves.bastide�irisa.fr)IRISA - INRIA Rennes, ampus universitaire de Beaulieu, 35042 Rennes, FraneGerd Stumme (stumme�uni-kassel.de)Fahbereih Mathematik/Informatik, Universität Kassel, 34121 Kassel, GermanyLot� Lakhal (lotfi.lakhal�lim.univ-mrs.fr)LIM (CNRS FRE 2246) - Université de la Méditerranée, ase 901, 13288 Marseille, FraneAbstrat. Assoiation rule extration from operational datasets often produes several tens ofthousands, and even millions, of assoiation rules. Moreover, many of these rules are redundant andthus useless. Using a semanti based on the losure of the Galois onnetion, we de�ne a ondensedrepresentation for assoiation rules. This representation is haraterized by frequent losed itemsetsand their generators. It ontains the non-redundant assoiation rules having minimal anteedentand maximal onsequent, alled min-max assoiation rules. We think that these rules are themost relevant sine they are the most general non-redundant assoiation rules. Furthermore, thisrepresentation is a basis, i.e., a generating set for all assoiation rules, their supports and theiron�denes, and all of them an be retrieved needless aessing the data. We introdue algorithmsfor extrating this basis and for reonstruting all assoiation rules. Results of experiments arriedout on real datasets show the usefulness of this approah. In order to generate this basis when analgorithm for extrating frequent itemsets � suh as Apriori for instane � is used, we also presentan algorithm for deriving frequent losed itemsets and their generators from frequent itemsetswithout using the dataset.Keywords: Data mining, Galois losure operator, frequent losed itemsets, generators, min-maxassoiation rules, basis for assoiation rules, ondensed representation.1. IntrodutionThe purpose of assoiation rule extration, introdued in (Agrawal et al., 1993),is to disover signi�ant relations between binary attributes, alled items, in largedatasets. An example of assoiation rule extrated from a dataset of supermarketsales is: `ereals ∧ sugar → milk (support=7%, on�dene=67%)'. This rule statesthat ustomers who buy ereals and sugar also tend to buy milk. The supportmeasure de�nes the range of the rule, i.e., the proportion of ustomers who boughtthe three items among all ustomers. The on�dene measure de�nes the preisionof the rule, i.e., the proportion of ustomers who bought milk among those whobought ereals and sugar. Only rules with support and on�dene above someminimal support and on�dene thresholds, de�ned by the analyst aording tothe appliation, are extrated.Classial approahes for mining assoiation rules operate in two phases:© 2008 Kluwer Aademi Publishers. Printed in the Netherlands.
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2 N. Pasquier, R. Taouil, Y. Bastide, G. Stumme and L. Lakhal1. Extrating frequent itemsets and their support from the dataset. Frequent item-sets are sets of items ontained in a proportion of objets above the minimumsupport threshold.2. Generating assoiation rules from frequent itemsets and supports. Only ruleswith on�dene above the minimum on�dene threshold are generated.The �rst phase is the most omputationally intensive, sine the number of potentialfrequent itemsets is exponential in the size of the set of items and several datasetsans, very expensive in exeution times, are required to ount their supports.Classial approahes an be lassi�ed into three main trends. Approahes in the�rst trend are based on the levelwise extration of frequent itemsets (Agrawal andSrikant, 1994; Mannila et al., 1994). That is a breadth-�rst exploration of thesearh spae where all potential frequent itemsets of a given size are onsideredsimultaneously (Mannila and Toivonen, 1997). These approahes are e�ient formining assoiation rules from weakly orrelated data, suh as market basket data,but performanes drastially derease when data are dense or orrelated, suh as sta-tistial data for instane. Approahes in the seond trend are based on the extrationof maximal1 frequent itemsets (Bayardo, 1998; Lin and Kedem, 1998; Zaki et al.,1997) to improve the e�ieny. One all maximal frequent itemsets are extrated,all frequent itemsets are derived and their support are ounted in the dataset. Inthe third trend, approahes are based on the extration of frequent losed item-sets (Pasquier et al., 1998; Zaki and Ogihara, 1998) de�ned using the Galois losureoperator. These approahes �rst extrat all frequent losed itemsets and then, bothfrequent itemsets and their support are derived from them, without dataset aess.In the ase of dense or orrelated data, there are muh fewer frequent losed itemsetsthan frequent itemsets and thus, these approahes improve the extration e�ienyompared to approahes in the �rst trend. Compared to approahes in the seondtrend, approhes based on frequent losed itemsets an be more e�ient in the aseof orrelated data due to the ost of generating all subsets of the maximal frequentitemsets and ounting their support in the dataset.Another major researh topi in data mining is the problem of relevane and useful-ness of extrated assoiation rules. This problem is related to the number of extratedrules � that is most often very large � and to the important proportion of redundantrules, i.e. rules bringing the same information, among them. This problem beomesruial when data are dense or orrelated, suh as statistial data, teleommunia-tion data or nominative market basket data (Bayardo and al., 2000; Brin and al.,1997; Siverstein et al., 1998). For instane, using a ensus dataset sample onstitutedof 10,000 objets, eah one ontaining values of 73 binary attributes, more than2,000,000 assoiation rules with support and on�dene above 90% were extrated.The analyst is then onfronted with the following problems: How to handle suh alist of assoiation rules ? Is it possible to redue its size without losing information ?Moreover, the inspetion of extrated assoiation rules shown that redundant rulesrepresent the majority of them. Their suppression will thus onsiderably reduethe number of rules to be handled by the analyst. In the previous example, this1 All maximal and minimal sets onsidered are de�ned aording to the inlusion relation.
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Generating a Condensed Representation for Assoiation Rules 3suppression redued the number of rules to a few thousands. In addition, redundantrules an be misleading as disussed in example 1. Thus, the following questionarises: How to redue extrated assoiation rules to a smaller list ontaining onlynon-redundant assoiation rules ?Example 1. To illustrate the problem of redundant assoiation rules, we presentnine rules extrated from the Mushrooms dataset desribing harateristis of8 416 mushrooms (Blake and Merz, 1998) in table I. These rules have identialsupports and on�denes, of 51% and 54% respetively, and the item �free gills�in the anteedent.Table I. Redundant assoiation rules.1) free gills → edible 6) free gills, partial veil → edible, white veil2) free gills → edible, partial veil 7) free gills, white veil → edible3) free gills → edible, white veil 8) free gills, white veil → edible, partial veil4) free gills → edible, partial veil, white veil 9) free gills, partial veil, white veil → edible5) free gills, partial veil → edibleObviously, rules 1 to 3 and 5 to 9 do not add any information to rule 4 sine allthese rules have idential supports and on�denes. We thus say that these rulesare redundant ompared to rule 4, the most relevant from the analyst's point ofview for it summarizes the nine rules. This rule has a minimal anteedent (left-handside) and a maximal onsequent (right-hand side) among the nine rules. Moreover,examining only one of these eight rules, say for instane rule 9, the analyst willbelieve that a mushroom has 54% hanes to be edible if it has free gills and apartial white veil. As a matter of fat, it has 54% hanes to be edible and have apartial white veil if it has free gills. Redundant rules an therefore be misleadingand ause misinterpretations of the results. We believe that extrating only rule 4will improve the result relevane.In the rest of the paper, we di�erentiate exat assoiation rules, noted l ⇒ l′, thathave a 100% on�dene, and approximate assoiation rules, noted l → l′, that havea on�dene lower than 100%. Exat assoiation rules are valid for all objets in thedataset whereas approximate assoiation rules are valid for a proportion of objetsequal to their on�dene.1.1. Related WorkApproahes addressing this issue an be lassi�ed into three main trends. Approahesin the �rst trend provide mehanisms for �ltering extrated assoiation rules. In thetwo other trends, approahes �extend� the de�nition of assoiation rules in order notto extrat �similar� ones.Approahes in the �rst trend allow the analyst to de�ne some templates (Baralisand Psaila, 1997; Klemettinen and al., 1994), boolean operators (Bayardo and al.,2000; Ng et al., 1998; Srikant et al., 1997) or SQL-like operators (Meo et al., 1998)in order to selet rules aording to his/her preferenes. In (Bayardo and al., 2000),
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4 N. Pasquier, R. Taouil, Y. Bastide, G. Stumme and L. Lakhalboolean operators are oupled with further measures of �usefulness� of the rules.By seleting a subset of all extrated assoiation rules, these approahes reduethe number of rules to handle during the visualization, but redundanies are notsuppressed.In the seond trend, some approahes use a taxonomy of items to extrat generalizedassoiation rules (Han and Fu, 1999; Srikant and Agrawal, 1995), i.e., assoiationrules between sets of items that belong to di�erent levels of the taxonomy. Someapproahes use statistial measures, suh as Pearson's orrelation or χ2 test forinstane, instead of the on�dene to determine the preision of the rule (Brin andal., 1997; Morimoto et al., 1998; Siverstein et al., 1998). Other approahes in thistrend allow to extrat only rules with maximal anteedents among those with thesame supports and the same onsequents (Srikant and Agrawal, 1996; Toivonen etal., 1995). That is, a rule r will be pruned if another rule r′ has the same onsequentand an anteedent that is a superset of the one of r. In example 1, rules 4, 6,8 and 9 have maximal anteedents and will be extrated. Finally, the approahproposed in (Bayardo and Agrawal, 1999) identi�es optimal rules aording to severalinterestingness metris (on�dene, onvition, lift, Laplae, gain, et.) and a partialorder on the rules.Approahes in the third trend make use of the losure of the Galois onnetionto extrat bases, or redued overs, for assoiation rules. Informally, a basis is anon-redundant set that is minimal aording to some mathematial property andfrom whih all assoiation rules are deduible, with support and on�dene, withoutaessing the dataset. These bases are adaptations of the Duquenne-Guigues basisfor global impliations (Duquenne and Guigues, 1986; Ganter and Wille, 1999) andthe Luxenburger basis for partial impliations (Luxenburger, 1991). They were in-trodued in Formal Conept Analysis and their adaptation to the assoiation ruleframework is studied in (Pasquier et al., 1999; Taouil et al., 2000; Zaki, 2000). In theDuquenne-Guigues basis for exat assoiation rules, anteedents of rules are frequentpseudo-losed itemsets and onsequents are frequent losed itemsets. In the Luxen-burger basis for approximate assoiation rules, both anteedents and onsequentsare frequent losed itemsets: We selet approximate rules with both a maximalanteedent and a maximal onsequent among rules having idential supports andon�denes. In example 1, rule 9 will be the only one extrated. The union of theDuquenne-Guigues and the Luxenburger bases is a basis for all assoiation rules.This basis is minimal with respet to the number of rules and, sine for most datatypes there are muh fewer frequent losed and pseudo-losed itemsets than thereare frequent itemsets, it is very small. However, it does not ontain non-redundantrules with minimal anteedent and maximal onsequent.In previous works about the pruning of redundant impliation rules (funtionaldependenies), suh as the anonial and the minimum overs de�nitions (Beeriand Bernstein, 1979; Maier, 1980), redundant rules are de�ned aording to aninferene system based on Armstrong axioms (Armstrong, 1974). However, theseresults annot be diretly applied to the assoiation rule framework sine redundantassoiation rules annot be de�ned aording to this system: Supports and on�-denes are important information that must be onsidered to haraterize redundantrules. Suh an inferene system for assoiation rules does not exist to our knowledge.
