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A Superstabilizing log(n)-Approximation Algorithm for Dynamic Steiner Trees

In this paper we design and prove correct a fully dynamic distributed algorithm for maintaining an approximate Steiner tree that connects via a minimum-weight spanning tree a subset of nodes of a network (referred as Steiner members or Steiner group) . Steiner trees are good candidates to efficiently implement communication primitives such as publish/subscribe or multicast, essential building blocks for the new emergent networks (e.g. P2P, sensor or adhoc networks).

The cost of the solution returned by our algorithm is at most log |S| times the cost of an optimal solution, where S is the group of members. Our algorithm improves over existing solutions in several ways. First, it tolerates the dynamism of both the group members and the network. Next, our algorithm is self-stabilizing, that is, it copes with nodes memory corruption. Last but not least, our algorithm is superstabilizing. That is, while converging to a correct configuration (i.e., a Steiner tree) after a modification of the network, it keeps offering the Steiner tree service during the stabilization time to all members that have not been affected by this modification.

Introduction

The design of efficient distributed applications in the newly distributed emergent networks such as MANETs, P2P or sensor networks raises various challenges ranging from models to fundamental services. These networks face frequent churn (nodes and links creation or destruction) and various privacy and security attacks that cannot be easily encapsulated in the existing distributed models. Therefore, new models and new algorithms have to be designed.

Communication services are the building blocks for any distributed system and they have received a particular attention in the lately years. Their efficiency greatly depends on the performances of the underlying routing overlay. These overlays should be optimized to reduce the network overload. Moreover, in order to avoid security and privacy attacks the number of network nodes that are used only for the overlay connectivity have to be minimized. Additionally, the overlays have to offer some quality of services while nodes or links fail.

The work in designing optimized communication overlays for the new emergent networks has been conducted in both structured (DHT-based) and un-structured networks. Communication primitives using DHT-based schemes such as Pastry, CAN or Chord [START_REF] Castro | Topologyaware routing in structured peer-to-peer overlay networks[END_REF] build upon a global naming scheme based on hashing nodes identifiers. These schemes are optimized to efficiently route in the virtual name space however they have weak energy performances in MANETs or sensor networks where the maintenance of long links reduces the network perennial. Therefore, alternative strategies [START_REF] Kermarrec | Gossiping in distributed systems[END_REF], mostly based on gossip techniques, have been recently considered. These schemes, highly efficient when nodes have no information on the content and the topology of the system, offer only probabilistic guarantees on the message delivery.

In this paper we are interested in the study of overlays targeted to efficiently connect a group of nodes that are not necessarily located in the same geographical area (e.g. sensors that should communicate their sensed data to servers located outside the deployment area, P2P nodes that share the same interest and are located in different countries, robots that should participate to the same task but need to remotely coordinate). Steiner trees are good candidates to implement the above mentioned requirements since the problem have been designed for efficiently connect a subset of the network nodes, referred as Steiner members.

The Steiner tree problem. The Steiner tree problem can be informally expressed as follows: given a weighted graph in which a subset S of nodes is identified, find a minimum-weight tree spanning S. The Steiner tree problem is one of the most important combinatorial optimization problems and finding a Steiner tree is NP-hard.

A survey on different heuristics for constructing Steiner trees with different competitiveness levels can be found in [START_REF] Bauer | Multicast routing in point-to-point networks under constraints[END_REF][START_REF] Winter | Steiner problem in networks: a survey[END_REF]. In our work we are interested in dynamic variants of Steiner trees first addressed in [START_REF] Imase | Dynamic steiner tree problem[END_REF] in a centralized online setting. They propose a log |S|-approximation algorithm for this problem that copes only with Steiner member arrivals. This algorithm can be implemented in a decentralized environment (see [START_REF] Gatani | A dynamic distributed algorithm for multicast path setup[END_REF]).

Our work considers the fully dynamic version of the problem where both Steiner members and ordinary nodes can join or leave the system. Additionally, our work aims at providing a superstabilizing approximation of a Steiner tree. The property of self-stabilization [START_REF] Edsger | Self-stabilizing systems in spite of distributed control[END_REF][START_REF] Dolev | Self-Stabilization[END_REF] enables a distributed algorithm to recover from a transient fault regardless of its initial state. The superstabilization [START_REF] Dolev | Superstabilizing protocols for dynamic distributed systems[END_REF] is an extension of the self-stabilization property for dynamic settings. The idea is to provide some minimal guarantees while the system repairs after a topology change.

To our knowledge there are only two self-stabilizing approximations of Steiner trees [START_REF] Kamei | A self-stabilizing algorithm for the steiner tree problem[END_REF][START_REF] Kamei | A self-stabilizing algorithm for the steiner tree problem[END_REF]. Both works assume the shared memory model and an unfair centralized scheduler. In [START_REF] Kamei | A self-stabilizing algorithm for the steiner tree problem[END_REF] the authors propose a self-stabilizing algorithm based on a pruned minimum spanning tree. The computed solution has a competitiveness of |V | -|S| + 1 where V is the set of nodes in the network. In [START_REF] Kamei | A self-stabilizing algorithm for the steiner tree problem[END_REF], the authors proposed a four-layered algorithm that builds upon the techniques proposed in [START_REF] Wu | A faster approximation algorithm for the steiner problem in graphs[END_REF] in order to obtain a 2 approximation.

The above cited algorithms work only for static networks.

Our results. We describe a super-stabilizing algorithm for the Steiner tree problem. This algorithm has the following properties:

• First, it is distributed, i.e., completely decentralized. That is, nodes locally self-organize in a Steiner tree. The cost of the constructed Steiner tree is at most log |S| times the cost of an optimal solution, where S is the Steiner group.

