
HAL Id: hal-00363003
https://hal.science/hal-00363003

Submitted on 19 Feb 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Superstabilizing log(n)-Approximation Algorithm for
Dynamic Steiner Trees

Lélia Blin, Maria Gradinariu Potop-Butucaru, Stephane Rovedakis

To cite this version:
Lélia Blin, Maria Gradinariu Potop-Butucaru, Stephane Rovedakis. A Superstabilizing log(n)-
Approximation Algorithm for Dynamic Steiner Trees. 11th International Symposium on Stabiliza-
tion, Safety, and Security of Distributed Systems (SSS 2009), Nov 2009, Lyon, France. pp.133-148,
�10.1007/978-3-642-05118-0_10�. �hal-00363003�

https://hal.science/hal-00363003
https://hal.archives-ouvertes.fr

A Superstabilizing log(n)-Approximation Algorithm for Dynamic

Steiner Trees

Lélia Blin1,2 Maria Gradinariu Potop-Butucaru2,3 Stéphane Rovedakis1

Abstract

In this paper we design and prove correct a fully dynamic distributed algorithm for maintain-
ing an approximate Steiner tree that connects via a minimum-weight spanning tree a subset of
nodes of a network (referred as Steiner members or Steiner group) . Steiner trees are good candi-
dates to efficiently implement communication primitives such as publish/subscribe or multicast,
essential building blocks for the new emergent networks (e.g. P2P, sensor or adhoc networks).

The cost of the solution returned by our algorithm is at most log |S| times the cost of an
optimal solution, where S is the group of members. Our algorithm improves over existing
solutions in several ways. First, it tolerates the dynamism of both the group members and the
network. Next, our algorithm is self-stabilizing, that is, it copes with nodes memory corruption.
Last but not least, our algorithm is superstabilizing. That is, while converging to a correct
configuration (i.e., a Steiner tree) after a modification of the network, it keeps offering the
Steiner tree service during the stabilization time to all members that have not been affected by
this modification.

1 Introduction

The design of efficient distributed applications in the newly distributed emergent networks such as
MANETs, P2P or sensor networks raises various challenges ranging from models to fundamental
services. These networks face frequent churn (nodes and links creation or destruction) and various
privacy and security attacks that cannot be easily encapsulated in the existing distributed models.
Therefore, new models and new algorithms have to be designed.

Communication services are the building blocks for any distributed system and they have re-
ceived a particular attention in the lately years. Their efficiency greatly depends on the perfor-
mances of the underlying routing overlay. These overlays should be optimized to reduce the network
overload. Moreover, in order to avoid security and privacy attacks the number of network nodes
that are used only for the overlay connectivity have to be minimized. Additionally, the overlays
have to offer some quality of services while nodes or links fail.

The work in designing optimized communication overlays for the new emergent networks has
been conducted in both structured (DHT-based) and un-structured networks. Communication
primitives using DHT-based schemes such as Pastry, CAN or Chord [CDHR03] build upon a global
naming scheme based on hashing nodes identifiers. These schemes are optimized to efficiently
route in the virtual name space however they have weak energy performances in MANETs or

1Université d’Evry, IBISC, CNRS, France.
2Univ. Pierre & Marie Curie - Paris 6, LIP6-CNRS UMR 7606, France.
3INRIA REGAL, France.

1

sensor networks where the maintenance of long links reduces the network perennial. Therefore,
alternative strategies [KvS07], mostly based on gossip techniques, have been recently considered.
These schemes, highly efficient when nodes have no information on the content and the topology
of the system, offer only probabilistic guarantees on the message delivery.

In this paper we are interested in the study of overlays targeted to efficiently connect a group
of nodes that are not necessarily located in the same geographical area (e.g. sensors that should
communicate their sensed data to servers located outside the deployment area, P2P nodes that
share the same interest and are located in different countries, robots that should participate to the
same task but need to remotely coordinate). Steiner trees are good candidates to implement the
above mentioned requirements since the problem have been designed for efficiently connect a subset
of the network nodes, referred as Steiner members.

The Steiner tree problem. The Steiner tree problem can be informally expressed as follows:
given a weighted graph in which a subset S of nodes is identified, find a minimum-weight tree
spanning S. The Steiner tree problem is one of the most important combinatorial optimization
problems and finding a Steiner tree is NP-hard.

A survey on different heuristics for constructing Steiner trees with different competitiveness
levels can be found in [Bau96, Win87]. In our work we are interested in dynamic variants of Steiner
trees first addressed in [IW91] in a centralized online setting. They propose a log |S|-approximation
algorithm for this problem that copes only with Steiner member arrivals. This algorithm can be
implemented in a decentralized environment (see [GRG05]).

Our work considers the fully dynamic version of the problem where both Steiner members
and ordinary nodes can join or leave the system. Additionally, our work aims at providing a
superstabilizing approximation of a Steiner tree. The property of self-stabilization [Dij74, Dol00]
enables a distributed algorithm to recover from a transient fault regardless of its initial state. The
superstabilization [DH95] is an extension of the self-stabilization property for dynamic settings.
The idea is to provide some minimal guarantees while the system repairs after a topology change.

To our knowledge there are only two self-stabilizing approximations of Steiner trees [KK02a,
KK02b]. Both works assume the shared memory model and an unfair centralized scheduler. In
[KK02a] the authors propose a self-stabilizing algorithm based on a pruned minimum spanning
tree. The computed solution has a competitiveness of |V | − |S| + 1 where V is the set of nodes
in the network. In [KK02b], the authors proposed a four-layered algorithm that builds upon the
techniques proposed in [WWW86] in order to obtain a 2 approximation.

The above cited algorithms work only for static networks.

Our results. We describe a super-stabilizing algorithm for the Steiner tree problem. This algo-
rithm has the following properties:

• First, it is distributed, i.e., completely decentralized. That is, nodes locally self-organize in a
Steiner tree. The cost of the constructed Steiner tree is at most log |S| times the cost of an
optimal solution, where S is the Steiner group.