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Generating a Condensed Representation for Assoiation Rules 5The idea behind non-redundant assoiation rules as de�ned hereafter is to identifythe most relevant rules, eah one bringing the same information as several others.1.2. ContributionOur goal is to improve assoiation rules relevane and usefulness by extrating asfew rules as possible without losing information. To ahieve this, we propose togenerate a ondensed representation (Mannila and Toivonen, 1996) by maximizingthe information brought by eah rule. As pointed out in example 1, we believethat the most relevant assoiation rules are the most general2 non-redundant rules:Those with minimal anteedent and maximal onsequent. Extrating suh rules willimprove the result usefulness, while reduing its size. Therefore, in the following:
− We de�ne non-redundant assoiation rules with minimal anteedent and maxi-mal onsequent, alled min-max assoiation rules. These rules are de�ned usingthe semanti for assoiation rule extration based on the Galois losure. Theiranteedents and onsequents are haraterized by frequent losed itemsets andtheir generators (Pasquier et al., 1998).
− We show that the min-max assoiation rules onstitute a basis, alled min-maxbasis for assoiation rules. All assoiation rules an be dedued by generatingall the sub-rules of the min-max assoiation rules, onsidering their supportsand on�denes.
− We propose e�ient algorithms to generate the min-max basis from frequentlosed itemsets and their generators, suh as extrated by the Close (Pasquieret al., 1998; Pasquier et al., 1999b) and the A-Close (Pasquier et al., 1999a)algorithms. We also introdue algorithms to reonstrut all assoiation rules, ora part of them, from this basis without having to aess the data.
− We present the Close+ algorithm that identi�es frequent losed itemsets, theirgenerators and their supports among frequent itemsets and their supports. Thisalgorithm is simple and e�ient sine it does not require any dataset aess. Itenables the generation of the min-max basis when an algorithm for extratingall frequent itemsets, suh as Apriori (Agrawal and Srikant, 1994) for instane,is used.Extrating min-max assoiation rules minimizes as muh as possible the numberof rules while keeping the same information in the result: Only the most generalnon-overlapping assoiation rules are extrated and therefore redundant rules arepruned. Sine for many real datasets redundant rules represent the majority ofextrated rules, the redution will be almost always signi�ant. This redution willbe onsiderable in the ase of dense or orrelated data for whih the total number ofrules is very large and most are redundant (Bayardo and Agrawal, 1999; Brin andal., 1997; Siverstein et al., 1998).2 We say that a rule r : a → c is more general than a rule r′ : a′ → c′ if they have identialsupports and on�denes, the anteedent a of r is a subset of a′ and the onsequent c of r is asuperset of c′. r′ is then alled a sub-rule of r, and r a super-rule of r′.
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6 N. Pasquier, R. Taouil, Y. Bastide, G. Stumme and L. LakhalWith the min-max basis, the analyst is presented a set of rules overing all theattributes of the dataset: All of the data-spae is haraterized by the min-maxrules, overoming an important de�ieny of most redution methods where largesub-spaes of the data-spae may be poorly haraterized or even entirely unhar-aterized (Bayardo and Agrawal, 1999). This property helps insuring that rules�surprising� for the analyst, that are important information (Piatetsky and Matheus,1994; Silbershatz and Tuzhilin, 1996), will be present. Moreover, the min-max basisdoes not represent any information loss for the analyst: all information brought bythe set of all assoiation rules is brought by the min-max basis. This approah doesnot su�er of the problem of information loss � from the analyst's point of view � thatis an important drawbak in assoiation rule redution methods (Liu and al., 1999).If the analyst so wishes, it is also possible to e�iently dedue all other assoiationrules, with supports and on�denes, from the min-max basis alone.1.3. OrganizationIn setion 2, we reall the semanti for assoiation rules based on the Galois onne-tion and the Close algorithm for extrating frequent losed itemsets and generators.We also present the Close+ algorithm for e�iently deriving frequent losed item-sets, their generators and their supports from frequent itemsets and their supports.Min-max assoiation rules and the min-max basis for assoiation rules are de�nedin setion 3. Algorithms for generating this basis are also presented. In setion 4, wepresent simple methods and algorithms for deriving all assoiation rules from themin-max basis. Results of experiments onduted to evaluate the usefulness of thisapproah are given in setion 5 and setion 6 onludes the paper.2. Semanti for assoiation rules based on the Galois onnetionThe assoiation rule extration is performed from a data mining ontext3, that is atriplet D = (O,I,R), where O and I are �nite sets of objets and items respetively,and R ⊆ O×I is a binary relation. Eah ouple (o, i) ∈ R denotes the fat that theobjet o ∈ O is related to the item i ∈ I. An itemset l is a set of items l ⊆ I, l 6= ∅.Example 2. A data mining ontext D onstituted of six objets, eah one identi�edby its OID, and �ve items is represented in table II. This ontext is used as supportfor the examples in the rest of the paper.The Galois onnetion of a �nite binary relation (Ganter and Wille, 1999) is a oupleof appliations (φ, ψ). φ assoiates with a set of objets O ⊆ O the items related toall objets o ∈ O and ψ assoiates with an itemset l ⊆ I the objets related to allitems i ∈ l. When an objet o is related to all items i ∈ l, we say that o ontains l.We denote minsupp and minonf the minimal support and on�dene thresholds.De�nition 1. (Frequent itemsets) The support of an itemset l is the proportion ofobjets in the ontext ontaining l: supp(l) = |ψ(l)| / |O|. l is a frequent itemset if
supp(l) ≥ minsupp.3 We will use ontext and dataset interhangeably in the sequel.
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Generating a Condensed Representation for Assoiation Rules 7Table II. Data mining ontext D.OID Items1 A C D2 B C E3 A B C E4 B E5 A B C E6 B C EDe�nition 2. (Assoiation rules) An assoiation rule r is an impliation between twofrequent itemsets l1, l2 ⊆ I with the form l1 → (l2\l1) where l1 ⊂ l2. The support andon�dene of r are de�ned by: supp(r) = supp(l2), conf (r) = supp(l2) / supp(l1).The losure operator γ = φ◦ψ assoiates with an itemset l the maximal set of itemsommon to all the objets ontaining l: The losure of an itemset is equal to theintersetion of all the objets ontaining it. Using this losure operator, we de�nethe frequent losed itemsets.De�nition 3. (Frequent losed itemsets) A frequent itemset l ⊆ I is a frequent loseditemset i� γ(l) = l. The minimal losed itemset ontaining an itemset l is its losure
γ(l).The set of frequent losed itemsets and their supports is a minimal non-redundantgenerating set for all frequent itemsets and their supports, and thus for all assoiationrules, their supports and their on�denes. This theorem relies on the propertiesthat the support of a frequent itemset is equal to the support of its losure and thatmaximal frequent itemsets are maximal frequent losed itemsets (Pasquier et al.,1998). In order to improve the e�ieny of frequent losed itemset extration, theClose and A-Close algorithms ompute generators of frequent losed itemsets.De�nition 4. (Generators) An itemset g ⊆ I is a generator of a losed itemset l i�
γ(g) = l and ∄g′ ⊆ I with g′ ⊂ g suh that γ(g′) = l. A generator of ardinality kis a k-generator.Generators are the minimal itemsets to onsider for disovering frequent loseditemsets, by omputing their losures. Based on the following lemma, Close andA-Close perform a breadth-�rst searh for generators in a levelwise manner.Lemma 1. All subsets s ⊆ I of a generator g ⊆ I are also generators. The losureof s is a losed subset of the losure of g: γ(s) ⊂ γ(g).Proof. See (Pasquier et al., 1999b).
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8 N. Pasquier, R. Taouil, Y. Bastide, G. Stumme and L. Lakhal2.1. Extrating frequent losed itemsets and generators with CloseTheClose algorithm is an iterative algorithm for extrating generators and frequentlosed itemsets in a levelwise manner. During an iteration k, a list of andidate k-generators is onsidered; their losures and their supports are omputed from thedataset and infrequent generators are disarded. Frequent generators are then usedto onstrut andidate (k+1)-generators. The losures of frequent generators are thefrequent losed itemsets and the support of a generator is also the support of itslosure.During the kth iteration, a set FCk is onsidered. Eah element of this set onsists ofthree information: a k-generator, its losure and their support. The algorithm �rstinitializes the andidate 1-generators in FC1 with the list of 1-itemsets and thenarries out some iterations. During eah iteration k:1. Closures of all andidate k-generators and their supports are omputed: Thenumber of objets ontaining a generator determines its support and their in-tersetion generates its losure. Eah objet is onsidered one and this phaserequires only one san of the dataset.2. Infrequent k-generators, i.e., generators with support lower than minsupp, areremoved from FCk.3. The set of andidate (k+1)-generators is onstruted by joining the frequent
k-generators in FCk as follows.a) Two k-generators in FCk that have the same �rst k−1 items are joined to re-ate a andidate (k+1)-generator. For instane, the 3-generators {ABC} and{ABD} will be joined in order to reate the andidate 4-generator {ABCD}.b) Candidate (k+1)-generators that are infrequent or non-minimal are removed.One of the k-subsets of suh a generator is either infrequent or non-minimaland thus does not belong to the set of frequent k-generators in FCk.) The third phase removes (k+1)-generators whih losures were already om-puted. Suh a generator g is easily identi�ed as it is inluded in the losureof a frequent k-generator g′ in FCk: We have g′ ⊂ g ⊆ γ(g′).The algorithm stops when no new andidate generator an be reated. Then, eahset FCk stores the frequent k-generators, their losures and their supports.Example 3. Figure 1 shows the exeution of the Close algorithm on the ontext Dfor minsupp = 2/6. The set FC1 is initialized with the list of all 1-itemsets. Thealgorithm omputes supports and losures of the 1-generators in FC1 and infrequentones are disarded. Then, joining the frequent generators in FC1, six new andidate2-generators are reated: {AB}, {AC}, {AE}, {BC}, {BE} and {CE} in FC2. The2-generators {AC} and {BE} are removed form FC2 beause we have {AC} ⊆