• Second, our algorithm is specially designed to cope with user dynamism. In other words, our solution withstand when nodes (or links) join and leave the system.

• Third, our algorithm includes self-stabilization policies. Starting from an arbitrary state (nodes local memory corruption, counter program corruption, or erroneous messages in the network buffers), our algorithm is guaranteed to converge to a tree spanning the Steiner members.

• Fourth, our algorithm is superstabilizing. That is, while a topology change occurs, i.e., during the restabilization period, the algorithm offers the guarantee that only the subtree connected through the crashed node/edge is reconstructed. Table 1 summarizes our contribution compared to previous works. Hence, our algorithm is the first superstabilizing algorithm for the Steiner tree problem. Its approximation ratio is logarithmic, which is not as good as the 2-approximation algorithm by Kamei and Kakugawa in [START_REF] Kamei | A self-stabilizing algorithm for the steiner tree problem[END_REF]. However, this latter algorithm is not superstabilizing. Designing a superstabilizing 2-approximation algorithm for the Steiner tree problem is a challenge. Indeed, all known 2-approximation distributed algorithms (self-stabilizing or not) for the Steiner tree problem use a minimum spanning tree (MST), and the design of a superstabilizing algorithm for MST is a challenge by itself.

Model and notations

We consider an undirected weighted connected network G = (V, E, w) where V is the set of nodes, E is the set of edges and w : E → R is a cost function. Nodes represent processors and edges represent bidirectional communication links. Each node in the network has an unique identifier. S ⊆ V defines the set of members we have to connect. For any pair of nodes u, v ∈ V , we note d(u, v) the distance of the shortest path P (u, v) between u and v in G (i.e. d(u, v) = e∈P (u,v) w(e)). For a node v ∈ V , we denote the set of its neighbors

N (v) = {u, (u, v) ∈ E}. A Steiner tree, T in G is a connected acyclic sub-graph of G such that T = (V T , E T ), S ⊆ V T ⊆ V and E T ⊂ E.
We denote by W (T ) the cost of a tree T , i.e. W (T ) = e∈T w(e).

We consider an asynchronous communication message passing model with FIFO channels (on each link messages are delivered in the same order as they have been sent).

A local state of a node is the value of the local variables of the node and the state of its program counter. We consider a fined-grained communication atomicity model [START_REF] Burman | Time optimal asynchronous self-stabilizing spanning tree[END_REF][START_REF] Dolev | Self-Stabilization[END_REF]. That is, each node maintains a local copy of the variables of its neighbors. These variables are refreshed via special messages (denoted in the sequel InfoMsg) exchanged periodically by neighboring nodes. A configuration of the system is the cross product of the local states of all nodes in the system plus the content of the communication links. The transition from a configuration to the next one is produced by the execution of an atomic step at a node. An atomic step at node p is an internal computation based on the current value of p's local variables and a single communication operation (send/receive) at p. An execution of the system is an infinite sequence of configurations, e = (c 0 , c 1 , . . . c i , . . .), where each configuration c i+1 follows from c i by the execution of a single atomic step.

In the sequel we consider the system can start in any configuration. That is, the local state of a node can be corrupted. Note that we don't make any assumption on the bound of corrupted nodes. In the worst case all nodes in the system may start in a corrupted configuration. In order to tackle these faults we use self-stabilization techniques.

Given L A a non-empty legitimacy predicate1 an algorithm A is self-stabilizing iff the following two conditions hold: (i) Every computation of A starting from a configuration satisfying L A preserves L A (closure). (ii) Every computation of A starting from an arbitrary configuration contains a configuration that satisfies L A (convergence).

A legitimate configuration for the Steiner Tree is a configuration that provides an instance of a tree T spanning S. Additionally, we expect a competitiveness of log(z), i.e. W (T ) W (T * ) ≤ log(z), with |S| = z and T * an optimal Steiner tree.

In the following we propose a self-stabilizing Steiner tree algorithm. We expect our algorithm to be also superstabilizing [START_REF] Dolev | Superstabilizing protocols for dynamic distributed systems[END_REF]. That is, given a class of topology changes Λ and a passage predicate, an algorithm is superstabilizing with respect to Λ iff it is self-stabilizing, and for every execution2 e beginning at a legitimate state and containing a single topology change event of type Λ, the passage predicate holds for every configuration in e.

In the following we propose a self-stabilizing Steiner tree algorithm and extend it to a superstabilizing Steiner tree algorithm that copes with the Steiner members and tree edges removal. During the tree restabilization the algorithm verifies a passage predicate detailed below. Then, we discuss the extension of the algorithm to fully dynamic settings (the add/removal of members, nodes or links join/leave). This second extension offers no guarantees during the restabilization period.

The Superstabilizing Algorithm s3t

The section describes a superstabilizing algorithm for the Steiner tree problem, called s3t. It implements the technique proposed by Imase and Waxman [START_REF] Imase | Dynamic steiner tree problem[END_REF], in a stabilizing manner. That is, each Steiner member is connected to the existing Steiner tree via a shortest path. Note that in a stabilizing setting the initial configuration may be arbitrary hence nodes have to perpetually verify the coherency of their state: a Steiner member has to be connected to the Steiner tree via a shortest path while a not Steiner node which does not serve for the tree connectivity has to be recognized as disconnected. In our implementation we assume a special node that acts as the root of the Steiner tree. To this end, we assume an underlying overlay that elects a leader within the Steiner group. That is, we assume a leader oracle that returns to every node in the system its status: leader or follower. The leader of the system is a node in the Steiner group. Note that the implementation of a leader oracle is beyond the scope of the current work. Several implementations fault-tolerant and self-stabilizing can be found in [START_REF] Delporte-Gallet | Robust stabilizing leader election[END_REF]. Recently, algorithms that implement leader oracles in dynamic settings are proposed in [START_REF] Tucci | Brief announcement: Eventual leader election in the infinite arrival message-passing system model[END_REF] for example.