• Second, our algorithm is specially designed to cope with user dynamism. In other words, our
solution withstand when nodes (or links) join and leave the system.

• Third, our algorithm includes self-stabilization policies. Starting from an arbitrary state
(nodes local memory corruption, counter program corruption, or erroneous messages in the

2

network buffers), our algorithm is guaranteed to converge to a tree spanning the Steiner
members.

• Fourth, our algorithm is superstabilizing. That is, while a topology change occurs, i.e., during
the restabilization period, the algorithm offers the guarantee that only the subtree connected
through the crashed node/edge is reconstructed.

Approximation ratio Self-Stabilizing Superstabilizing

Chen et al. [CHK93] 2 No No
Kamei and Kakugawa [KK02a] |V | + |S| − 1 Yes No
Kamei and Kakugawa [KK02b] 2 Yes No

This paper O(log |S|) Yes Yes

Table 1: Distributed (deterministic) algorithms for the Steiner tree problem.

Table 1 summarizes our contribution compared to previous works. Hence, our algorithm is the
first superstabilizing algorithm for the Steiner tree problem. Its approximation ratio is logarithmic,
which is not as good as the 2-approximation algorithm by Kamei and Kakugawa in [KK02b].
However, this latter algorithm is not superstabilizing. Designing a superstabilizing 2-approximation
algorithm for the Steiner tree problem is a challenge. Indeed, all known 2-approximation distributed
algorithms (self-stabilizing or not) for the Steiner tree problem use a minimum spanning tree (MST),
and the design of a superstabilizing algorithm for MST is a challenge by itself.

2 Model and notations

We consider an undirected weighted connected network G = (V,E,w) where V is the set of nodes,
E is the set of edges and w : E → R is a cost function. Nodes represent processors and edges
represent bidirectional communication links. Each node in the network has an unique identifier.
S ⊆ V defines the set of members we have to connect. For any pair of nodes u, v ∈ V , we note d(u, v)
the distance of the shortest path P (u, v) between u and v in G (i.e. d(u, v) =

∑
e∈P (u,v) w(e)). For

a node v ∈ V , we denote the set of its neighbors N (v) = {u, (u, v) ∈ E}. A Steiner tree, T in G is
a connected acyclic sub-graph of G such that T = (VT , ET), S ⊆ VT ⊆ V and ET ⊂ E. We denote
by W (T) the cost of a tree T , i.e. W (T) =

∑
e∈T w(e).

We consider an asynchronous communication message passing model with FIFO channels (on
each link messages are delivered in the same order as they have been sent).

A local state of a node is the value of the local variables of the node and the state of its program
counter. We consider a fined-grained communication atomicity model [BK07, Dol00]. That is,
each node maintains a local copy of the variables of its neighbors. These variables are refreshed
via special messages (denoted in the sequel InfoMsg) exchanged periodically by neighboring nodes.
A configuration of the system is the cross product of the local states of all nodes in the system
plus the content of the communication links. The transition from a configuration to the next
one is produced by the execution of an atomic step at a node. An atomic step at node p is an
internal computation based on the current value of p’s local variables and a single communication
operation (send/receive) at p. An execution of the system is an infinite sequence of configurations,

3

e = (c0, c1, . . . ci, . . .), where each configuration ci+1 follows from ci by the execution of a single
atomic step.

In the sequel we consider the system can start in any configuration. That is, the local state
of a node can be corrupted. Note that we don’t make any assumption on the bound of corrupted
nodes. In the worst case all nodes in the system may start in a corrupted configuration. In order
to tackle these faults we use self-stabilization techniques.

Given LA a non-empty legitimacy predicate1 an algorithm A is self-stabilizing iff the following
two conditions hold: (i) Every computation of A starting from a configuration satisfying LA pre-
serves LA (closure). (ii) Every computation of A starting from an arbitrary configuration contains
a configuration that satisfies LA (convergence).

A legitimate configuration for the Steiner Tree is a configuration that provides an instance of a
tree T spanning S. Additionally, we expect a competitiveness of log(z), i.e. W (T)

W (T ∗) ≤ log(z), with

|S| = z and T ∗ an optimal Steiner tree.
In the following we propose a self-stabilizing Steiner tree algorithm. We expect our algorithm

to be also superstabilizing [DH95]. That is, given a class of topology changes Λ and a passage
predicate, an algorithm is superstabilizing with respect to Λ iff it is self-stabilizing, and for every
execution2 e beginning at a legitimate state and containing a single topology change event of type
Λ, the passage predicate holds for every configuration in e.

In the following we propose a self-stabilizing Steiner tree algorithm and extend it to a supersta-
bilizing Steiner tree algorithm that copes with the Steiner members and tree edges removal. During
the tree restabilization the algorithm verifies a passage predicate detailed below. Then, we discuss
the extension of the algorithm to fully dynamic settings (the add/removal of members, nodes or
links join/leave). This second extension offers no guarantees during the restabilization period.

3 The Superstabilizing Algorithm s3t

The section describes a superstabilizing algorithm for the Steiner tree problem, called s3t. It
implements the technique proposed by Imase and Waxman [IW91], in a stabilizing manner. That
is, each Steiner member is connected to the existing Steiner tree via a shortest path. Note that
in a stabilizing setting the initial configuration may be arbitrary hence nodes have to perpetually
verify the coherency of their state: a Steiner member has to be connected to the Steiner tree via
a shortest path while a not Steiner node which does not serve for the tree connectivity has to be
recognized as disconnected. In our implementation we assume a special node that acts as the root
of the Steiner tree. To this end, we assume an underlying overlay that elects a leader within the
Steiner group. That is, we assume a leader oracle that returns to every node in the system its
status: leader or follower. The leader of the system is a node in the Steiner group. Note that the
implementation of a leader oracle is beyond the scope of the current work. Several implementations
fault-tolerant and self-stabilizing can be found in [DGDF07]. Recently, algorithms that implement
leader oracles in dynamic settings are proposed in [PB08] for example.