γ({A}) and {BE} ⊆ γ({B}). The algorithm determines supports and losures of theremaining 2-generators in FC2 and suppresses infrequent ones. Then, the andidate3-generator {ABE} is reated by joining the frequent generators in FC2 but isremoved beause the 2-generator {BE} ⊂ {ABE} is not in FC2 and the algorithmstops.
JIIS05.tex; 20/03/2008; 11:18; p.8



Generating a Condensed Representation for Assoiation Rules 9San
D
−→

FC1Generator Closed itemset Supp{A} {AC} 3/6{B} {BE} 5/6{C} {C} 5/6{D} {ACD} 1/6{E} {BE} 5/6 Pruninginfrequentitemsets
−→

FC1Generator Closed itemset Supp{A} {AC} 3/6{B} {BE} 5/6{C} {C} 5/6{E} {BE} 5/6San
D
−→

FC2Generator Closed itemset Supp{AB} {ABCE} 2/6{AE} {ABCE} 2/6{BC} {BCE} 4/6{CE} {BCE} 4/6 Pruninginfrequentitemsets
−→

FC2Generator Closed itemset Supp{AB} {ABCE} 2/6{AE} {ABCE} 2/6{BC} {BCE} 4/6{CE} {BCE} 4/6Figure 1. Extrating frequent losed itemsets in the ontext D with Close.The A-Close algorithm improves the e�ieny of the extration in ase of weaklyorrelated data. It does not ompute losures of andidate generators during theiterations, but during an ultimate san arried out after the end of these iterationsif neessary. Experimental results show that Close and A-Close are partiularlye�ient for mining assoiation rules from dense or orrelated data. On suh data,Close outperforms A-Close, and they both outperform algorithms for extrat-ing frequent itemsets and maximal frequent itemsets. In that ase, algorithms forextrating maximal frequent itemsets su�er from the ost of the frequent itemsetsupports omputation that requires aessing the dataset. On the ontrary, forweakly orrelated data, algorithms for extrating maximal frequent itemsets are themost e�ient and algorithms for extrating frequent itemsets, as well as A-Close,outperform Close.The ChARM (Zaki and Hsiao, 1999) and Closet (Pei et al., 2000) algorithmsextrat frequent losed itemsets. However, none of these algorithm extrat gener-ators and an be used to generate the min-max basis for assoiation rules. ThePasal (Bastide and al., 2000) algorithm is an optimization of Apriori based oninferene ounting and equivalene lasses de�ned aording to itemset supports. Itan easily be extended to generate the min-max basis sine generators and loseditemsets are respetively bottom and top patterns of an equivalene lass.2.2. Deriving frequent losed itemsets and generators fromfrequent itemsetsThe Close+ algorithm identi�es frequent losed itemsets and generators amongfrequent itemsets without aessing the dataset. It enables the e�ient generationof the min-max basis when an algorithm for extrating frequent itemsets is used.Suh an algorithm gives as result the sets Fk, eah set Fk ontaining all frequent
k-itemsets, with k varying from 1 to µ (the size of the longest maximal frequentitemsets). The frequent losed itemsets and generators are identi�ed among frequentitemsets using propositions 1 and 2 that are derived from the property that anitemset's support is equal to its losure's support. The ompleteness of the approah
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10 N. Pasquier, R. Taouil, Y. Bastide, G. Stumme and L. Lakhalis insured by the property that maximal frequent itemsets are maximal frequentlosed itemsets (Pasquier et al., 1998).Proposition 1. The support of a generator is smaller than the supports of all itssubsets.Proof. Let g be a k-generator and s a (k − 1)-subsets of g. We then have s ⊂ g
⇒ ψ(s) ⊇ ψ(g). If ψ(s) = ψ(g) then γ(s) = γ(g) and g is not a generator: Itis not a minimal itemset whose losure is γ(g). It follows that ψ(s) ⊃ ψ(g) ⇒
supp(g) > supp(s).Proposition 2. The support of a losed itemset is greater than the supports of all itssupersets.Proof. Let l be a losed k-itemset and s a superset of l. We then have l ⊂ s ⇒
ψ(l) ⊇ ψ(s). If ψ(l) = ψ(s) then γ(l) = γ(s) ⇒ l = γ(s) ⇒ s ⊆ l (absurd). It followsthat ψ(l) ⊃ ψ(s) ⇒ supp(l) > supp(s).The pseudo-ode of the Close+ algorithm is given in �gure 2. It examines sues-sively all frequent itemsets in eah set Fk, with k varying from 1 to µ. It generatesthe sets FCm, 1≤m≤ν, where ν is the size of the longest generators, ontaining the
m-generators, their losures and their supports. It �rst determines if a frequent k-itemset is a generator by examining all its (k−1)-subsets' supports; it then determineif it is a losed itemset by examining all its (k + 1)-supersets' supports and if so,identi�es its generators by examining all its subsets' supports. The boolean variablesislosed and isgenerator are used to determine if an itemset l is a losed itemset oris a generator.At the beginning of the kth iteration (steps 1 to 21), the set FCk is empty (step 2). Insteps 3 to 20, frequent itemsets in Fk are onsidered suessively. If an itemset l hasthe same support as one of its (k− 1)-subset l′ in Fk−1 (steps 5 to 7), then l is not agenerator (step 6). Otherwise, l and its support are inserted in FCk (step 8). Then,we test if l has the same support as one of its (k+1)-superset l” in Fk+1 (steps 10to 12). If so, we have l′ ⊆ γ(l) and then l 6= γ(l): l is not losed (step 11). Otherwise,
l is a frequent losed itemset and we determine the generators of l (steps 13 to 19)as follows. For eah generator g of size n, with 1 ≤ n ≤ k, that is a subset of l(steps 14 to 18), if the supports of g and l are equal then g is a generator of l and lis inserted in FCn as the losure of g (step 16). Thus, at the end of the algorithm,eah set FCk ontains all frequent k-generators, their losures and their supports.Corretness. The orretness of the omputation of sets FCk for 1 ≤ k ≤ µ relieson propositions 1 and 2. Using the �rst one, we determine if a frequent k-itemset lis a generator of a losed itemset by omparing its support and the supports of thefrequent (k−1)-itemsets inluded in l. The seond proposition enables to determineif a frequent k-itemset l is losed by omparing its support and the supports ofthe frequent (k+1)-itemsets in whih l is inluded. Sine a generator has the samesupport as its losure, the determination of the generators of a losed itemset isorret.
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Generating a Condensed Representation for Assoiation Rules 11Input : sets Fk of frequent k-itemsetsOutput : sets FCk of frequent k-generators, with losure and support1) for k = 1 to µ do2) FCk ← ∅3) forall itemsets l ∈ Fk do4) isgenerator← true5) forall subsets l′ ∈ Fk−1 of l do6) if (l′.supp = l.supp) then isgenerator← false7) end8) if (isgenerator = true) then insert l in FCk.generators with l.supp9) isclosed← true10) forall supersets l′′ ∈ Fk+1 of l do11) if (l′′.supp = l.supp) then isclosed← false12) end13) if (isclosed = true) then do14) for n = k to 0 step −1 do15) forall subsets g ∈ FCn.generators of l do16) if (g.supp = l.supp) then insert l in g.closure17) end18) end19) end20) end21) end22) return ⋃
FCkFigure 2. Close+ algorithm for deriving frequent losed itemsets and generators.Example 4. Figure 3 shows the exeution of the Close+ algorithm using the sets

