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Stereovision applied to 
road scene analysis

■ ABSTRACT
3D reconstruction techniques through use of stereovision have experienced 
considerable development over the past two decades. Their fi eld of application 
extends from non-destructive control to augmented reality and includes remote 
sensing. Following a review of the basic principles behind these methods, this 
paper will present a summary of the most signifi cant developments of stereo-
vision in the fi eld of road scene analysis, within the network of Ponts et 
Chaussées laboratories (LPC) over the last few years. The targeted applications 
include driving assistance and road inspection tools, as well as safety studies. 
The research described in this paper is thus intended over the short term to yield 
a stereo version of the range of LPC products dedicated to road imaging, i.e. IRCAN

(road imaging using digital camera) and IREVE (road imaging calibration, 
visualization and utilization). Stereovision has led to devising operational 
obstacle detectors in addition to being used for determining atmospheric visibility 
distances and estimating longitudinal road profi les.

La stéréovision appliquée à l’analyse de scènes routières
RÉSUMÉ■

Les techniques de reconstruction 3D par stéréovision ont connu un développe-
ment considérable au cours des deux dernières décennies. Leur champ d’appli-
cation s’étend du contrôle non destructif à la réalité augmentée, en passant par 
la télédétection. Après un rappel des principes de base de ces méthodes, on 
propose ici une présentation synthétique des principales mises en œuvre de la 
stéréovision au sein du réseau des LPC (laboratoires des ponts et chaussées) 
ces dernières années dans le domaine de l’analyse de scènes routières. Les 
applications visées concernent, d’une part, les aides à la conduite et, d’autre part, 
la connaissance du patrimoine routier et les études de sécurité routière. Ainsi, les 
travaux décrits devraient déboucher à court terme sur une version « stéréo » des 
produits LPC dédiés à l’imagerie routière (IRCAN, imagerie routière par caméra 
numérique, et IREVE, imagerie routière étalonnages visualisations exploitations). 
La stéréovision a permis la mise au point de détecteurs opérationnels d’obstacles 
sur chaussée. Elle est également utilisée pour la détermination des distances de 
visibilité atmosphérique et pour l’estimation du profi l en long de la chaussée.

INTRODUCTION

Road scenes are images of the physical road and its local environment, with these images being 

acquired by a traveling vehicle. Within the scope of road network management or road safety studies, 

such images are taken at regular distance intervals along travel itineraries in order to create image 

databanks, which have become increasingly requested by facility managers. Beyond simple visual 

interpretation, an offl ine analysis of these images makes it possible to extract quantitative information 
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that enhance knowledge of road infrastructure and safety issues. More specifi cally, a strong demand 

is felt with respect to detection, localization and dimensional measurements of target objects. In the 

area of driving assistance systems, road scenes are acquired at video pace. Their interpretation, in 

real time, is aimed at providing information of benefi t, for example, to vehicle guidance assistance 

systems or road obstacle detection systems.

Though these two applications feature different objectives and constraints, they also show some 

obvious common ground; in particular, an identifi cation of the three-dimensional structure of 

scenes as information gets degraded by their projection onto the camera image plane is indeed man-

datory. Techniques that make use of a single view often rely upon a reference plane, which restricts 

their domain of application to just the road plane. Moreover, this so-called fl at world hypothesis 

is limited in practice by variations caused by the dynamics of the camera-mounted vehicle and 

the actual road geometry. For this reason, several teams from the Transport Ministry's scientifi c 

and technical network have shown keen interest in stereovision methods, i.e. to enable overlapping 

three-dimensional information based on several views, in taking advantage of the considerable body 

of research published in this fi eld. Once the basic principles of stereovision have been recalled, this 

article will propose a summary description of developments introduced by the RST research teams, 

all in a spirit of cooperation.

PRINCIPLES OF STEREOVISION

Stereovision has generated a vast body of literature over the past twenty years. This section of the 

paper will offer a very brief state-of-the-art on existing passive vision methods, which refer to 

techniques that do not rely upon radiation projection but instead based solely on image content. 