1A legitimacy predicate is defined over the configurations of a system and is an indicator of its correct behavior.
2[DH95] use the notion of trajectory which is the execution of a system enriched with dynamic actions.

4

CRoot(v) ≡ distv = 0 ∧ parent
v

= IDv ∧ needv ∧ connectedv ∧ connect pt
v
∧ levelv = 0

CParent(v) ≡ (∃u ∈ N(v), parent
v

= IDu) ∧ (levelv = levelparent
v

+ 1) ∧ (6 ∃u ∈ N(v), parent
u

= IDv ∧ levelu 6=

levelv + 1)

Asked Connection(v) ≡ (∃u ∈ N(v), parent
u

= IDv ∧ needu)

Better Path(v) ≡ (¬connectedv ∧ distv 6= distNotConnect(v)) ∨ (connectedv ∧ distv 6= distConnect(v))

Connect Pt Stab(v) ≡ (memberv∧connect pt
v
)∨(¬memberv∧|{u : u ∈ N(v)∧parent

u
= IDv∧connectedu}| > 1)

Connect Stab(v) ≡ needv ∧ connectedparent
v

∧ [memberv ∨ (¬memberv ∧ Asked Connection(v))]

distNotConnect(v) ≡ min(min{w(u, v) : u ∈ N(v) ∧ connectedu}, distu + w(u, v) : u ∈ N(v) ∧ ¬connectedu})

parentNotConnect(v) ≡ arg(distNotConnect(v))

distConnect(v) ≡ min(min{w(u, v) : u ∈ N(v) ∧ connectedu ∧ connect pt
u
}, min{distu + w(u, v) : u ∈ N(v) ∧

[¬connectedu ∨ (connectedu ∧ ¬connect pt
u
))}

parentConnect(v) ≡ arg(distConnect(v))

Figure 1: Predicates used by the algorithm.

3.1 Detailed description

3.1.1 Variables and Predicates

For any node v ∈ V (G), N(v) is the neighbors set of v in the network G (our algorithm is built
upon an underlying self-stabilizing protocol that regularly updates the neighbor set of every node).
We denote by IDv ∈ N the unique network identifier of v. Every node v maintains seven variables
for constructing and maintaining a Steiner tree. Three of them are integers, and the others are
booleans.

• parentv: ID of the parent of node v in the current tree;

• levelv: number of nodes on the path between the root and v in spanning tree;

• distv: the shortest distance to a node already connected to the current tree;

• memberv: true if v ∈ S ⊆ V , false otherwise (this is not a variable wrote by the algorithm
but only read);

• needv: true if v ∈ S ⊆ V or v has a descendant which is a member, false otherwise;

• connectedv: true if v is in the current tree, false otherwise;

• connect ptv: true if v is a member or v has more than one children in the current tree, false
otherwise.

3.1.2 Description of the algorithm

Every node v ∈ V sends periodically its local variables to each of its neighbors using InfoMsg

messages. Upon the reception of this message a neighbor updates the local copy of its neighbor
variables. The description of a InfoMsg message is as follows:
InfoMsgv[u] = 〈InfoMsg, parentv, levelv, distv, needv, connectedv, connect ptv〉.

5

Our algorithm is a four phase computation: (1) first nodes update their distance to the existing
Steiner tree, then (2) nodes request connection (if they are members or they received a connection
demand), then (3) they establish the connection, and finally (4) they update the state of the current
Steiner tree. These phases have to be performed in the given order. That is, a node cannot initiate
a request for connection for example if it has not yet updated its distance.

Note that if a node detects a distance modification in its neighborhood, it can change its
connection to the current tree. Therefore a node before computing any other action must update
its distance to the current tree.

Every node in the network, maintains a parent link. The parent of a node is one of its neighbors
having the shortest distance to the current tree. Note that erroneous initial configurations may
create cycles in the parent link. To break these cycles, we use the notion of tree level, defined by
the variable level: the root has the level zero and each node has the level equal to its parent level
plus one.

When a member tries to connect to the tree, it sets its variable need to true. When a node
in the current tree receives a demand for connection, an acknowledgment is sent back along the
requesting path enabling every node along this path to set a variable connected to true. Nodes with
connected set true are called “connected nodes”.

Whenever a node detects an incoherency in its neighborhood it disconnects from the current
tree.

In order to give a log(z)-approximate Steiner tree, we introduce a variable connect pt. This
variable signals if a node is a connection point or not. A connection point is a connected node
which is a member or has more than one connected child.

Algorithm: Upon the reception of a InfoMsg nodes correct their local state via the rules ex-
plained below then broadcast their new local state in their local neighborhood.

Root: In a coherent state the root has a distance and a level equal to zero, variables need and
connected are true since the root is always connected (it always belongs to the Steiner tree). Variable
connect pt is true because the root is a member so a connection point. Whenever the state of the
root is incoherent the Rule RR below is enabled.

RR: (Root reinitialization)
If Is Root(v) ∧ ¬CRoot(v) then

distv := 0; parent
v

:= IDv; needv := true; connectedv := true;
connect pt

v
:= true; levelv := 0;

Distance update: Rule DR1 enables to a not connected node to compute its shortest path
distance to the Steiner tree as follows: Take the minimum between the edge weights with connected
neighbors and the distances with not connected neighbors. If a not connected node detects it has
a better shortest path (see Predicate Better Path) then it updates its distance (using Predicates
distNotConnect and distConnect) and changes its other variables accordingly.

The same rule is used to reinitiate the state of a node if it observes that its parent is no more
in its neighborhood.

Similarly, Rule DR2 enables to a connected node to compute its shortest path distance. In
order to execute this rule a connected node must have a stabilized connection. The distance is
computed as for a not connected node but a connected node compares this distance with its local
distance towards its connection point and takes the minimum.