CRoot(v) ≡ distv = 0 ∧ parent v = IDv ∧ needv ∧ connectedv ∧ connect pt v ∧ levelv = 0 CParent(v) ≡ (∃u ∈ N (v), parent v = IDu) ∧ (levelv = level parent v + 1) ∧ ( ∃u ∈ N (v), parent u = IDv ∧ levelu = levelv + 1) Asked Connection(v) ≡ (∃u ∈ N (v), parent u = IDv ∧ needu) Better Path(v) ≡ (¬connectedv ∧ distv = distNotConnect(v)) ∨ (connectedv ∧ distv = distConnect(v)) Connect Pt Stab(v) ≡ (memberv ∧connect pt v )∨(¬memberv ∧|{u : u ∈ N (v)∧parent u = IDv ∧connectedu}| > 1) Connect Stab(v) ≡ needv ∧ connected parent v ∧ [memberv ∨ (¬memberv ∧ Asked Connection(v))] distNotConnect(v) ≡ min(min{w(u, v) : u ∈ N (v) ∧ connectedu}, distu + w(u, v) : u ∈ N (v) ∧ ¬connectedu}) parentNotConnect(v) ≡ arg(distNotConnect(v)) distConnect(v) ≡ min(min{w(u, v) : u ∈ N (v) ∧ connectedu ∧ connect pt u }, min{distu + w(u, v) : u ∈ N (v) ∧ [¬connectedu ∨ (connectedu ∧ ¬connect pt u ))} parentConnect(v) ≡ arg(distConnect(v))
Figure 1: Predicates used by the algorithm.

Detailed description

Variables and Predicates

For any node v ∈ V (G), N (v) is the neighbors set of v in the network G (our algorithm is built upon an underlying self-stabilizing protocol that regularly updates the neighbor set of every node). We denote by ID v ∈ N the unique network identifier of v. Every node v maintains seven variables for constructing and maintaining a Steiner tree. Three of them are integers, and the others are booleans.

• parent v : ID of the parent of node v in the current tree;

• level v : number of nodes on the path between the root and v in spanning tree;

• dist v : the shortest distance to a node already connected to the current tree;

• member v : true if v ∈ S ⊆ V , false otherwise (this is not a variable wrote by the algorithm but only read);

• need v : true if v ∈ S ⊆ V or v has a descendant which is a member, false otherwise;

• connected v : true if v is in the current tree, false otherwise;

• connect pt v : true if v is a member or v has more than one children in the current tree, false otherwise.

Description of the algorithm

Every node v ∈ V sends periodically its local variables to each of its neighbors using InfoMsg messages. Upon the reception of this message a neighbor updates the local copy of its neighbor variables. The description of a InfoMsg message is as follows:

InfoMsg v [u] = InfoMsg, parent v , level v , dist v , need v , connected v , connect pt v .
Our algorithm is a four phase computation: (1) first nodes update their distance to the existing Steiner tree, then (2) nodes request connection (if they are members or they received a connection demand), then (3) they establish the connection, and finally (4) they update the state of the current Steiner tree. These phases have to be performed in the given order. That is, a node cannot initiate a request for connection for example if it has not yet updated its distance.

Note that if a node detects a distance modification in its neighborhood, it can change its connection to the current tree. Therefore a node before computing any other action must update its distance to the current tree.

Every node in the network, maintains a parent link. The parent of a node is one of its neighbors having the shortest distance to the current tree. Note that erroneous initial configurations may create cycles in the parent link. To break these cycles, we use the notion of tree level, defined by the variable level: the root has the level zero and each node has the level equal to its parent level plus one.

When a member tries to connect to the tree, it sets its variable need to true. When a node in the current tree receives a demand for connection, an acknowledgment is sent back along the requesting path enabling every node along this path to set a variable connected to true. Nodes with connected set true are called "connected nodes".

Whenever a node detects an incoherency in its neighborhood it disconnects from the current tree.

In order to give a log(z)-approximate Steiner tree, we introduce a variable connect pt. This variable signals if a node is a connection point or not. A connection point is a connected node which is a member or has more than one connected child.

Algorithm: Upon the reception of a InfoMsg nodes correct their local state via the rules explained below then broadcast their new local state in their local neighborhood.

Root: In a coherent state the root has a distance and a level equal to zero, variables need and connected are true since the root is always connected (it always belongs to the Steiner tree). Variable connect pt is true because the root is a member so a connection point. Whenever the state of the root is incoherent the Rule RR below is enabled.

RR: (Root reinitialization) If Is Root(v) ∧ ¬CRoot(v) then dist v := 0; parent v := ID v ; need v := true; connected v := true; connect pt v := true; level v := 0;
Distance update: Rule DR 1 enables to a not connected node to compute its shortest path distance to the Steiner tree as follows: Take the minimum between the edge weights with connected neighbors and the distances with not connected neighbors. If a not connected node detects it has a better shortest path (see Predicate Better Path) then it updates its distance (using Predicates distNotConnect and distConnect) and changes its other variables accordingly.

The same rule is used to reinitiate the state of a node if it observes that its parent is no more in its neighborhood.

Similarly, Rule DR 2 enables to a connected node to compute its shortest path distance. In order to execute this rule a connected node must have a stabilized connection. The distance is computed as for a not connected node but a connected node compares this distance with its local distance towards its connection point and takes the minimum.