F1 to F4 of frequent itemsets extrated from the ontext D with minsupp = 2/6. Allfrequent 1-itemsets are frequent 1-generators sine none of their subsets is a frequentitemset: The empty set is not onsidered as a frequent itemset. The 1-itemset {C}is also its own losure sine all its supersets in F2 have a smaller support. In F2,the 2-itemsets {AC} and {BE} are not generators sine they have the same supportas itemsets {A} and, {B} and {E} respetively. These two itemsets are losed sinetheir support is lower than those of all their supersets in F3; {AC} is the losureof {A} and {BE} is the losure of {B} and {E}. No frequent 3-itemset in F3 is agenerator and {BCE}, that has the same support as {BC} and {CE} and a greatersupport than {ABCE} in FC4, is the losure of {BC} and {CE} in FC2. Finally,the 4-itemset {ABCE} is losed sine it is a maximal frequent itemset is the losureof {AB} and {AE}, and is inserted in FC2.Remark. As a simple optimization, the algorithm an stop testing if frequent k-itemsets are generators after the �rst iteration n during whih no frequent n-itemsetexamined is a generator. In example 4, the algorithm will not test if 4-itemsets in
F4 are generators sine no 3-itemset is a generator (FC3 is empty at the end of thethird iteration).
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12 N. Pasquier, R. Taouil, Y. Bastide, G. Stumme and L. Lakhal
F1Itemset Supp{A} 3/6{B} 5/6{C} 5/6{E} 5/6

Generatorsof size 1
−→Closuresof size 1
−→

FC1Generator Closed itemset Supp{A} 3/6{B} 5/6{C} 5/6{E} 5/6
FC1Generator Closed itemset Supp{A} 3/6{B} 5/6{C} {C} 5/6{E} 5/6

F2Itemset Supp{AB} 2/6{AC} 3/6{AE} 2/6{BC} 4/6{BE} 5/6{CE} 4/6
Generatorsof size 2
−→Closuresof size 2
−→

FC2Generator Closed itemset Supp{AB} 2/6{AE} 2/6{BC} 4/6{CE} 4/6
FC1Generator Closed itemset Supp{A} {AC} 3/6{B} {BE} 5/6{C} {C} 5/6{E} {BE} 5/6

F3Itemset Supp{ABC} 2/6{ABE} 2/6{ACE} 2/6{BCE} 4/6
Generatorsof size 3
−→Closuresof size 3
−→

FC3Generator Closed itemset Supp
FC2Generator Closed itemset Supp{AB} 2/6{AE} 2/6{BC} {BCE} 4/6{CE} {BCE} 4/6

F4Itemset Supp{ABCE} 2/6 Generatorsof size 4
−→Closuresof size 4
−→

FC4Generator Closed itemset Supp
FC2Generator Closed itemset Supp{AB} {ABCE} 2/6{AE} {ABCE} 2/6{BC} {BCE} 4/6{CE} {BCE} 4/6Figure 3. Deriving frequent losed itemsets and generators with Close+.
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Generating a Condensed Representation for Assoiation Rules 133. Min-max basis for assoiation rulesWe �rst de�ne min-max assoiation rules: The most general non-redundant assoi-ation rules aording to their semanti. Informally, an assoiation rule is redundantif it brings the same information or less information than is brought by another ruleof same support and on�dene. Then, the min-max assoiation rules are the non-redundant assoiation rules having minimal anteedent and maximal onsequent: ris a min-max assoiation rule if no other assoiation rule r′ has the same support andon�dene, an anteedent that is a subset of the anteedent of r and a onsequentthat is a superset of the onsequent of r.De�nition 5. (Min-max assoiation rules) Let AR be the set of assoiation rulesextrated. An assoiation rule r : l1 → l2 ∈ AR is a min-max assoiation rule i�
∄ r′ : l′1 → l′2 ∈ AR with supp(r′) = supp(r), onf(r′) = onf(r), l′1 ⊆ l1 and l2 ⊆ l′2.Based on this de�nition, we haraterize exat and approximate min-max assoi-ation rules that onstitute respetively the min-max exat basis and the min-maxapproximate basis in the two following setions.3.1. Exat min-max assoiation rulesFirst, notie that exat assoiation rules, with the form r : l1 ⇒ (l2 \ l1), are rulesbetween two frequent itemsets l1 ⊂ l2 having the same losure: γ(l1) = γ(l2). Sine
conf (r) = 1 we have supp(l1) = supp(l2), and as l1 ⊂ l2 we see that γ(l1) = γ(l2).We de�ne min-max assoiation rules among these exat rules.Let g be the generator of γ(l1) = γ(l2) suh that g ⊆ l1. Sine g is minimal, we have
g ⊆ l1 ⊂ l2 ⊆ γ(l2). Furthermore, all itemsets in the interval [g, γ(l2)], de�ned byinlusion4, have the same losure γ(l2) and thus the same support. The min-maxassoiation rule among all rules with the form r : l1 ⇒ (l2 \ l1) with l1, l2 ∈ [g, γ(l2)]is the rule g ⇒ (γ(l2) \ g). This rule has a minimal anteedent, g, and a maximalonsequent, γ(l2), among all these rules that have the same support.We generalize this de�nition to all generators of the frequent losed itemset γ(l2).Let Genγ(l2) be the set of these generators. All exat min-max assoiation rulesonstruted with γ(l2) are rules with the form g ⇒ (γ(l2)\g) with g ∈ Genγ(l2). Theextension of this property to all frequent losed itemsets de�nes the min-max exatbasis ontaining all exat min-max assoiation rules haraterized in de�nition 5.De�nition 6. (Min-max exat basis) Let Closed be the set of frequent losed item-sets extrated from the ontext and, for eah frequent losed itemset f , let's denote
Genf the set of generators of f . The min-max exat basis is:

MinMaxExact = {r : g ⇒ (f \ g) | f ∈ Closed ∧ g ∈ Genf ∧ g 6= f}.The ondition g 6= f disards rules with the form g ⇒ ∅; it is equivalent to theondition l1 ⊂ l2 in the de�nition of assoiation rules. We state in the followingproposition that the min-max exat basis does not lead to information loss.4 The interval [l1, l2] ontains all the supersets of l1 that are subsets of l2.
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14 N. Pasquier, R. Taouil, Y. Bastide, G. Stumme and L. LakhalThe pseudo-ode of the algorithm for onstruting the min-max exat basis usingfrequent losed itemsets and their generators is presented in �gure 4. Eah elementof a set FCk ontains three �elds: a k-generator generator , its losure closure andtheir support supp. The algorithm returns the set MinMaxExact ontaining theexat min-max rules.Input : sets FCkOutput : set MinMaxExact1) MinMaxExact ← ∅2) for k = 1 to ν do3) forall k-generator g ∈ FCk do4) if (g 6= g.closure)5) then insert {r : g ⇒ (g.closure \ g), g.supp} in MinMaxExact6) end7) end8) return MinMaxExactFigure 4. Algorithm for generating the min-max exat basis.First, MinMaxExact is initialized with the empty set (step 1). Then, eah set FCk isexamined in inreasing order of k values (steps 2 to 7). For eah k-generator g ∈ FCkof the frequent losed itemset γ(g) (steps 3 to 6), if g is di�erent from its losure
γ(g) (step 4), the rule r : g ⇒ (γ(g) \ g), whih support is equal to the support of gand γ(g), is inserted into MinMaxExact (step 5). Finally, the algorithm returns theset MinMaxExact ontaining all exat min-max assoiation rules between generatorsand their losures (step 8).Example 5. The min-max exat basis extrated from ontext D for minsupp = 2/6 ispresented in table III. It ontains seven rules whereas the set of all exat assoiationrules, presented in table IV, ontains fourteen rules.Table III. Min-max exat basis extrated from D.Generator Closure Exat rule Supp{A} {AC} A ⇒ C 3/6{B} {BE} B ⇒ E 5/6{C} {C}{E} {BE} E ⇒ B 5/6{AB} {ABCE} AB ⇒ CE 2/6{AE} {ABCE} AE ⇒ BC 2/6{BC} {BCE} BC ⇒ E 4/6{CE} {BCE} CE ⇒ B 4/6
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Generating a Condensed Representation for Assoiation Rules 15Table IV. Exat assoiation rules extrated from D.Exat rule Supp Exat rule SuppA ⇒ C 3/6 BC ⇒ E 4/6B ⇒ E 5/6 CE ⇒ B 4/6E ⇒ B 5/6 AB ⇒ CE 2/6AB ⇒ C 2/6 AE ⇒ BC 2/6AB ⇒ E 2/6 ABC ⇒ E 2/6AE ⇒ B 2/6 ABE ⇒ C 2/6AE ⇒ C 2/6 ACE ⇒ B 2/6Proposition 3. (i) All exat assoiation rules and their supports an be dedued fromthe min-max exat basis. (ii) All rules in the min-max exat basis are min-maxassoiation rules.Proof. (i) Let r : l1 ⇒ (l2 \ l1) be an exat assoiation rule between two frequentitemsets with l1 ⊂ l2. Sine conf (r) = 1, we have supp(l1) = supp(l2) and as anitemset's support is equal to its losure's support, we dedue that supp(γ(l1)) =
supp(γ(l2)) whih implies that γ(l1) = γ(l2) = f . The itemset f is a frequent loseditemset f ∈ FC and, obviously, there exists a rule r′ : g ⇒ (f \ g) ∈ MinMaxExactsuh that g is a generator of f with g ⊆ l1 and g ⊂ l2. We show now that the rule rand its support an be dedued from the rule r′ and its support. Sine g ⊆ l1 ⊂ l2 ⊆
f , rule r's anteedent and onsequent an be derived from those of rule r′. From
γ(l1) = γ(l2) = f , we dedue that supp(r) = supp(l2) = supp(γ(l2)) = supp(f) =
supp(r′).(ii) Let r : g ⇒ (f \g) ∈ MinMaxExact . Aording to de�nition 6, we have g ∈ Genfand f ∈ Closed . We demonstrate that there is no other rule r′ : l′1 ⇒ (l′2 \ l′1) ∈
MinMaxExact , suh as supp(r′) = supp(r), onf(r′) = onf(r), l′1 ⊆ g and f ⊆ l′2.If l′1 ⊂ g then, aording to de�nition 4, we have γ(l′1) ⊂ γ(g) = f =⇒ l1 6∈ Genfand then r′ 6∈ MinMaxExact . If f ⊂ l′2 and aording to de�nition 3, we have
f = γ(f) = γ(g) ⊂ l′2 = γ(l′2). From de�nition 4 we dedue g 6∈ Gen l′