6

DR1: (Distance stabilization for not connected nodes)
If ¬Is Root(v) ∧ [(¬connectedv ∧ Better Path(v)) ∨ ¬CParent(v)] then

distv := distNotConnect(v); parent
v

:= parentNotConnect(v);
connectedv := false; connect pt

v
:= false; levelv := Levelparent

v

+ 1;

DR2: (Distance stabilization for connected nodes)
If ¬Is Root(v)∧connectedv ∧Connect Stab(v)∧Better Path(v)∧CParent(v)∧Connect Pt Stab(v) then

distv := distConnect(v); parent
v

:= parentConnect(v);
levelv := Levelparent

v

+ 1;

Request to join the tree: Variable need is used by a not connected node to ask to its parent a
connection to the current Steiner tree. Since a member must be connected to the Steiner tree, each
member sets this variable to true using Rule NR1. A not member and not connected node which
detects that a child wants to be connected (see Predicate Asked Connection) changes its variable
need to true. This connection request is forwarded in the spanning tree until a not connected node
neighbor of a connected node is reached.

A not connected node sets its variable need to false using Rule NR2 if it is not a member and
it has no child requesting a connection.

NR1: (Nodes which need to be connected)
If ¬Is Root(v) ∧ ¬needv ∧ ¬connectedv ∧ ¬Better Path(v) ∧ CParent(v) ∧ [memberv ∨ (¬memberv ∧
Asked Connection(v))]
then needv := true;

NR2: (Nodes which need not to be connected)
If ¬Is Root(v)∧¬connectedv∧needv∧¬memberv∧¬Asked Connection(v)∧¬Better Path(v)∧CParent(v)
then needv := false;

Member connection: When a not connected node neighbor of a connected node (i.e. which be-
longs to the Steiner tree) detects a connection request from a child (i.e. Predicate Asked Connection
is true), an acknowledgment is sent backward using variable connected along the request path.
Therefore every not connected node on this path uses Rule CR1 and sets connected to true until
the member that asked the connection is connected. Only a node that has (1) no better path, (2)
its variable need = true and (3) a connected parent can use Rule CR1.

A connected node becomes not connected if its connection path is no more stabilized (i.e.
Predicate Connect Stab is false). Therefore, it sets connected to false using Rule CR2.

The parent distance is used for the disconnection of a subtree whenever a fault occurs in the
network. If a fault occurs (parent distance is infinity), a connected node in the subtree below a
faulty node or edge in the spanning tree must be disconnected using Rule CR3. So the node sets
connected to false and dist to infinity and waits until all its subtree is disconnected (i.e. it has no
connected child).

CR1: (Nodes which must be connected)
If ¬Is Root(v) ∧ ¬connectedv ∧ Connect Stab(v) ∧ ¬Better Path(v) ∧ CParent(v)
then connectedv := true;

CR2: (Nodes which must not be connected)
If ¬Is Root(v) ∧ connectedv ∧ ¬Connect Stab(v) ∧ CParent(v) ∧ distparent

v

6= ∞ then connectedv :=
false;

7

CR3: (Consequence of a deletion)
If ¬Is Root(v) ∧ connectedv ∧ ¬Connect Stab(v) ∧ CParent(v) ∧ distparent

v

= ∞ then connectedv :=
false; distv := ∞; connect pt

v
:= false;

send InfoMsg
v

to all u ∈ N(v) and wait until (6 ∃u ∈ N(v), parent
u

=
IDv ∧ connectedu)

Update the Steiner tree: Since we use shortest paths to connect members to the existing
Steiner tree, we must maintain distances from members to connection points. A connection point
is a connected member or a connected node with more than one connected children, i.e. the root of
the branch connecting a member. Every connected node updates its distance if it has a better path.
So thanks to connection points and distance computation, we maintain a shortest path between
a member and the Steiner tree in order to respect the construction in [IW91]. Rule T R is used
by a connected node to change its variable connect pt and to become or not a connection point.
This rule is executed only if the connected node has a stabilized connection path (i.e. Predicate
Connect Stab is true).

T R: (Connected path stabilization)
If ¬Is Root(v) ∧ connectedv ∧ Connect Stab(v) ∧ CParent(v) ∧ ¬Connect Pt Stab(v)
then If memberv then connect pt

v
:= true;

Else connect pt
v

:= |{u : u ∈ N(v) ∧ parent
u

= IDv ∧ connectedu}| > 1;

4 Correctness and proof in Static setting

Definition 1 (Legitimate state of DST) A configuration of algorithm is legitimate iff each pro-
cess v ∈ V satisfies the following conditions:

1. a Steiner tree T spanning the set of members S is constructed;

2. a shortest path connects each member v ∈ S to the existing tree.

Lemma 1 Eventually the node’s parent relation constructs a rooted spanning tree in the network.

Proof. Function Is Root(v) is a perfect oracle which returns true if v is the root of the tree and
false otherwise. So we assume that there is a time after which only one root exists in the network.
Moreover Rule RR is only used by the root to correct its corrupted variables.

Since there is only one root in the network, to have a spanning tree we must show that each
node has one parent and there is no cycle. First note that each node v could have at each time
only one parent in its neighborhood (see predicate CParent(v)) designed by variable parentv, only
root has its parent equal to itself. Each node maintains its level stored in variable levelv which is
updated by Rules RR, DR1 and DR2. The level of each node is equal to the level of its parent
plus one, except for the root which has a level at zero (see Rule RR). Suppose there is a cycle
in the node’s parent relation. This implies that there is a time after which we have a sequence
of nodes with a growing sequence of levels. But there is at least one node x with a smaller level
than its parent y in the cycle. That is, for x we have levelx 6= levely + 1 and for y we have
parentx = IDy ∧ levelx 6= levely + 1. So predicate CParent is false for x and y, thus x and y can
execute Rule DR1 to reset their variables and break the cycle. Therefore, there is a time after
which no cycle exists in the structure described by the node’s parent relation. Since there is only

8

one root in the network (i.e. levelv = 0 and parentv = IDv) and there is no cycle, thus the node’s
parent relation describe one tree spanning the network. �

Lemma 2 Eventually each non-connected node knows its distance to the current tree.