DR 1 : (Distance stabilization for not connected nodes) If ¬Is Root(v) ∧ [(¬connected v ∧ Better Path(v)) ∨ ¬CParent(v)] then dist v := distNotConnect(v); parent v := parentNotConnect(v); connected v := f alse; connect pt v := f alse; level v := Level parent v + 1; DR 2 : (Distance stabilization for connected nodes) If ¬Is Root(v) ∧ connected v ∧ Connect Stab(v) ∧ Better Path(v) ∧ CParent(v) ∧ Connect Pt Stab(v) then dist v := distConnect(v); parent v := parentConnect(v); level v := Level parent v + 1;
Request to join the tree: Variable need is used by a not connected node to ask to its parent a connection to the current Steiner tree. Since a member must be connected to the Steiner tree, each member sets this variable to true using Rule N R 1 . A not member and not connected node which detects that a child wants to be connected (see Predicate Asked Connection) changes its variable need to true. This connection request is forwarded in the spanning tree until a not connected node neighbor of a connected node is reached.

A not connected node sets its variable need to false using Rule N R 2 if it is not a member and it has no child requesting a connection.

N R 1 : (Nodes which need to be connected)

If ¬Is Root(v) ∧ ¬need v ∧ ¬connected v ∧ ¬Better Path(v) ∧ CParent(v) ∧ [member v ∨ (¬member v ∧ Asked Connection(v))] then need v := true; N R 2 : (Nodes which need not to be connected) If ¬Is Root(v)∧¬connected v ∧need v ∧¬member v ∧¬Asked Connection(v)∧¬Better Path(v)∧CParent(v) then need v := f alse;
Member connection: When a not connected node neighbor of a connected node (i.e. which belongs to the Steiner tree) detects a connection request from a child (i.e. Predicate Asked Connection is true), an acknowledgment is sent backward using variable connected along the request path. Therefore every not connected node on this path uses Rule CR 1 and sets connected to true until the member that asked the connection is connected. Only a node that has (1) no better path, (2) its variable need = true and (3) a connected parent can use Rule CR 1 . A connected node becomes not connected if its connection path is no more stabilized (i.e. Predicate Connect Stab is false). Therefore, it sets connected to false using Rule CR 2 .

The parent distance is used for the disconnection of a subtree whenever a fault occurs in the network. If a fault occurs (parent distance is infinity), a connected node in the subtree below a faulty node or edge in the spanning tree must be disconnected using Rule CR 3 . So the node sets connected to false and dist to infinity and waits until all its subtree is disconnected (i.e. it has no connected child).

CR 1 : (Nodes which must be connected) If ¬Is Root(v) ∧ ¬connected v ∧ Connect Stab(v) ∧ ¬Better Path(v) ∧ CParent(v) then connected v := true; CR 2 : (Nodes which must not be connected) If ¬Is Root(v) ∧ connected v ∧ ¬Connect Stab(v) ∧ CParent(v) ∧ dist parent v = ∞ then connected v := f alse; CR 3 : (Consequence of a deletion) If ¬Is Root(v) ∧ connected v ∧ ¬Connect Stab(v) ∧ CParent(v) ∧ dist parent v = ∞ then connected v := f alse; dist v := ∞; connect pt v := f alse; send InfoMsg v to all u ∈ N (v) and wait until ( ∃u ∈ N (v), parent u = ID v ∧ connected u )
Update the Steiner tree: Since we use shortest paths to connect members to the existing Steiner tree, we must maintain distances from members to connection points. A connection point is a connected member or a connected node with more than one connected children, i.e. the root of the branch connecting a member. Every connected node updates its distance if it has a better path. So thanks to connection points and distance computation, we maintain a shortest path between a member and the Steiner tree in order to respect the construction in [START_REF] Imase | Dynamic steiner tree problem[END_REF]. Rule T R is used by a connected node to change its variable connect pt and to become or not a connection point. This rule is executed only if the connected node has a stabilized connection path (i.e. Predicate Connect Stab is true).

T R:

(Connected path stabilization) If ¬Is Root(v) ∧ connected v ∧ Connect Stab(v) ∧ CParent(v) ∧ ¬Connect Pt Stab(v) then If member v then connect pt v := true; Else connect pt v := |{u : u ∈ N (v) ∧ parent u = ID v ∧ connected u }| > 1;
4 Correctness and proof in Static setting

Definition 1 (Legitimate state of DST) A configuration of algorithm is legitimate iff each process v ∈ V satisfies the following conditions:

1. a Steiner tree T spanning the set of members S is constructed;

2. a shortest path connects each member v ∈ S to the existing tree.

Lemma 1 Eventually the node's parent relation constructs a rooted spanning tree in the network.

Proof. Function Is Root(v) is a perfect oracle which returns true if v is the root of the tree and false otherwise. So we assume that there is a time after which only one root exists in the network. Moreover Rule RR is only used by the root to correct its corrupted variables.

Since there is only one root in the network, to have a spanning tree we must show that each node has one parent and there is no cycle. First note that each node v could have at each time only one parent in its neighborhood (see predicate CParent(v)) designed by variable parent v , only root has its parent equal to itself. Each node maintains its level stored in variable level v which is updated by Rules RR, DR 1 and DR 2 . The level of each node is equal to the level of its parent plus one, except for the root which has a level at zero (see Rule RR). Suppose there is a cycle in the node's parent relation. This implies that there is a time after which we have a sequence of nodes with a growing sequence of levels. But there is at least one node x with a smaller level than its parent y in the cycle. That is, for x we have level x = level y + 1 and for y we have parent x = ID y ∧ level x = level y + 1. So predicate CParent is false for x and y, thus x and y can execute Rule DR 1 to reset their variables and break the cycle. Therefore, there is a time after which no cycle exists in the structure described by the node's parent relation. Since there is only one root in the network (i.e. level v = 0 and parent v = ID v ) and there is no cycle, thus the node's parent relation describe one tree spanning the network.