For a more detailed presentation, the interested reader is referred to a number of summary articles 

such as [1] or to essential works: [2] for an overview, [3] for a more detailed presentation, and [4]

for an introduction to more sophisticated methods, like stereovision in N views and self-calibration 

techniques. The similar Structure From Motion (SFM) approach, based on several successive views 

of a single camera in motion, has not been considered in this research effort due to the relative lack 

of a structured framework for observed scenes, the geometric sensor confi guration and an exces-

sive distance between successive images. Readers more interested in these aspects can still refer to 

Chapter 8 of publication [2] for a good introduction to the subject and to [5], as an example, for 

application to an urban transport context.

The goal of stereovision is to compute the spatial position of points on the basis of their image coor-

dinates in two different views, in the aim of either performing measurements or reconstructing the 

three-dimensional scene structure. Since the cameras are modeled by a central projection, all points 

positioned on a light ray are projected onto the same pixel p of the left-hand image (Figure 1a). The 

image of this ray in the right-hand image is called the epipolar line, where p’, the correspondence 

pixel of p, needs to be identifi ed in order to compute the position of P in space by means of trian-

gulation, knowing the relative position and orientation of the cameras. The keys to stereovision thus 

revolve around 4 points: geometric sensor confi guration, estimation of system geometry or calibra-

tion, matching, and reconstruction.

Figure 1 
Epipolar geometry:

a: ordinary
b: rectifi ed

a b
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Geometric sensor confi guration■

It is fi rst necessary to generate images from the same scene; this is classically achieved by using a 

set-up comprising 2 or, in some cases, 3 cameras (the use of 3 cameras serves to simplify the match-

ing phase [3]). The simultaneity of photographs taken is an absolute necessity should the cameras 

or scene components be in motion. Special attention must therefore be paid to such issues in the 

overall design of onboard instrumentation.

Geometry: Calibration and rectifi cation■

Calibration consists of estimating the values of geometric model parameters (Figure 2). Such 

parameters are of two types: extrinsic and intrinsic. Extrinsic or external parameters are geometric 

indications of camera orientation and position within a coordinate system associated with the scene, 

i.e. the so-called world coordinate system.

Figure 2 
Geometric model 
(according to [3])

In the following discussion, the triplet (X,Y,Z) will designate the set of coordinates within this sys-

tem and (u,v) will denote in a generic manner the column and row coordinates within the image. In 

the case of stereovision, index l or r will be used to specify whether the coordinates belong to the 

left or right view, respectively.

Intrinsic parameters, on the other hand, are internal to the cameras and enable describing their opti-

cal properties and the CCD matrix characteristics. The following mathematical notations have been 

employed:

– (u0, v0)projection of the optical center in the image;

 f–  focal length;

– t
u
, t

v
 pixel size along u and v;

–  and ; given the cameras used,  α
u
 = α

v
 = α will be assumed.

These parameters are correlated with a geometric camera model and should not be expected to cor-

respond exactly with values provided by the manufacturer. For this reason, they must be estimated, 

just like with the extrinsic parameters. According to the classical approach, calibration is based 

on a calibration pattern, containing points whose position is known both in the world coordinate 

system and within the image. The estimation is then conducted by means of nonlinear optimiza-

tion techniques that have already been well identifi ed. This calibration step offers access to the 

epipolar geometry of the sensor. It thereby proves possible to return to a simpler, so-called rectifi ed, 

geometry, in which the epipolar lines are parallel and horizontal (Figure 1b). It is now possible to 

compute, thanks to interpolation techniques, two new images, stemming from virtual cameras, with 

the same optical centers yet oriented in parallel. This situation can even be used to eliminate the 

radial optical distortion and equalize the intrinsic parameters of both cameras. Such a rectifi cation 

step is also well identifi ed; it features the advantage of simplifying the two subsequent steps of the 

process: matching and reconstruction.
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Matching and reconstruction■

In order to reconstruct the scene, it fi rst proves necessary to identify in the two views the pixels cor-

responding to the same point in space. In rectifi ed geometry and without radial distortion, the search 

for correspondence is confi ned to a 1D exploration on the horizontal lines of the image. Many 

matching methods exist, and we refer the reader to [1] for an introductory approach to the subject. 