Proof. A node v is connected iff connectedv = true. There is at least one connected node because
the root is always connected (see Rule RR), otherwise there is a time where the root corrects its
variables using Rule RR. According to Lemma 1, a tree spanning the network is constructed. Let
x be a non-connected node, dx the distance of the shortest path from x to any connected node
and y the neighbor on this shortest path. Suppose distx > dx, thus it exists a time after which a
neighbor offers a better path and x can execute Rule DR1 because predicate Better Path(x) is true.
So x corrects distx as the minimum distance in its neighborhood (see function distNotConnect(x)).
Therefore there is a time after which distx = dx. Moreover, at each time x executes Rule DR1 the
variable parentx is modified respectively to variable distx (see function parentNotConnect(x)) and
thus parentx stores the neighbor of x which offers to x the shortest path to any connected node.
Therefore, there is a time after which when we have distx = dx then parentx = y. �

Lemma 3 Eventually each Steiner member is linked to root via a connected path.

Proof. A node v is connected iff connectedv = true. There is at least one connected node because
the root is always connected (see Rule RR), otherwise there is a time where the root corrects its
variables using Rule RR. Moreover, according to lemma 1, there is only one root and a rooted tree
spanning the network is constructed. Thus it exists a path between each member and the root.

To prove the lemma, we first show that for each node v on the path connecting a member we
have needv = true.

Each node v (except the root) can change the value of its variable needv or connectedv to true
respectively with Rule NR1 and NR2 only when v has no neighbor with a lower distance than its
parent (i.e. v has no better path so DR1 and DR2 are not executable). Otherwise Better Path(v)
returns true and Rules DR1 or DR2 are uppermost used to correct distv and parentv. So we suppose
that Better Path(v) returns false.

Note that for any member v we must have needv = true otherwise v executes Rule NR1 to
correct needv. Since there is a path from each member v to the root, the parent u of a member
will execute Rule NR1 because according to procedure Asked Connection(u), u has at least a child
v s.t. needv = true. Thus u changes the value of its variable needv if necessary. Therefore one can
show by induction using the same scheme that for each node v on the path between a member and
the root we have needv = true.

Each node v (except the root) with connectedv = false can correct its variable connectedv only
when Rule NR1 is not executable (i.e. needv = true) because predicate Connect Stab(v) = false

and Rule CR1 can not be executed. Since the root u is always connected (i.e. connectedu = true),
each child v of the root with needv = true and connectedv = false can execute Rule CR1 to change
the value of its variable connectedv if necessary because predicate Connect Stab(v) is satisfied. Thus
one can show by induction that for any node on the path between a member and the root we have
connectedv = true. �

Lemma 4 Eventually Connect Pt Stab(v) is true for every connected node v on the path between
each member and the root in the network.

9

Proof. According to Lemma 3, there is a time after which we have paths of connected nodes
between members and the root. Note that in this case predicate Connect Stab(v) is true.

Suppose that Connect Pt Stab(v) for a connected node v is false. If v is a member then this
implies that connect ptv = false (see predicate Connect Pt Stab(v)), so v can execute Rule T R to
change the value of connect ptv to true and we have Connect Stab(v) = true. Otherwise, let v be the
parent of a member u on the path of connected nodes connecting u to the root. This implies that
connect ptv 6= |{u : u ∈ N(v)∧parentu = IDv∧connectedu}| > 1 (see predicate Connect Pt Stab(v)),
so v can execute Rule T R to update connect ptv and we have Connect Stab(v) = true. Thus one
can show by induction on the height of the tree that it exists a time where Connect Stab(v) is true
for every connected node v on the path between each member and the root. �

Lemma 5 Eventually each member is connected by a shortest path to the current tree.

Proof. Let Ti−1 be the tree constructed by the algorithm before the connection of the member
vi. To prove the lemma, we must show that for any member vi we have a shortest path from vi

to Ti−1 when Connect Pt Stab(vi) = true and Better Path(vi) = false (i.e. Rule DR2 can not be
executed by a member and so there is no better path to connect the member).

Initially, according to Rule RR the root v0 is always connected and we have Connect Pt Stab(v0) =
true and Better Path(v) = false (because distv = 0). We show by induction on the number of mem-
bers that the property is satisfied for each member. At iteration 1, let v1 be a not connected member
then according to Lemma 2 the path P1 from v1 to v0 in the spanning tree is a shortest path, so
there is a time s.t. Connect Pt Stab(v1) = true (see Lemma 4) since P1 is a shortest path between
v1 and v0 (i.e. T0), we have Better Path(v1) = false, thus the property is satisfied for v1. We
suppose that the tree Ti satisfies the desired property for every member vj, j ≤ i. At iteration
i+1, when member vi+1 is not connected, according to Lemma 2 the path Pi+1 from vi+1 to Ti is a
shortest path, so there is a time s.t. Connect Pt Stab(vi+1) = true (see Lemma 4). Since Pi+1 is a
shortest path between vi+1 and Ti, we have Better Path(vi+1) = false and the property is satisfied
for vi+1.

Note that a member vi+1 can create a connection point u (i.e. connect ptu = true) on the path
Pj connecting a member vj, j ≤ i. In this case, the property is still satisfied for vj because the path
between u and vj is part of Pj so it is a shortest path since a subpath of a shortest path is a shortest
path. Moreover, when we have connect ptu = true for u then all nodes on the path between u and
vj update their distance with Rule DR2 (see predicate Better Path). �

Lemma 6 Eventually a Steiner tree is constructed.

Proof. According respectively to Lemmas 1 and 3 a spanning tree is constructed (i.e. S is also
spanned) and there is a path of connected nodes between each member and the root. To prove the
lemma we must show that every leaf of T is a member.

Consider the connected node v (i.e. needv = true and connectedv = true), such that v is a leaf of
T . Since v is a leaf, this implies that v has no connected child in T , so predicate Asked Connection(v)
is false.
Suppose that v is not a member. Thus v can execute Rule NR2 and change the value of needv to
false. As a consequence predicate Connect Stab(v) is false and v can then execute Rule CR2 which
changes the value of connectedv to false. Therefore v is not connected and is no more a leaf of T .