Lemma 2 Eventually each non-connected node knows its distance to the current tree.

Proof. A node v is connected iff connected v = true. There is at least one connected node because the root is always connected (see Rule RR), otherwise there is a time where the root corrects its variables using Rule RR. According to Lemma 1, a tree spanning the network is constructed. Let x be a non-connected node, d x the distance of the shortest path from x to any connected node and y the neighbor on this shortest path. Suppose dist x > d x , thus it exists a time after which a neighbor offers a better path and x can execute Rule DR 1 because predicate Better Path(x) is true. So x corrects dist x as the minimum distance in its neighborhood (see function distNotConnect(x)). Therefore there is a time after which dist x = d x . Moreover, at each time x executes Rule DR 1 the variable parent x is modified respectively to variable dist x (see function parentNotConnect(x)) and thus parent x stores the neighbor of x which offers to x the shortest path to any connected node. Therefore, there is a time after which when we have dist x = d x then parent x = y.

Lemma 3 Eventually each Steiner member is linked to root via a connected path.

Proof. A node v is connected iff connected v = true. There is at least one connected node because the root is always connected (see Rule RR), otherwise there is a time where the root corrects its variables using Rule RR. Moreover, according to lemma 1, there is only one root and a rooted tree spanning the network is constructed. Thus it exists a path between each member and the root.

To prove the lemma, we first show that for each node v on the path connecting a member we have need v = true.

Each node v (except the root) can change the value of its variable need v or connected v to true respectively with Rule N R 1 and N R 2 only when v has no neighbor with a lower distance than its parent (i.e. v has no better path so DR 1 and DR 2 are not executable). Otherwise Better Path(v) returns true and Rules DR 1 or DR 2 are uppermost used to correct dist v and parent v . So we suppose that Better Path(v) returns false.

Note that for any member v we must have need v = true otherwise v executes Rule N R 1 to correct need v . Since there is a path from each member v to the root, the parent u of a member will execute Rule N R 1 because according to procedure Asked Connection(u), u has at least a child v s.t. need v = true. Thus u changes the value of its variable need v if necessary. Therefore one can show by induction using the same scheme that for each node v on the path between a member and the root we have need v = true.

Each node v (except the root) with connected v = f alse can correct its variable connected v only when Rule N R 1 is not executable (i.e. need v = true) because predicate Connect Stab(v) = f alse and Rule CR 1 can not be executed. Since the root u is always connected (i.e. connected u = true), each child v of the root with need v = true and connected v = f alse can execute Rule CR 1 to change the value of its variable connected v if necessary because predicate Connect Stab(v) is satisfied. Thus one can show by induction that for any node on the path between a member and the root we have connected v = true.

Lemma 4 Eventually Connect Pt Stab(v) is true for every connected node v on the path between each member and the root in the network.

Proof. According to Lemma 3, there is a time after which we have paths of connected nodes between members and the root. Note that in this case predicate Connect Stab(v) is true.

Suppose that Connect Pt Stab(v) for a connected node v is false. If v is a member then this implies that connect pt v = f alse (see predicate Connect Pt Stab(v)), so v can execute Rule T R to change the value of connect pt v to true and we have Connect Stab(v) = true. Otherwise, let v be the parent of a member u on the path of connected nodes connecting u to the root. This implies that connect pt v = |{u : u ∈ N (v)∧parent u = ID v ∧connected u }| > 1 (see predicate Connect Pt Stab(v)), so v can execute Rule T R to update connect pt v and we have Connect Stab(v) = true. Thus one can show by induction on the height of the tree that it exists a time where Connect Stab(v) is true for every connected node v on the path between each member and the root.

Lemma 5 Eventually each member is connected by a shortest path to the current tree.

Proof. Let T i-1 be the tree constructed by the algorithm before the connection of the member v i . To prove the lemma, we must show that for any member v i we have a shortest path from v i to T i-1 when Connect Pt Stab(v i ) = true and Better Path(v i ) = f alse (i.e. Rule DR 2 can not be executed by a member and so there is no better path to connect the member).

Initially, according to Rule RR the root v 0 is always connected and we have Connect Pt Stab(v 0 ) = true and Better Path(v) = f alse (because dist v = 0). We show by induction on the number of members that the property is satisfied for each member. At iteration 1, let v 1 be a not connected member then according to Lemma 2 the path P 1 from v 1 to v 0 in the spanning tree is a shortest path, so there is a time s.t. Connect Pt Stab(v 1 ) = true (see Lemma 4) since P 1 is a shortest path between v 1 and v 0 (i.e. T 0 ), we have Better Path(v 1 ) = f alse, thus the property is satisfied for v 1 . We suppose that the tree T i satisfies the desired property for every member v j , j ≤ i. At iteration i + 1, when member v i+1 is not connected, according to Lemma 2 the path P i+1 from v i+1 to T i is a shortest path, so there is a time s.t. Connect Pt Stab(v i+1 ) = true (see Lemma 4). Since P i+1 is a shortest path between v i+1 and T i , we have Better Path(v i+1 ) = f alse and the property is satisfied for v i+1 .

Note that a member v i+1 can create a connection point u (i.e. connect pt u = true) on the path P j connecting a member v j , j ≤ i. In this case, the property is still satisfied for v j because the path between u and v j is part of P j so it is a shortest path since a subpath of a shortest path is a shortest path. Moreover, when we have connect pt u = true for u then all nodes on the path between u and v j update their distance with Rule DR 2 (see predicate Better Path).