2
and weonlude that r′ 6∈ MinMaxExact .3.2. Approximate min-max assoiation rulesApproximate assoiation rules, with the form r : l1 → (l2 \ l1), are rules betweentwo frequent itemsets l1 ⊂ l2 suh that γ(l1) ⊂ γ(l2). Sine conf (r) < 1 we have

supp(l1) > supp(l2) and we dedue that γ(l1) ⊂ γ(l2).We dedue the de�nition of approximate min-max assoiation rules. Let g1 be agenerator of the frequent losed itemset f1 and g2 be a generator of the frequentlosed itemset f2 suh that f1 ⊂ g2 ⊆ l2 ⊆ f2. All rules with the form r : l1 → (l2 \l1)where l1 ∈ [g1, f1] and l2 ∈ [g2, f2] have the same on�dene and the same supportsine g1, l1 and f1 have the same support as well as g2, l2 and f2. We then deduethat the min-max assoiation rule among all these rules is g1 → (f2 \ g1). Indeed, g1is the minimal itemset in [g1, f1] and f2 is the maximal itemset in [g2, f2].
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16 N. Pasquier, R. Taouil, Y. Bastide, G. Stumme and L. LakhalThe generalization of this property to all ouples of frequent itemsets l1 and l2suh that l1 ⊂ l2 and supp(l1) 6= supp(l2) de�nes the min-max approximate basisontaining all approximate min-max assoiation rules haraterized in de�nition 5.De�nition 7. (Min-max approximate basis) We denote Gen the set of generators ofthe frequent losed itemsets in Closed . The min-max approximate basis is:
MinMaxApprox = {r : g → (f \ g) | f ∈ Closed ∧ g ∈ Gen ∧ γ(g) ⊂ f}.The pseudo ode of the algorithm for generating the set MinMaxApprox of approxi-mate min-max rules using frequent losed itemsets and their generators is presentedin �gure 5.Input : sets FCk, on�dene threshold minconfOutput : set MinMaxApprox1) MinMaxApprox ← ∅2) for k = 1 to ν − 1 do3) forall k-generator g ∈ FCk do4) forall frequent losed itemset f ∈ Fj>k | f ⊃ g.closure do5) if (f.supp/g.supp ≥ minconf )6) then insert {r : g → (f \ g), f.supp/g.supp, f.supp} in MinMaxApprox7) end8) end9) end10) return MinMaxApproxFigure 5. Algorithm for generating the min-max approximate basis.The algorithm examines the sets FCk in inreasing order of k values (steps 2 to 9).For eah k-generator g ∈ FCk (steps 3 to 8), it onsiders all losed supersets f ofthe losure of g (steps 4 to 7). It omputes the on�dene of the rule r : g → (f \ g)(step 5) and inserts r in MinMaxReduc if it is above the minconf threshold (step 6).Example 6. The min-max approximate basis extrated from ontext D for minsupp= 2/6 and minonf = 2/5 is presented in table V. It ontains ten rules whereas theset of all approximate assoiation rules, presented in table VI, ontains thirty-sixrules.Proposition 4. (i) All approximate assoiation rules an be dedued, with their sup-ports and on�denes, from the min-max approximate basis. (ii) All rules in themin-max approximate basis are min-max assoiation rules.Proof. (i) Let r : l1 → (l2 \ l1) be an assoiation rule between two frequent itemsetswith l1 ⊂ l2. Sine conf (r) < 1 we also have γ(l1) ⊂ γ(l2). For any frequent itemsets

l1 and l2, there is a generator g1 suh that g1 ⊂ l1 ⊆ γ(l1) = γ(g1) and a generator
g2 suh that g2 ⊂ l2 ⊆ γ(l2) = γ(g2). Sine l1 ⊂ l2, we have l1 ⊆ γ(g1) ⊂ l2 ⊆ γ(g2)and the rule r′ : g1 → (γ(g2) \ g1) is in the min-max approximate basis. We show
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Generating a Condensed Representation for Assoiation Rules 17Table V. Min-max approximate basis extrated from D.Generator Closure Closed superset Approximate rule Supp Conf{A} {AC} {ABCE} A → BCE 2/6 2/3{B} {BE} {BCE} B → CE 4/6 4/5{B} {BE} {ABCE} B → ACE 2/6 2/5{C} {C} {AC} C → A 3/6 3/5{C} {C} {BCE} C → BE 4/6 4/5{C} {C} {ABCE} C → ABE 2/6 2/5{E} {BE} {BCE} E → BC 4/6 4/5{E} {BE} {ABCE} E → ABC 2/6 2/5{AB} {ABCE}{AE} {ABCE}{BC} {BCE} {ABCE} BC → AE 2/6 2/4{CE} {BCE} {ABCE} CE → AB 2/6 2/4Table VI. Approximate assoiation rules extrated from D.Approximate rule Supp Conf Approximate rule Supp Conf Approximate rule Supp ConfBCE → A 2/6 2/4 B → ACE 2/6 2/5 B → CE 4/6 4/5AC → BE 2/6 2/3 C → ABE 2/6 2/5 C → BE 4/6 4/5BC → AE 2/6 2/4 E → ABC 2/6 2/5 E → BC 4/6 4/5BE → AC 2/6 2/5 A → BC 2/6 2/3 A → B 2/6 2/3CE → AB 2/6 2/4 B → AC 2/6 2/5 B → A 2/6 2/5AC → B 2/6 2/3 C → AB 2/6 2/5 C → A 3/6 3/5BC → A 2/6 2/4 A → BE 2/6 2/3 A → E 2/6 2/3BE → A 2/6 2/5 B → AE 2/6 2/5 E → A 2/6 2/5AC → E 2/6 2/3 E → AB 2/6 2/5 B → C 4/6 4/5CE → A 2/6 2/4 A → CE 2/6 2/3 C → B 4/6 4/5BE → C 4/6 4/5 C → AE 2/6 2/5 C → E 4/6 4/5A → BCE 2/6 2/3 E → AC 2/6 2/5 E → C 4/6 4/5that the rule r, its support and its on�dene an be dedued from the rule r′, itssupport and its on�dene. Sine g1 ⊂ l1 ⊆ γ(g1) ⊂ g2 ⊂ l2 ⊆ γ(g2), the anteedentand the onsequent of r an be rebuilt starting from the rule r′. Moreover, wehave γ(l2) = γ(g2) and thus supp(r) = supp(l2) = supp(γ(g2)) = supp(r′). Sine
g1 ⊂ l1 ⊆ γ(g1), we have supp(g1) = supp(l1) and we thus dedue that: conf (r) =
supp(l1) / supp(l2) = supp(g1) / supp(γ(g2)) = conf (r′).(ii) Let r : g ⇒ (f \ g) ∈ MinMaxExact . Aording to de�nition 7, we have f ∈
Closed , g ∈ Genf ′ and f ′ ⊂ f . We demonstrate that there is no other rule r′ : l′1 ⇒
(l′2 \ l′1) ∈ MinMaxApprox , suh as supp(r′) = supp(r), onf(r′) = onf(r), l′1 ⊆ gand f ⊆ l′2. If l′1 ⊂ g then, aording to de�nition 4, we have γ(l′1) ⊂ γ(g) = f ′ andthen l1 6∈ Genf ′ . We dedue that supp(l′1) > supp(g) and then conf (r′) < conf (r).If f ⊂ l′2 then, aording to de�nition 3, we have f = γ(f) ⊂ l′2 = γ(l′2). We deduethat supp(f) > supp(l′2) and we onlude that conf (r) > conf (r′).
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18 N. Pasquier, R. Taouil, Y. Bastide, G. Stumme and L. Lakhal3.3. Non-transitive approximate min-max assoiation rulesWe an further redue the number of approximate assoiation rules extrated with-out losing the ability to dedue all approximate assoiation rules, with support andon�dene, by removing transitive min-max assoiation rules.A min-max assoiation rules g → (f \ g) with γ(g) ⊂ f is transitive if it existsa frequent losed itemset f ′ suh that γ(g) ⊂ f ′ ⊂ f . Let g′ be the generator of
f ′ suh that γ(g) ⊂ g′ ⊆ f ′ ⊂ f . Then, we have the two following approximatemin-max assoiation rules: g → (f ′ \g) and g′ → (f \g′). The rule g → (f \g) is thetransitive omposition of the two previous rules; its support is equal to the seondrule's support and its on�dene is equal to the produt of their on�denes.We generalize this haraterization to all triplets onsisting of a generators g, itslosure f and a losed superset f ′ of f to de�ne the non-transitive min-max approx-imate basis, that is the transitive redution of the min-max approximate basis. Let'sdenote l1 ⋖ l2 when an itemset l1 is an immediate predeessor of an itemset l2, i.e.
∄l3 suh that l1 ⊂ l3 ⊂ l2. The non-transitive min-max approximate rules are of theform g → (f \ g) where f is a frequent losed itemset and g a frequent generatorsuh that γ(g) is an immediate predeessor of f .De�nition 8. (Non-transitive min-max approximate basis) The non-transitive min-max approximate basis is:

MinMaxReduc = {r : g → (f \ g) | f ∈ Closed ∧ g ∈ Gen ∧ γ(g) ⋖ f}.Remark. This transitive redution dereases the number of approximate rules ex-trated, by seleting the most preise rules, i.e. whith highest on�denes, sinetransitive rules have lower on�denes than non-transitive rules.The algorithm presented in �gure 6 onstruts the setMinMaxReduc of non-transitiveapproximate min-max rules using frequent losed itemsets and their generators. Foreah generator g, it determines all frequent losed itemsets f that are immediatesuessors of the losure of g and then, it generates all rules between g and f thathave a su�ient on�dene.First, MinMaxReduc is initialized with the empty set (step 1) and sets FCk aresuessively examined in inreasing order of k values (steps 2 to 19). For eah k-generator g ∈ FCk (steps 3 to 18), the set ImSuccg of immediate suessors of glosure is initialized with the empty set (step 4). The sets Sj of frequent losed
j-supersets of γ(g) for |γ(g)| < j ≤ µ are onstruted (steps 5 to 7). Then, sets
Sj are onsidered suessively in asending order of j values (steps 8 to 17). Foreah itemset f ∈ Sj that is not a superset of an immediate suessor of γ(g) in
ImSuccg (step 10), f is inserted in ImSuccg (step 11) and the on�dene of the rule
r : g → (f \ g) is omputed (step 12). If the on�dene of r is above minconf , therule r is inserted in MinMaxReduc (steps 13 and 14). When all the generators of sizelower than ν− 1 have been onsidered, the algorithm returns the set MinMaxReduc(step 20).Example 7. The non-redundant min-max approximate basis extrated from ontext
D for minsupp = 2/6 and minonf = 2/5 is presented in table VII. It ontains
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Generating a Condensed Representation for Assoiation Rules 19Input : sets FCk, on�dene threshold minonfOutput : set MinMaxRedu1) MinMaxReduc ← ∅2) for k = 1 to ν − 1 do3) forall k-generator g ∈ FCk do4) ImSuccg ← ∅5) for j = |g.closure| to µ do6) Sj ← {f ∈ FC.closure | f ⊃ g.closure ∧ |f | = j}7) end8) for j = |g.closure| to µ do9) forall frequent losed itemset f ∈ Sj do10) if (∄s ∈ ImSuccg | s ⊂ f) then do11) insert f in ImSuccg12) conf ← f.supp/g.supp13) if (conf ≥ minconf )14) then insert {r : g → (f \ g), conf , f.supp} in MinMaxReduc15) end16) end17) end18) end19) end20) return MinMaxReducFigure 6. Algorithm for generating the non-transitive min-max approximate basis.only seven rules, that is three rules less than the approximate min-max basis. Thesethree rules are B → ACE, C → BE and E → ABC that have minimal support andon�dene measures among the ten rules of the approximate min-max basis.Table VII. Non-transitive min-max approximate basis extrated from D.Generator Closure Closed superset Approximate rule Supp Conf{A} {AC} {ABCE} A → BCE 2/6 2/3{B} {BE} {BCE} B → CE 4/6 4/5{B} {BE} {ABCE}{C} {C} {AC} C → A 3/6 3/5{C} {C} {BCE} C → BE 4/6 4/5{C} {C} {ABCE}{E} {BE} {BCE} E → BC 4/6 4/5{E} {BE} {ABCE}{AB} {ABCE}{AE} {ABCE}{BC} {BCE} {ABCE} BC → AE 2/6 2/4{CE} {BCE} {ABCE} CE → AB 2/6 2/4
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20 N. Pasquier, R. Taouil, Y. Bastide, G. Stumme and L. LakhalProposition 5. All approximate assoiation rules, with support and on�dene, anbe dedued from the non-transitive min-max approximate basis.First, we show that all approximate min-max assoiation rules an be derived fromthe non-transitive min-max approximate assoiation rules. Then, from proposition 4we onlude that all approximate assoiation rules an also be dedued.Proof. Let r : g1 → (fn \ g1) be an approximate min-max assoiation rule between agenerator g1 whose losure is f1 and a frequent losed superset fn of f1. If f1 ⋖ fnthen r is non-transitive: r ∈ MinMaxReduc. If f1 6⋖fn then r is transitive and there isa sequene f1, f2, . . ., fn of frequent losed itemsets suh that g1 ⊆ f1 ⋖f2 ⋖ . . .⋖fnwith n ≥ 3. Eah fi has at least one generator gi suh that γ(gi) = fi and sine
f1⋖f2⋖. . .⋖fn, there is a sequene of rules ri : gi → (fi+1\gi) for i ∈ [1, n−1] that arenon-transitive min-max rules. The anteedent of r is the anteedent g1 of the �rst rule
r1 of the sequene. The onsequent of r is (fn\g1) = (((fn\gn−1)∪gn−1)\g1), i.e. theunion of rule rn−1's anteedent and onsequent minus rule r1's anteedent. We nowshow that support and on�dene of r an be dedued of those of rules ri. We have
supp(r) = supp(g1 ∪ (fn \ g1)) = supp(fn) = supp(gn−1 ∪ (fn \ gn−1)) = supp(rn−1).The support of r is equal to the support of the last rule rn−1 of the sequene. We alsohave: conf (r) = supp(fn)/supp(g1) = supp(fn)/supp(gn−1) × supp(gn−1)/supp(g1)= supp(fn)/supp(gn−1) × supp(fn−1)/supp(gn−2) × . . .×supp(f2)/supp(g1) =
conf (rn−1)×conf (rn−2)× . . .×conf (r1). The on�dene of r is equal to the produtof the on�denes of the rules ri for i = 1 to n− 1.4. Deriving assoiation rules from the min-max basesWe introdue in this setion simple tehniques and algorithms to reonstrut all exatassoiation rules, all approximate assoiation rules and all transitive approximatemin-max assoiation rules from the min-max bases.4.1. Deriving exat assoiation rulesThe graph-oriented representation of the exat and the exat min-max assoiationrules extrated from ontext D for minsupp = 2/6 and minonf = 2/5 are given in�gure 7 and 8 respetively.Eah vertex vl represents a frequent itemset l that is a subset of the maximal frequentitemset {ABCE}. Eah edge between two verties va and vc represents the exatassoiation rule a ⇒ c \ a. A losed interval is a sub-graph ontaining all vertiesrepresenting itemsets of the intervals [gi, f ] where eah gi is a generator of thefrequent losed itemset f . Sine all itemsets in a losed interval have the samesupport, all rules in this interval also have the same support.In the graph representation, deriving all exat rules means adding all possible edgesbetween two verties of the same losed interval. Eah edge in �gure 8 between twoverties vg and vf represents a rule between a generator g and its losure f . Then,
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Generating a Condensed Representation for Assoiation Rules 21
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Figure 7. Exat assoiation rules extrated from D.
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Figure 8. Exat min-max assoiation rules extrated from D.we add all edges between two verties, one representing a superset of g and the othera subset of f .
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22 N. Pasquier, R. Taouil, Y. Bastide, G. Stumme and L. LakhalThe algorithm reeives the set MinMaxExact of exat min-max rules as input andit returns the set AllExact ontaining all exat assoiation rules. Its pseudo-ode ispresented in �gure 9. It onsiders all exat min-max rules r1 : a1 ⇒ c1 with |c1| > 1(steps 2 to 8). For all subset c2 of c1 (steps 3 to 7), it generates all rules with theform r2 : a1 ⇒ c2 and r3 : a1 ∪ c2 ⇒ c1 \ c2 (steps 4 and 6). These rules have thesame support as r1. Sine rule r3 an be generated several times, the algorithm �rsttests if it has not already been inserted in AllExact (step 5).Input : set MinMaxExactOutput : set AllExact1) AllExact ← ∅2) forall rule {r1 : a1 ⇒ c1, r1.supp} ∈ MinMaxExact with |c1| > 1 do3) forall subset c2 ⊂ c1 do4) insert {r2 : a1 ⇒ c2, r1.supp} in AllExact5) if {r3 : a1 ∪ c2 ⇒ c1 \ c2, r1.supp} /∈ AllExact6) then insert r3 in AllExact7) end8) end9) return AllExactFigure 9. Algorithm for reonstruting all exat assoiation rules.Example 8. Consider rule AB ⇒ CE represented in �gure 4 by the edge betweenverties {AB} and {ABCE}. From this rule we dedue rules AB ⇒ C, AB ⇒ E,ABC ⇒ E and ABE ⇒ C and from rule AE ⇒ BC, we dedue rules AE ⇒ B,AE ⇒ C, ABE ⇒ C and ACE ⇒ B. All these rules have the same support.Remark. For onstruting all exat rules using sets FCk of generators and frequentlosed itemsets, we onsider eah generator g and its losure f . We generate all rules
r : g ⇒ l\g and r : l ⇒ f \ l for l ∈ [g, f [. For instane, from the generator {AB} andits losure {ABCE}, we generate rules AB ⇒ CE, AB ⇒ C, AB ⇒ E, ABC ⇒ Eand ABE ⇒ C. Their support is equal to the support of g and f , i.e. the support of{AB} and {ABCE}.4.2. Deriving approximate assoiation rulesFigures 10 and 11 depit the graph-oriented representations of the approximate andthe approximate min-max assoiation rules extrated from ontext D for minsupp= 2/6 and minonf = 2/5. Eah edge between two verties va and vc represents theapproximate rule a→ c \ a.In �gure 11, eah edge between two verties vg and vf represents the min-maxapproximate rule g → f \ g where g is a generator and f a frequent losed supersetof g. That is to say an edge between a minimal vertex of a losed interval and themaximal vertex of another losed interval above the �rst one. For instane, the edgebetween verties ontaining {A} and {ABCE} represents the rule A → BCE.
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generator itemset
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Figure 10. Approximate assoiation rules extrated from D.
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Figure 11. Approximate min-max assoiation rules extrated from D.To derive all approximate rules, when there is an edge between two verties of twolosed intervals we reate all possible edges between eah vertex of the �rst intervaland eah vertex of the seond interval. All these rules have the same support andon�dene. In �gure 11 for instane, we add all edges between verties of the losed
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24 N. Pasquier, R. Taouil, Y. Bastide, G. Stumme and L. Lakhalinterval {{A},{AC}} and the losed interval {{AB}, {AE}, {ABC}, {ABE}, {ACE},{ABCE}}. These rules have the same support and on�dene as rule A → BCE.A simple and e�ient method to derive all approximate rules is to proeed in twophases. First, we generate all rules with the form g1 → li \ g1 between a generator
g1 and all its frequent supersets li ∈ [gi, fi] where gi is a generator of fi and g1 ⊂ gi.Seond, we �extend� these rules by replaing their anteedent by all itemsets l1 ∈
[g1, f1] where f1 is the losure of g1.The input of the algorithm are the sets MinMaxApprox and MinMaxExact of ap-proximate and exat min-max rules. Its result is the set AllApprox ontaining allapproximate rules. Its pseudo-ode is presented in �gure 12.Input : set MinMaxApprox , set MinMaxExactOutput : set AllApprox1) AllApprox ← MinMaxApprox2) for i = 2 to µ− 1 do3) forall rule {r1 : a1 → c1, r1.supp, r1.conf } ∈ MinMaxApprox with |c1| = i do4) forall subset c2 ⊂ c1 do5) if ({r2 : a1 → c2, r2.supp, r2.conf } /∈ AllApprox)6) and ({r3 : a1 ⇒ c2, r3.supp} /∈ MinMaxExact)7) then insert {r2 : a1 → c2, r1.supp, r1.conf } in AllApprox8) end9) end10) end11) forall rule {r1 : a1 → c1, r1.supp, r1.conf} ∈ AllApprox do12) forall rule ({r2 : a1 ⇒ c2, r2.supp} ∈ MinMaxExact) do13) forall subset c3 ⊆ c2 do14) insert {r3 : a1 ∪ c3 → c1 \ c3, r1.supp, r1.conf } in AllApprox15) end16) end17) end18) return AllApproxFigure 12. Algorithm for reonstruting approximate min-max assoiation rules.In the �rst phase (steps 2 to 10), it onsiders min-max approximate rules a1 → c1with |c1| > 1 in inreasing order of their onsequent's size (steps 3 to 9). For eahmin-max rule a1 → c1, all rules with the form a1 → c2 with c2 ⊂ c1 are generated ifthey were not previously generated and there is no exat rule a1 ⇒ c2 (steps 4 to 8).All these rules have the same support and on�dene. In the seond phase(steps 11to 17), it onsiders all approximate rules a1 → c1 and for eah min-max exat rule
a1 ⇒ c2 (steps 12 to 16), it generates all rules with the form a1 ∪ c3 → c1 \ c3 for allsubset c3 of c2 (steps 13 to 15).Example 9. Considering rule A→ BCE in �gure 11, we dedue rules A → B, A → E,A → BC, A → BE, A → CE. Rule A → C is not generated sine A ⇒ C is an exatrule, i.e. {A} and {AC} belong to the same losed interval. Then, sine we have
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Generating a Condensed Representation for Assoiation Rules 25A ⇒ C, extending all rules with A as anteedent we obtain rules AC → B, AC → E,AC → BE.In order to generate all approximate rules using sets FCk of generators and frequentlosed itemsets, we onsider eah ouple of intervals {[g1, f1], [g2, f2]} with γ(g1) = f1and γ(g2) = f2 suh that g1 ⊂ g2. We generate all rules r : l1 → l2 \ l1 for l1 ∈ [g1, f1]and l2 ∈ [g2, f2]. The support of these rules is supp(f2) and their on�dene is
supp(f2)/supp(f1). For instane, from the generator {B} and its losure {BE} andthe generator {BC} and its losure {BCE}, we generate the rules B → C, B → CEand BE → C.4.3. Deriving transitive approximate min-max assoiation rulesThe graph-oriented representation of the non-transitive approximate min-max as-soiation rules extrated from ontext D for minsupp = 2/6 and minonf = 2/5 isgiven in �gure 13.