10

By using the same scheme we can show by induction on the height of T that every node on a path
of connected nodes which contains no member nodes can not belong to T after a finite bounded of
time.
Now suppose that v is a member, the guard of Rule NR2 is not satisfied so needv remains true. Since
needv = true, predicate Connect Stab(v) remains true too and v is maintained by the algorithm as
a leaf of T . �

Lemma 7 (Convergence) Starting from an illegitimate configuration eventually the algorithm
reaches in a finite time a legitimate configuration.

Proof. Let C be an illegitimate configuration, i.e. C 6∈ L. According to Lemmas 1, 5 and 6,
in a finite time a legitimate state is reached for any process v ∈ V . Therefore in a finite time a
legitimate configuration is reached in the network. �

Lemma 8 (Correction) The set of legitimate configurations is closed.

Proof. According to the model, InfoMsg messages are exchanged periodically with the neighbor-
hood by all nodes in the network, so InfoMsgmessages maintain up to date copies of neighbor states.
Thus starting in a legitimate configuration the algorithm maintains a legitimate configuration. �

5 Correctness and proof in Dynamic setting

In this section, we consider dynamic networks and we prove that topology changes can be correctly
treated by extending our algorithm, given in Figure 2. Moreover, we show that a passage predicate
is satisfied during restabilizing execution of given algorithm.

In the following, we define the topology change events, noted ε, that we must consider:

• an add (resp. a removal) of a member v (v remains in the network) noted addv (resp. delv);

• an add (resp. a removal) of edge (u, v) in the network noted recovuv (resp. crashuv);

• an add (resp. a removal) of a neighbor node u of v in the network noted recovu (resp.
crashu).

Algorithm given in Figure 2 completes the self-stabilizing algorithm described in precedent
sections and allows to a node v to take into account topology change events. In the sequel we
suppose that after every topology change the network remains connected. We prove in the next
subsection that algorithm of Figure 2 has a superstabilizing property.

5.1 Correctness under restricted dynamism

We provide below definitions of the topology change events class Λ and passage predicate for
protocol given in Figure 2.

Definition 2 (Class Λ of topology change events) delv, crashuv and crashv compose the class
Λ of topology change events.

11

Do forever: send InfoMsgv to all u ∈ N(v)

Upon receipt of InfoMsgu from u:
use all the rules to correct the local state of v

send InfoMsgv to all u ∈ N(v)

Interrupt Section:
If ε is a delv event or (ε is a crashuv or crashu event and
parentv = IDu)
then connectedv := false; distv := ∞; connect ptv := false;

send InfoMsgv to all u ∈ N(v)
wait until (6 ∃u ∈ N(v), parentu = IDv ∧ connectedu);

Figure 2: Algorithm describing message exchanges and treatment of topology change events.

Definition 3 (Passage predicate) Parent relations can be modified for nodes in the subtree con-
nected by the removed member, edge or node, and parent relations are not changed for any other
node in the tree.

Lemma 9 Starting from a legitimate configuration, if a member x leaves the set of members S or
node x or edge (y, x) is removed from the network then each connected node v in the subtree of x

is disconnected from the tree and a legitimate configuration is reached by the system.

Proof. According to the description of the complete algorithm, when a member x leaves the set of
members S then x changes first its variables as following: connectedx = false and distx = ∞, then
x sends its state to its neighborhood and finally x waits until it has no connected child. In the same
way, if a node x (resp. edge (y, x) (assume parentx = IDy)) is removed from the network then each
child v of x (resp. x) changes first its variables as following: connectedv = false and distv = ∞
(resp. connectedx = false and distx = ∞), then v (resp. x) sends its state to its neighborhood and
finally v (resp. x) waits until it has no connected child.

When a connected child u of v (resp. of x) receives message InfoMsgv from v (resp. InfoMsgx

from x), since predicate Connect Stab(u) is false (because connectedparentu = false) and distparentu =
∞ the node u executes Rule CR3 changing the variables of u like v’s or x’s variables, sends its state
to its neighborhood and waits until it has no connected child. According to Lemma 11, no node in
the subtree of x executing Rule CR3 perpetually waits it has no connected child. As a consequence,
after a finite time every connected node v in the subtree of x is no more connected.

Since each node in the subtree of x is not connected, there is at least one of those nodes v such
that predicate Better Path(v) is true. Thus v can execute Rule DR1. According to Lemmas 1 and
2, there is a time after which each node in the subtree of x knows its correct shortest path distance
to a connected node. Moreover, by Lemmas 3 and 5 each not connected member will be connected
by a shortest path to a connected node in the existing Steiner tree. Therefore, in a finite number
of steps the system reaches a legitimate configuration C ′ ∈ L. �

Lemma 10 The proposed protocol is superstabilizing for the class Λ of topology change events,
and the passage predicate (Definition 3) continues to be satisfied while a legitimate configuration is
reached.

12

Proof. Consider a configuration ∆ ⊢ L. Suppose ε is a removal of edge (u, v) from the network.
If (u, v) is not a tree edge then the distances of u and v are not modified neither u nor v changes its
parent, thus no parent relation is modified. Otherwise let parentv = u, u’s distance and u’s parent
are not modified, it is true for any other node not contained in the subtree of v since the distances
are not modified (i.e. predicate Better Path is not satisfied). However, u is no more a neighbor of v

so according to the handling of an edge removal by the algorithm v’s variables are reseted. Then v

sends its state to its neighborhood and waits until it has no connected child. According to Lemma
9, all its children will become not connected and eventually change their parent by executing Rule
DR1 because there is a better path (i.e. predicate Better Path is satisfied). Therefore, only any
node in the subtree connected by the edge (u, v) may change its parent relation.

Suppose ε is a removal of node u from the network. Any node not contained in the subtree of u

do not change its parent relation because the distances are not modified (i.e. predicate Better Path
is not satisfied). Consider each edge (u, v) between u and its child v, we can apply the same
argument described above for an edge removal. Therefore, only any node contained in the subtree
connected by u may change its parent relation. �

A fault which occurs in the network is detected using a distance with an infinity value. To
handle a fault, we introduce Rule CR3 to bootstrap connected nodes in the subtree below a faulty
node/edge. We show in Lemma 11 that even Rule CR3 is executed when no fault occurs in the
network then no node perpetually waits (no deadlock) because of Rule CR3.