Lemma 6 Eventually a Steiner tree is constructed.

Proof. According respectively to Lemmas 1 and 3 a spanning tree is constructed (i.e. S is also spanned) and there is a path of connected nodes between each member and the root. To prove the lemma we must show that every leaf of T is a member.

Consider the connected node v (i.e. need v = true and connected v = true), such that v is a leaf of T . Since v is a leaf, this implies that v has no connected child in T , so predicate Asked Connection(v) is false. Suppose that v is not a member. Thus v can execute Rule N R 2 and change the value of need v to false. As a consequence predicate Connect Stab(v) is false and v can then execute Rule CR 2 which changes the value of connected v to false. Therefore v is not connected and is no more a leaf of T . By using the same scheme we can show by induction on the height of T that every node on a path of connected nodes which contains no member nodes can not belong to T after a finite bounded of time. Now suppose that v is a member, the guard of Rule N R 2 is not satisfied so need v remains true. Since need v = true, predicate Connect Stab(v) remains true too and v is maintained by the algorithm as a leaf of T .

Lemma 7 (Convergence) Starting from an illegitimate configuration eventually the algorithm reaches in a finite time a legitimate configuration.

Proof. Let C be an illegitimate configuration, i.e. C ∈ L. According to Lemmas 1, 5 and 6, in a finite time a legitimate state is reached for any process v ∈ V . Therefore in a finite time a legitimate configuration is reached in the network.

Lemma 8 (Correction) The set of legitimate configurations is closed.

Proof. According to the model, InfoMsg messages are exchanged periodically with the neighborhood by all nodes in the network, so InfoMsg messages maintain up to date copies of neighbor states. Thus starting in a legitimate configuration the algorithm maintains a legitimate configuration.

Correctness and proof in Dynamic setting

In this section, we consider dynamic networks and we prove that topology changes can be correctly treated by extending our algorithm, given in Figure 2. Moreover, we show that a passage predicate is satisfied during restabilizing execution of given algorithm.

In the following, we define the topology change events, noted ε, that we must consider:

• an add (resp. a removal) of a member v (v remains in the network) noted add v (resp. del v );

• an add (resp. a removal) of edge (u, v) in the network noted recov uv (resp. crash uv );

• an add (resp. a removal) of a neighbor node u of v in the network noted recov u (resp. crash u ).

Algorithm given in Figure 2 completes the self-stabilizing algorithm described in precedent sections and allows to a node v to take into account topology change events.

In the sequel we suppose that after every topology change the network remains connected. We prove in the next subsection that algorithm of Figure 2 has a superstabilizing property.

Correctness under restricted dynamism

We provide below definitions of the topology change events class Λ and passage predicate for protocol given in Figure 2.

Definition 2 (Class Λ of topology change events) del v , crash uv and crash v compose the class Λ of topology change events.

Do forever: send

InfoMsg v to all u ∈ N (v)
Upon receipt of InfoMsg u from u: use all the rules to correct the local state of v send InfoMsg v to all u ∈ N (v)

Interrupt Section: If ε is a del v event or (ε is a crash uv or crash u event and

parent v = ID u ) then connected v := f alse; dist v := ∞; connect pt v := f alse; send InfoMsg v to all u ∈ N (v) wait until ( ∃u ∈ N (v), parent u = ID v ∧ connected u );
Figure 2: Algorithm describing message exchanges and treatment of topology change events.

Definition 3 (Passage predicate) Parent relations can be modified for nodes in the subtree connected by the removed member, edge or node, and parent relations are not changed for any other node in the tree.

Lemma 9 Starting from a legitimate configuration, if a member x leaves the set of members S or node x or edge (y, x) is removed from the network then each connected node v in the subtree of x is disconnected from the tree and a legitimate configuration is reached by the system.

Proof. According to the description of the complete algorithm, when a member x leaves the set of members S then x changes first its variables as following: connected x = f alse and dist x = ∞, then x sends its state to its neighborhood and finally x waits until it has no connected child. In the same way, if a node x (resp. edge (y, x) (assume parent x = ID y )) is removed from the network then each child v of x (resp. x) changes first its variables as following: connected v = f alse and dist v = ∞ (resp. connected x = f alse and dist x = ∞), then v (resp. x) sends its state to its neighborhood and finally v (resp. x) waits until it has no connected child. When a connected child u of v (resp. of x) receives message InfoMsg v from v (resp. InfoMsg x from x), since predicate Connect Stab(u) is false (because connected parentu = f alse) and dist parentu = ∞ the node u executes Rule CR 3 changing the variables of u like v's or x's variables, sends its state to its neighborhood and waits until it has no connected child. According to Lemma 11, no node in the subtree of x executing Rule CR 3 perpetually waits it has no connected child. As a consequence, after a finite time every connected node v in the subtree of x is no more connected.

Since each node in the subtree of x is not connected, there is at least one of those nodes v such that predicate Better Path(v) is true. Thus v can execute Rule DR 1 . According to Lemmas 1 and 2, there is a time after which each node in the subtree of x knows its correct shortest path distance to a connected node. Moreover, by Lemmas 3 and 5 each not connected member will be connected by a shortest path to a connected node in the existing Steiner tree. Therefore, in a finite number of steps the system reaches a legitimate configuration C ′ ∈ L.

Lemma 10 The proposed protocol is superstabilizing for the class Λ of topology change events, and the passage predicate (Definition 3) continues to be satisfied while a legitimate configuration is reached.