closed interval

generator itemset

AC AB BCBE CE

ABCE

A C B E

ABC ABE ACE BCE

AE

Figure 13. Non-transitive approximate min-max assoiation rules extrated from D.Eah edge between two verties vg and vf represents the non-transitive approximaterule g → f \ g where g is a generator and f a frequent losed immediate suessorof the losure of g. That is an edge between a minimal vertex of a losed intervaland the maximal vertex of an immediately above losed interval.An edge in �gure 11 represents a transitive rule if it is an edge between a minimalvertex of a losed interval and the maximal vertex of another losed interval thatis not immediately above the �rst one: There is a losed interval �intermediate�between these two intervals. For instane, the rule C → ABE between the losed
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26 N. Pasquier, R. Taouil, Y. Bastide, G. Stumme and L. Lakhalintervals {{C}} and {{AB},{AE},{ABC},{ABE},{ACE}, {ABCE}} is transitivesine we have rules C → A and A → BCE and the losed interval {{A},{AC}} isintermediate, i.e., {C} ⊂ {AC} ⊂ {ABCE}. The on�dene of C → ABE is equalto the produt of rules C → A and A → BCE on�denes.In order to derive all transitive rules, we �rst add all rules that are ompositionsof two non-transitive rules, we then derive from them rules that are ompositionsof three non-transitive rules and so on until no new rule an be derived. The threetransitive min-max rules reonstruted are C → ABE, B → ACE and E → ABC.They are all ompositions of two non-transitive rules, that have the form gi → fj \giwith gi ⊆ γ(gi) = fi ⋖ fj, represented in �gure 7.The algorithm presented in �gure 14 generates the set MinMaxApprox of approx-imate min-max rules using the set MinMaxReduc of non-transitive approximatemin-max rules and the minconf threshold as its input.Input : set MinMaxReduc, on�dene threshold minconfOutput : set MinMaxApprox1) Test ← MinMaxReduc2) MinMaxTrans ← ∅3) while (Test 6= ∅) do4) forall rule {r1 : a1 → c1, r1.supp, r1.conf} ∈ Test do5) forall rule {r2 : a2 → c2, r2.supp, r2.conf} ∈ MinMaxReduc6) with a2 ⊂ a1 ∪ c1 ⊂ a2 ∪ c2 do7) if (r1.conf × r2.conf ≥ minconf )8) and ({r3 : a1 → (a2 ∪ c2) \ a1} /∈ MinMaxTrans) then9) MinMaxTrans ← MinMaxTrans ∪ {r3, r2.supp, r1.conf × r2.conf }10) Test ← Test ∪ {r3, r2.supp, r1.conf × r2.conf }11) end12) end13) Test ← Test \ {r1}14) end15) end16) return MinMaxApprox ← MinMaxReduc ∪MinMaxTransFigure 14. Algorithm for reonstruting transitive approximate min-max assoiation rules.The approah is inremental: We iteratively add new transitive min-max rules untilno new rule has been reated (steps 3 to 15). During eah iteration, the Test setontains all rules examined to generate new transitive rules and the algorithm stopswhen Test is empty. This set is initialized with all non-transitive rules (step 1) andall rules r1 it ontains, that have the form gi → fj \ gi, are suessively examined(steps 4 to 14). For eah non-transitive rule r2 in MinMaxReduc with the form
gj → fm \ gj suh that gj ⊂ fj ⊂ fm (steps 5 and 6 to 12), the transitive rule r3with the form gi → fm \ gi is generated in MinMaxTrans and Test (steps 9 and 10)if its on�dene is su�ient and it is not already present in MinMaxTrans (steps 7
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Generating a Condensed Representation for Assoiation Rules 27and 8). Then, rule r1 is removed from Test (step 13) sine it is not needed anymore:Only transitive rules generates from r1 will be examined in the following iterations.Example 10. The transitive rule B → ACE is derived from rules B → CE andBC → AE whose anteedent {BC} is a subset of {B} ∪ {CE} = {BCE}, and {BCE}is itself a subset of {BC} ∪ {AE} = {ABCE}. The rule E → ABC is derived fromE → BC and CE → AB. The rule C → ABE an be derived from rules C → A andA → BCE, or from rules C → BE and BC → AE or CE → AB.5. Experimental resultsWe used the four following datasets during these experiments: T10I4D100K5 is asyntheti dataset built aording to sales data properties. It ontains 100,000 objetswith an average objet size of 10 items and an average size of potential maximalfrequent itemsets of 4 items. The Mushrooms dataset desribes 23 harateristis(attributes) of 8,416 mushrooms (objets): Eah objet is related to 23 items andwe have 127 items on the whole. The C20D10K and C73D10K (Hettih and Bay,1999) datasets are samples of the 1990 ensus in Kansas, eah ontaining 10,000objets orresponding to the �rst 10,000 listed people. Eah objet is desribed by20 attributes (20 items by objets and 386 items on the whole) in C20D10K and 73attributes (73 items by objets and 2,178 items on the whole) in C73D10K.Running times of the generation of all assoiation rules and of the min-max basesare not shown sine they are insigni�ant ompared to exeution times of the itemsetextration. Indeed, no dataset san is required for this phase and all omputationstake plae in main memory. As a data-point, the largest running time obtained was46.27 seonds for the generation of the 2,053,936 approximate assoiation rules forC73D10K on a Pentium II at 333MHz with 256MB of main memory.Number of exat assoiation rules extrated. The total number of exatassoiation rules and the number of min-max exat assoiation rules are presentedin table VIII. No exat assoiation rule is extrated from T10I4D100K sine, forthis minsupp value, all frequent itemsets are frequent losed itemsets. Thus, theyare themselves their own unique generator and onsequently, there is no exat as-soiation rule l1 ⇒ (l2 \ l1) between two frequent itemsets l1 ⊂ l2 having identiallosures γ(l1) = γ(l2). The three other datasets are made up of orrelated data,and the total number of exat rules is important, making it di�ult to disoverinteresting information. For these datasets, the min-max exat basis redues thenumber of rules by a fator varying from 13 to 50. Sine there is no information loss,it brings a omplete summary of relevant information that is easier to exploit forthe analyst.Number of approximate assoiation rules extrated. The total number ofapproximate assoiation rules and the number of approximate and non-transitiveapproximate min-max rules are presented in table IX. The number of approximate5 http://www.almaden.ibm.om/s/quest/syndata.html
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28 N. Pasquier, R. Taouil, Y. Bastide, G. Stumme and L. LakhalTable VIII. Number of exat assoiation rules extrated.Dataset minsupp Exat rules Min-max basisT10I4D100K 0.5% 0 0Mushrooms 30% 7,476 543C20D10K 50% 2,277 457C73D10K 90% 52,035 1,369rules is very signi�ant for the four datasets, up to more than 2,000,000. Redu-ing this number is thus essential in order to make it usable by the analyst. ForT10I4D100K, all frequent itemsets are both losed and their own generators and theapproximate min-max basis is idential to the set of all rules. The non-transitivebasis represents a redution by a fator of 5 approximately of the number of rules.For the three other datasets, the total number of approximate rules is muh moreimportant than for the syntheti dataset sine they ontain dense and orrelateddata: The number of frequent itemsets is muh more important and thus, it is thesame for the number of approximate rules. However, the fration of frequent itemsetsthat are losed is small and the bases redue onsiderably the number of rules, by afator of varying from 10 to 50 for the approximate min-max basis and, from 40 to500 for the non-transitive basis.Table IX. Number of approximate assoiation rules extrated.Dataset minonf Approximate Approximate Non-transitive(minsupp) rules min-max basis min-max basisT10I4D100K 70% 20,419 20,419 4,004(0.5%) 30% 22,952 22,952 4,519Mushrooms 70% 37,671 2,961 1,221(30%) 30% 71,412 6,571 1,578C20D10K 70% 89,601 10,116 1,957(50%) 30% 116,791 13,634 1,957C73D10K 90% 2,053,896 43,171 5,718(90%) 80% 2,053,936 43,175 5,718Examining rules generated in the min-max approximate basis and its transitiveredution for the Mushrooms dataset, we veri�ed that rule 4 of example 1 insetion 1 is the only one generated among the nine rules. Indeed, the itemsets {freegills} and {free gills, edible, partial veil, white veil} are frequent losed itemsets andthe �rst is an immediate predeessor of the seond. Moreover, they are the onlyfrequent losed itemsets in the interval [∅, {free gills, edible, partial veil, white veil}℄and the frequent losed itemset {free gills} is itself its own unique generator. Thus,rule 4 is the only min-max approximate rule among the nine rules and is non-transitive.