Lemma 11 Starting from an arbitrary configuration, Rule CR3 introduces no deadlock in the net-
work.

Proof. Consider a configuration which simulates the presence of a fault in the network (but there
is not really a fault) and allows the execution of Rule CR3 by a node v, i.e. v is a connected node
and has a not connected parent u with distparent

v

= ∞. According to Rule CR3, v becomes a not
connected node and sets its distance to infinity (i.e. connectedv = false and distv = ∞), then it
sends its state to its neighbors and waits until it has no connected child. There are two cases: (1)
v has no connected child or (2) v has at least one connected child. In case (1), v is a leaf of the
connected subtree and does not wait. Otherwise, in case (2) the subtree of connected nodes rooted
in v has a finite height so we can show by induction that in a finite time every node in the subtree
executes Rule CR3. According to case (1), there is no deadlock for the leaves of the connected
subtree. Therefore, we can show by induction on the height of the subtree rooted in v that after a
finite time there is no connected node and v wakes up. �

Correctness under fully dynamism assumptions

In the precedent subsection guarantees are given on the conservation of the tree structure, only
for removal topology events. Here, we consider all the different topology change events presented
in Section 4 (i.e. add/removal of members, nodes or edges). We must maintain a quality of
service on the weight of the structure reserved to interconnect all members. Therefore, legitimate
configurations take into account a global constraint on the Steiner tree weight. As a consequence,
we can not give any guarantees on the tree structure during the stabilization of protocol defined
by the presented rules and algorithm of Figure 2 (i.e. no passage predicate is satisfied) if an add
of a member, node or edge arises in the network. However to maintain a quality of service on the

13

structure weight, we show here that the protocol is able to restabilize when one of the previous
mentioned topology change events arises in the network.

Lemma 9 proves that a legitimate configuration is reached starting from an arbitrary configu-
ration if removal topology change events arises in the network. The following lemma considers add
topology change events and shows that a legitimate configuration is reached too.

Lemma 12 Starting from a legitimate configuration, after a member add to S or a node or edge
add in the network, eventually the algorithm leads in a finite number of steps to a legitimate con-
figuration.

Proof. We must consider three cases: an edge add, a node add and the add of a path in the
network.

Consider the add of an edge between two existing nodes u and v with a weight w(u, v). If
predicate Better Path is false for u and v (i.e. distu ≤ distv + w(u, v) and distv ≤ distu + w(u, v))
then the system is still in a legitimate configuration C ′ ∈ L. Otherwise Better Path is true and
Rule DR1 (resp. DR2) can be executed if u or v is not connected (resp. connected) to correct
its distance. In the same way, other tree nodes u or v correct their distances, thus after a finite
number of steps the system reaches a legitimate configuration C ′ ∈ L.

Consider the add of a node v to an existing node u by an edge (u, v). v corrects its variables
by executing Rule DR1. If v is not a member, variable needv is corrected if necessary with Rule
NR2 otherwise according to Lemmas 3, 4 and 5 v is connected by a shortest path to the existing
tree, which leads the system to a legitimate configuration C ′ ∈ L.

Consider the add of a path P . If P is a path between an existing node u and a new node v

then all nodes of P behave like the case of a node add v to an existing node u. Otherwise P is a
path between two existing nodes u and v, all nodes of P behave like the case of a node add to an
existing node and u and v behave like the case of an edge add if P offers a better path. Thus, in a
finite number of steps the system reaches a legitimate configuration C ′ ∈ L. �

Complexity and Cost Issues

Theorem 1 Using the notation of Theorem 2, Algorithm s3t performs in O(D · |S|) rounds where
D is the current diameter of the network. It uses O(∆ log n) bits of memory in the send/receive
model3, where ∆ is the current maximal degree of the network.

Proof. We consider the worst case in which all the tree must be reconstructed because of
topological or member set modifications. Let Ti = (VTi

, ETi
) be a tree constructed at some step i of

the algorithm. Our algorithm can be viewed as a special case of a shortest path tree construction
in which all nodes v ∈ VTi

are considered as a single virtual root and all nodes v 6∈ VTi
computes

the shortest distance from this virtual root. So we can show by induction that the algorithm
connects in at most O(D) rounds the nearest member to the tree Ti. Initially when the root r is
stabilized and connected to T0, r initiates a classic shortest path computation. So after 3D rounds
the algorithm connects the nearest member to the root (we need at most D rounds to compute the
shortest path to the root and at most 2D rounds for the nodes on the path to change their states
from not connected to connected). We assume that following the first 3iD rounds i members are

3In the classical message passing model the memory complexity is O(log |S|)

14

connected to the tree Ti. We prove that after 3D additional rounds i + 1 members are connected.
In at most D rounds all nodes v 6∈ Ti compute their shortest path to Ti, in additional 2D rounds
all nodes on the path from the nearest member v 6∈ Ti to Ti change their state to connected. So
after 3(i + 1)D rounds i + 1 members are connected in tree Ti+1. Thus as 0 ≤ i ≤ z the algorithm
connects all members in at most O(zD) rounds.

In the following we analyze the memory complexity of our solution. Each node maintains a
constant number of local variables of size O(log n) bits. However, due to specificity of our model
(the send/receive model) the memory complexity including the copies of the local neighborhood is
O(δ log n) where δ is the maximal degree of the network. �

Since we use the shortest distance metric between nodes in the network, any network can be
represented by a complete graph so the following Lemma can be applied.

Lemma 13 (Imase and Waxman [IW91]) Let G = (V,E) be a complete graph with a cost
function C : E → R

+ satisfying the triangle inequality, and let S be any nonempty subset of V

with |S| = z. If 2P is the cost of an optimal tour for S and l : V → R
+ satisfying the following

conditions:

1. d(u, v) ≥ min(l(u), l(v)) for all nodes u, v ∈ S, and

2. l(v) ≤ P for all nodes v ∈ S,

then (
∑

v∈S l(v)) − maxv∈S l(v) ≤ (⌈log z⌉)P .