Proof. Consider a configuration ∆ ⊢ L. Suppose ε is a removal of edge (u, v) from the network. If (u, v) is not a tree edge then the distances of u and v are not modified neither u nor v changes its parent, thus no parent relation is modified. Otherwise let parent v = u, u's distance and u's parent are not modified, it is true for any other node not contained in the subtree of v since the distances are not modified (i.e. predicate Better Path is not satisfied). However, u is no more a neighbor of v so according to the handling of an edge removal by the algorithm v's variables are reseted. Then v sends its state to its neighborhood and waits until it has no connected child. According to Lemma 9, all its children will become not connected and eventually change their parent by executing Rule DR 1 because there is a better path (i.e. predicate Better Path is satisfied). Therefore, only any node in the subtree connected by the edge (u, v) may change its parent relation.

Suppose ε is a removal of node u from the network. Any node not contained in the subtree of u do not change its parent relation because the distances are not modified (i.e. predicate Better Path is not satisfied). Consider each edge (u, v) between u and its child v, we can apply the same argument described above for an edge removal. Therefore, only any node contained in the subtree connected by u may change its parent relation.

A fault which occurs in the network is detected using a distance with an infinity value. To handle a fault, we introduce Rule CR 3 to bootstrap connected nodes in the subtree below a faulty node/edge. We show in Lemma 11 that even Rule CR 3 is executed when no fault occurs in the network then no node perpetually waits (no deadlock) because of Rule CR 3 .

Lemma 11 Starting from an arbitrary configuration, Rule CR 3 introduces no deadlock in the network.

Proof. Consider a configuration which simulates the presence of a fault in the network (but there is not really a fault) and allows the execution of Rule CR 3 by a node v, i.e. v is a connected node and has a not connected parent u with dist parent v = ∞. According to Rule CR 3 , v becomes a not connected node and sets its distance to infinity (i.e. connected v = f alse and dist v = ∞), then it sends its state to its neighbors and waits until it has no connected child. There are two cases: (1) v has no connected child or (2) v has at least one connected child. In case (1), v is a leaf of the connected subtree and does not wait. Otherwise, in case (2) the subtree of connected nodes rooted in v has a finite height so we can show by induction that in a finite time every node in the subtree executes Rule CR 3 . According to case (1), there is no deadlock for the leaves of the connected subtree. Therefore, we can show by induction on the height of the subtree rooted in v that after a finite time there is no connected node and v wakes up.

Correctness under fully dynamism assumptions

In the precedent subsection guarantees are given on the conservation of the tree structure, only for removal topology events. Here, we consider all the different topology change events presented in Section 4 (i.e. add/removal of members, nodes or edges). We must maintain a quality of service on the weight of the structure reserved to interconnect all members. Therefore, legitimate configurations take into account a global constraint on the Steiner tree weight. As a consequence, we can not give any guarantees on the tree structure during the stabilization of protocol defined by the presented rules and algorithm of Figure 2 (i.e. no passage predicate is satisfied) if an add of a member, node or edge arises in the network. However to maintain a quality of service on the structure weight, we show here that the protocol is able to restabilize when one of the previous mentioned topology change events arises in the network.

Lemma 9 proves that a legitimate configuration is reached starting from an arbitrary configuration if removal topology change events arises in the network. The following lemma considers add topology change events and shows that a legitimate configuration is reached too.

Lemma 12 Starting from a legitimate configuration, after a member add to S or a node or edge add in the network, eventually the algorithm leads in a finite number of steps to a legitimate configuration.

Proof. We must consider three cases: an edge add, a node add and the add of a path in the network.

Consider the add of an edge between two existing nodes u and v with a weight w(u, v). If predicate Better Path is false for u and v (i.e. dist u ≤ dist v + w(u, v) and dist v ≤ dist u + w(u, v)) then the system is still in a legitimate configuration C ′ ∈ L. Otherwise Better Path is true and Rule DR 1 (resp. DR 2 ) can be executed if u or v is not connected (resp. connected) to correct its distance. In the same way, other tree nodes u or v correct their distances, thus after a finite number of steps the system reaches a legitimate configuration C ′ ∈ L.

Consider the add of a node v to an existing node u by an edge (u, v). v corrects its variables by executing Rule DR 1 . If v is not a member, variable need v is corrected if necessary with Rule N R 2 otherwise according to Lemmas 3, 4 and 5 v is connected by a shortest path to the existing tree, which leads the system to a legitimate configuration C ′ ∈ L.

Consider the add of a path P . If P is a path between an existing node u and a new node v then all nodes of P behave like the case of a node add v to an existing node u. Otherwise P is a path between two existing nodes u and v, all nodes of P behave like the case of a node add to an existing node and u and v behave like the case of an edge add if P offers a better path. Thus, in a finite number of steps the system reaches a legitimate configuration C ′ ∈ L.

Complexity and Cost Issues

Theorem 1 Using the notation of Theorem 2, Algorithm s3t performs in O(D • |S|) rounds where D is the current diameter of the network. It uses O(∆ log n) bits of memory in the send/receive model3 , where ∆ is the current maximal degree of the network.

Proof.

We consider the worst case in which all the tree must be reconstructed because of topological or member set modifications. Let T i = (V T i , E T i ) be a tree constructed at some step i of the algorithm. Our algorithm can be viewed as a special case of a shortest path tree construction in which all nodes v ∈ V T i are considered as a single virtual root and all nodes v ∈ V T i computes the shortest distance from this virtual root. So we can show by induction that the algorithm connects in at most O(D) rounds the nearest member to the tree T i . Initially when the root r is stabilized and connected to T 0 , r initiates a classic shortest path computation. So after 3D rounds the algorithm connects the nearest member to the root (we need at most D rounds to compute the shortest path to the root and at most 2D rounds for the nodes on the path to change their states from not connected to connected). We assume that following the first 3iD rounds i members are connected to the tree T i . We prove that after 3D additional rounds i + 1 members are connected. In at most D rounds all nodes v ∈ T i compute their shortest path to T i , in additional 2D rounds all nodes on the path from the nearest member v ∈ T i to T i change their state to connected. So after 3(i + 1)D rounds i + 1 members are connected in tree T i+1 . Thus as 0 ≤ i ≤ z the algorithm connects all members in at most O(zD) rounds.