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Generating a Condensed Representation for Assoiation Rules 296. ConlusionThe problem of assoiation rules relevane ours for most operational datasets. Thisproblem is related to the huge number of rules generated and the presene of manyredundanies. The approah proposed in this paper onsists in generating bases forassoiation rules that minimize as muh as possible the number of extrated ruleswhile bringing the same information to the end-user. Using a semanti based onthe Galois onnetion, we �rst haraterized min-max assoiation rules as the non-redundant rules with minimal anteedent and maximal onsequent. Eah min-maxrule summarizes several other rules, suggesting that these rules are the most relevantfrom the analyst's point of view. From this haraterization, we de�ned the min-maxbasis for exat assoiation rules, the min-max basis for approximate assoiation rulesand its transitive redution � whih we believe is more useful for the analyst as itretains only the most preise rules. The union of the former and one of the latterof these bases onstitutes a min-max basis for assoiation rules that is a generatingset for all assoiation rules, their supports and their on�denes.We presented algorithms for generating these bases from the frequent losed itemsetsand their generators, suh as extrated by the Close and A-Close algorithms.When all frequent itemsets have been mined, the Close+ algorithm identi�es fre-quent losed itemsets and their generators among frequent itemsets. We also in-trodued simple methods and algorithms to derive all exat rules, all approximaterules and all transitive approximate min-max rules from the bases. None of thesealgorithms requires aessing the dataset and their exeution times are thus insignif-iant ompared to the running times of the frequent itemsets, or the frequent loseditemsets, extration.Experimental results onduted on both syntheti and operational datasets showthat the extration of these bases onsiderably redues the number of rules, partiu-larly in the ase of dense or orrelated data. The result is easier to browse and sineredundant � and often misleading � rules are suppressed, its usefulness is improved.Moreover, all of the data-spae is haraterized by the min-max rules and thisapproah does not su�er from poorly haraterized or unharaterized sub-spaesof the data-spae, an important weakness of many redution methods. Anotherinteresting feature of this approah is the possibility to onstrut a graph-orientedrepresentation of the min-max bases that is easily understandable for the end-user.It provides a natural, simple and lear graphial representation of assoiation rulesovering all the data-spae and from whih the dedution of all other rules is diret.An interesting perspetive of future work is the de�nition of an inferene system forassoiation rules equivalent to the Armstrong axioms for impliations. As pointedout in setion 1.1, up to now no omplete and sound inferene system that takessupports and on�denes into onsideration has been proposed. Another attrativeperspetive of future work is the introdution of the min-max bases in the dataanalysis and the Formal Conept Analysis domains. Indeed, the min-max assoiationrule de�nition is valid within the global and partial impliation rule frameworks.Hene, the de�nitions of the min-max bases for exat and approximate assoiationrules are also valid for global and partial impliation rules respetively. Sine thesebases represent no information loss and are onstituted of the most relevant rules
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30 N. Pasquier, R. Taouil, Y. Bastide, G. Stumme and L. Lakhalfrom the analyst's point of view, we believe that studying their impat in thesedomains is also an interesting perpetive.ReferenesAgrawal R., Imielinski T. and Swami A. Mining assoiation rules between sets of items in largedatabases. Proeedings of the SIGMOD onferene, pp 207�216, May 1993.Agrawal R. and Srikant R. Fast algorithms for mining assoiation rules in large databases.Proeedings of the VLDB onferene, pp 478�499, September 1994.Armstrong W. W. Dependeny strutures of data base relationships. Proeedings of the IFIPongress, pp 580�583, August 1974.Baralis E. and Psaila G. Designing templates for mining assoiation rules. Journal of IntelligentInformation Systems, 9(1):7�32, L. Kershberg, Z. Ras and M. Zemankova editors, KluwerAademi Publishers, August 1997.Bastide Y., Taouil Y., Pasquier N., Stumme G. and Lakhal L. Mining frequent patterns withounting inferene. SIGKDD Explorations, 2(2):66�75, U. Fayyad, S. Sarawagi and P. Bradleyeditors, ACM Computer Press, Deember 2000.Bayardo R. J. E�iently mining long patterns from databases. Proeedings of the SIGMODonferene, pp 85�93, June 1998.Bayardo R. J. and R. Agrawal. Mining the most interesting rules. Proeedings of the KDDonferene, pp 145�154, August 1999.Bayardo R. J., Agrawal R. and Gunopulos D.. Constraint-based rule mining in large, densedatabases. Data Mining and Knowledge Disovery, 4(2/3):217�240, S. Chaudhuri editor, KluwerAademi Publishers, July 2000.Beeri C. and Bernstein P. A. Computational problems related to the design of normal formrelational shemas. Transations on Database Systems, 4(1):30�59, Marh 1979.Blake C. L. and Merz C. J. UCI Mahine Learning databases Repository. Uni-versity of California, Irvine, Department of Information and Computer Siene, 1998.http://www.is.ui.edu/∼mlearn/MLRepository.html.Brin S., Motwani R., Ullman J. D. and Tsur S. Dynami itemset ounting and impliation rulesfor market basket data. Proeedings of the SIGMOD onferene, pp 255�264, May 1997.Brin S., Motwani R and Silverstein C. Beyond market baskets: Generalizing assoiation rules toorrelation. Proeedings of the SIGMOD onferene, pp 265�276, May 1997.Duquenne V. and Guigues J.-L. Famille minimale d'impliations informatives résultant d'un tableaude données binaires. Mathématiques et Sienes Humaines, 24(95):5�18, 1986.Ganter B. and Wille R. Formal Conept Analysis: Mathematial foundations. Springer-Verlag,1999.Han J. and Fu Y. Mining multiple-level assoiation rules in large databases. Transations onKnowledge and Data Engineering, 11(5):798�804, P.-S. Yu editor, IEEE Computer Siene,September/Otober 1999.Hettih S. and Bay S. D. UCI Knowledge Disovery in Databases Arhive. University of California,Irvine, Department of Information and Computer Siene, 1999. http://kdd.is.ui.edu.Klemettinen M., Mannila H., Ronkainen P., Toivonen H. and Verkamo A. I. Finding interestingrules from large sets of disovered assoiation rules. Proeedings of the CIKM onferene, pp401�407, November 1994.Lin D. and Kedem Z. M. Piner-Searh: A new algorithm for disovering the maximum frequentset. Proeedings of the EDBT onferene, pp 105�119, Marh 1998.Liu B., Hsu W. and Ma Y. Pruning and summarizing the disovered assoiation rules. Proeedingsof the KDD onferene, pp 125�134, August 1999.Luxenburger M. Impliations partielles dans un ontexte. Mathématiques, Informatique et SienesHumaines, 29(113):35�55, 1991.Maier D. Minimum overs in relational database model. Journal of the ACM, 27(4):664�674, ACMComputer Press, Otober 1980.
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