Theorem 2 Let G = (V,E,w) be a dynamic network, and let S be a set of members. Algorithm

s3t is a superstabilizing algorithm that returns a steiner tree T for S satisfying W (T)
W (T ∗) ≤ ⌈log |S|⌉,

where T ∗ is an optimal Steiner tree for S.

Proof. Let a set S of members, and z = |S|. According to Lemmas 5 and 6, when our algorithm
completes each member v ∈ S is connected in T by a shortest path to a node u, such that u has
been connected in T before v. Let Ti−1 the tree constructed by our algorithm before the connection
of a member vi ∈ S. As in [IW91] (proof of theorem 2), if we let l(vi) = min0≤j<i d(vi, vj) for
1 ≤ i ≤ z, then the cost of the path selected by the algorithm to connect vi to Ti−1 is less
than or equal to l(vi). Let l(v0) = max1≤j≤z d(v0, vj), so l(v0) ≥ max0≤j≤i l(vj). Thus we have
W (T) ≤ (

∑z
j=0 l(vj)) − l(v0). Moreover for any pair of nodes vj, vk, according to definition of

function l we have l(vk) ≤ d(vj , vk) so (1) of lemma 13 holds. Note that a tour of set S can be
constructed from a Steiner tree for S of cost of P such that the cost of the tour is no more than
twice the cost of the Steiner tree. Since l(vj) ≤ P for all j, 0 ≤ j ≤ z, (2) of lemma 13 holds and
according to lemma 13 the theorem follows.

Since S is a dynamic set of member, we must consider two cases: the add of a member and the
removal of a member. Consider the add of a new member v to S. By Lemma 12, the system reaches
a legitimate configuration. Thus, v is connected by a shortest path to the existing Steiner tree and
W (T) ≤ (

∑z
j=0 l(vj)) − l(v0) is still satisfied. The same argument is true for the add of a node or

an edge of the network. Consider the removal of a member v from S. By Lemma 9, the system
reaches a legitimate configuration. Thus, each member v of S is connected by a shortest path to
a connected member in the Steiner tree and W (T) ≤ (

∑z
j=0 l(vj)) − l(v0) is satisfied again. The

same argument is true for the removal of a node or an edge of the network. Therefore, considering
a dynamic network G and a dynamic set of members the theorem is always satisfied. �

15

6 Conclusion

We propose a self-stabilizing algorithm for the Steiner tree problem, based on the heuristic proposed
in [IW91], and achieves starting from any configuration a competitiveness of log(z) in O(zD) rounds
with z the number of members and D the diameter of the network. Additionally, we show that our
algorithm works for dynamic networks in which a fault may occur on a node or edge. Moreover,
we prove that if a fault occurs in a legitimate configuration our algorithm is superstabilizing and
is able to satisfy a ”passage predicate” about the tree structure.

For future works, it will be interesting to design a self-stabilizing algorithm in dynamic networks
for the Steiner tree problem, which achieves a constant competitiveness of 2. For example, by using
the self-stabilizing algorithm proposed in [KK02b] and extending it for dynamic networks or by
using another heuristic.

References

[Bau96] Fred Bauer. Multicast routing in point-to-point networks under constraints. PhD thesis,
University of California, Santa Cruz, 1996.

[BK07] Janna Burman and Shay Kutten. Time optimal asynchronous self-stabilizing spanning
tree. In DISC, pages 92–107, 2007.

[CDHR03] Miguel Castro, Peter Druschel, Y. Charlie Hu, and Antony I. T. Rowstron. Topology-
aware routing in structured peer-to-peer overlay networks. In Future Directions in
Distributed Computing, pages 103–107, 2003.

[CHK93] Gen-Huey Chen, Michael E. Houle, and Ming-Ter Kuo. The steiner problem in dis-
tributed computing systems. Informtion Sciences, 74(1-2):73–96, 1993.

[DGDF07] Carole Delporte-Gallet, Stéphane Devismes, and Hugues Fauconnier. Robust stabilizing
leader election. In SSS, pages 219–233, 2007.

[DH95] Shlomi Dolev and Ted Herman. Superstabilizing protocols for dynamic distributed
systems. In Chicago Journal of Theoretical Computer Science, pages 3–1, 1995.

[Dij74] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Commun.
ACM, 17(11):643–644, 1974.

[Dol00] Shlomi Dolev. Self-Stabilization. MIT Press, 2000.

[GRG05] Luca Gatani, Giuseppe Lo Re, and Salvatore Gaglio. A dynamic distributed algorithm
for multicast path setup. In Euro-Par, pages 595–605, 2005.

[IW91] Makoto Imase and Bernard M. Waxman. Dynamic steiner tree problem. SIAM J.
Discrete Math., 4(3):369–384, 1991.

[KK02a] Sayaka Kamei and Hirotsugu Kakugawa. A self-stabilizing algorithm for the steiner
tree problem. In SRDS, pages 396–, 2002.

16

[KK02b] Sayaka Kamei and Hirotsugu Kakugawa. A self-stabilizing algorithm for the steiner
tree problem. IEICE TRANSACTIONS on Information and System, E87-D(2):299–
307, 2002.

[KvS07] Anne-Marie Kermarrec and Maarten van Steen. Gossiping in distributed systems. Op-
erating Systems Review, 41(5):2–7, 2007.

[PB08] Sara Tucci Piergiovanni and Roberto Baldoni. Brief announcement: Eventual leader
election in the infinite arrival message-passing system model. In DISC, pages 518–519,
2008.

[Win87] P. Winter. Steiner problem in networks: a survey. Networks, 17(2):129–167, 1987.

[WWW86] Ying-Fung Wu, Peter Widmayer, and C. K. Wong. A faster approximation algorithm
for the steiner problem in graphs. Acta Inf., 23(2):223–229, 1986.

17