In the following we analyze the memory complexity of our solution. Each node maintains a constant number of local variables of size O(log n) bits. However, due to specificity of our model (the send/receive model) the memory complexity including the copies of the local neighborhood is O(δ log n) where δ is the maximal degree of the network.

Since we use the shortest distance metric between nodes in the network, any network can be represented by a complete graph so the following Lemma can be applied.

Lemma 13 (Imase and Waxman [START_REF] Imase | Dynamic steiner tree problem[END_REF]) Let G = (V, E) be a complete graph with a cost function C : E → R + satisfying the triangle inequality, and let S be any nonempty subset of V with |S| = z. If 2P is the cost of an optimal tour for S and l : V → R + satisfying the following conditions:

1. d(u, v) ≥ min(l(u), l(v)) for all nodes u, v ∈ S, and 2. l(v) ≤ P for all nodes v ∈ S, then ( v∈S l(v))max v∈S l(v) ≤ (⌈log z⌉)P .

Theorem 2 Let G = (V, E, w) be a dynamic network, and let S be a set of members. Algorithm s3t is a superstabilizing algorithm that returns a steiner tree T for S satisfying W (T ) W (T * ) ≤ ⌈log |S|⌉, where T * is an optimal Steiner tree for S.

Proof. Let a set S of members, and z = |S|. According to Lemmas 5 and 6, when our algorithm completes each member v ∈ S is connected in T by a shortest path to a node u, such that u has been connected in T before v. Let T i-1 the tree constructed by our algorithm before the connection of a member v i ∈ S. As in [START_REF] Imase | Dynamic steiner tree problem[END_REF] (proof of theorem 2), if we let l(v i ) = min 0≤j<i d(v i , v j ) for 1 ≤ i ≤ z, then the cost of the path selected by the algorithm to connect v i to T i-1 is less than or equal to l(v i ). Let l(v 0 ) = max 1≤j≤z d(v 0 , v j ), so l(v 0 ) ≥ max 0≤j≤i l(v j ). Thus we have W (T ) ≤ ( z j=0 l(v j ))l(v 0 ). Moreover for any pair of nodes v j , v k , according to definition of function l we have l(v k ) ≤ d(v j , v k ) so (1) of lemma 13 holds. Note that a tour of set S can be constructed from a Steiner tree for S of cost of P such that the cost of the tour is no more than twice the cost of the Steiner tree. Since l(v j ) ≤ P for all j, 0 ≤ j ≤ z, (2) of lemma 13 holds and according to lemma 13 the theorem follows.

Since S is a dynamic set of member, we must consider two cases: the add of a member and the removal of a member. Consider the add of a new member v to S. By Lemma 12, the system reaches a legitimate configuration. Thus, v is connected by a shortest path to the existing Steiner tree and W (T ) ≤ ( z j=0 l(v j ))l(v 0 ) is still satisfied. The same argument is true for the add of a node or an edge of the network. Consider the removal of a member v from S. By Lemma 9, the system reaches a legitimate configuration. Thus, each member v of S is connected by a shortest path to a connected member in the Steiner tree and W (T ) ≤ ( z j=0 l(v j ))l(v 0 ) is satisfied again. The same argument is true for the removal of a node or an edge of the network. Therefore, considering a dynamic network G and a dynamic set of members the theorem is always satisfied.

Conclusion

We propose a self-stabilizing algorithm for the Steiner tree problem, based on the heuristic proposed in [START_REF] Imase | Dynamic steiner tree problem[END_REF], and achieves starting from any configuration a competitiveness of log(z) in O(zD) rounds with z the number of members and D the diameter of the network. Additionally, we show that our algorithm works for dynamic networks in which a fault may occur on a node or edge. Moreover, we prove that if a fault occurs in a legitimate configuration our algorithm is superstabilizing and is able to satisfy a "passage predicate" about the tree structure.

For future works, it will be interesting to design a self-stabilizing algorithm in dynamic networks for the Steiner tree problem, which achieves a constant competitiveness of 2. For example, by using the self-stabilizing algorithm proposed in [START_REF] Kamei | A self-stabilizing algorithm for the steiner tree problem[END_REF] and extending it for dynamic networks or by using another heuristic.

Table 1 :

 1 Distributed (deterministic) algorithms for the Steiner tree problem.

		Approximation ratio Self-Stabilizing Superstabilizing
	Chen et al. [CHK93]	2	No	No
	Kamei and Kakugawa [KK02a]	|V | + |S| -1	Yes	No
	Kamei and Kakugawa [KK02b]	2	Yes	No
	This paper	O(log |S|)	Yes	Yes

Université d'Evry, IBISC, CNRS, France.

Univ. Pierre & Marie Curie -Paris 6, LIP6-CNRS UMR 7606, France.

INRIA REGAL, France.

A legitimacy predicate is defined over the configurations of a system and is an indicator of its correct behavior.

[START_REF] Dolev | Superstabilizing protocols for dynamic distributed systems[END_REF] use the notion of trajectory which is the execution of a system enriched with dynamic actions.

In the classical message passing model the memory complexity is O(log |S|)