Let’s simply point out that the procedure may be dense (i.e. with the homologue of each image 

point actually being sought) or sparse (concentrating on key points such as corners, contours). The 

simplest and most widespread techniques are based on a local search for similarity between small 

regions, typically by optimizing a correlation function. The images can also be segmented and the 

resulting regions be matched. Local techniques are sensitive to occlusions (when a point is only 

visible on one of the two views), as well as to minimally-textured regions and repetitive patterns. 

Other more robust techniques, which tend to involve heavier computations, rely upon more global 

constraints than just resemblance, like order constraints or disparity gradient constraints. The most 

widespread techniques are based on dynamic programming optimization. Some recent approaches 

employ an explicit model of the scene; technically speaking, this stage no longer entails matching, 

but rather searching for a model position that yields an enhanced explanation of observed views by 

optimizing a criterion. This inverse problem can then be solved by means of variational methods.

Once the points have been matched, their horizontal position deviation can be measured. Conversely 

proportional to the depth of the point in the scene, this deviation is called disparity. Disparity maps, 

as well as the space where they dip play a key role in scene structure analysis. The properties of 

this disparity space [6], also referred to as (u, v, disparity), are quite numerous and will be directly 

utilized depending on the application, as described in the following section. Moreover, since both 

disparity and the stereo sensor parameters are known, the last step consists of solving a system of 

3 unknowns (position of the point in space) with 4 equations (relating to the coordinates of both 

points). This step becomes one of computing the intersection of light rays originating from the two 

corresponding pixels.

APPLICATIONS WITHIN THE TRANSPORT MINISTRY'S 
SCIENTIFIC AND TECHNICAL NETWORK

This section will offer a description of four applications using the stereovision technique; they 

involve: an analysis of road scenes to improve road network knowledge and safety studies, road 

obstacle detection, visibility distance estimation under adverse meteorological conditions, and 

reconstruction of the longitudinal road profi le.

Moving towards a stereo version of the set of LPC road scene analysis ■

tools

These stereovision techniques are applied for the purpose of conducting measurements beyond the 

pavement plane and thereby stretching the limitations of single-camera systems currently used for 

studies on road facilities and safety. The developments presented herewith predate the stereovision 

version produced by MLPC IRCAN hardware and associated operating software IREVE.

Presentation of the experimental 3D vision sensor›
ERA 27 from the Strasbourg regional Ponts et Chaussées Laboratory is equipped with an experi-

mental stereo photography device for analyzing road scenes. Their set-up includes a passenger 

vehicle, instrumented by the CECP Prototype Design and Construction Center in Angers (western 

France). The vehicle comprises a topometer for measuring the vehicle’s forward motion, an electri-

cal installation, an industrial PC and a suspension bracket for attaching camera supports.

This bracket serves to easily adjust camera position and orientation. The spacing between the two 

cameras can be modulated from 0.50 and 1.50 m and fi xed by means of stop blocks (Figure 3). A 

dedicated software program has been developed by LCPC’s Metrology and Instrumentation Division 
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for the purpose of assisting operators in performing preliminary camera alignment within a geometry 

as close as possible to the rectifi ed epipolar geometry. The software also oversees the acquisition of 

stereo pairs. Let’s point out that the two cameras are identical to those from the MLPC IRCAN hardware 

and that development of the experimental software relies upon the same libraries as those called up by 

the software associated with IRCAN. This situation should allow for a faster transfer towards an opera-

tional application. As previously mentioned, synchronization proves critical in the case of onboard 

equipment and for that reasons has been physically introduced into this set-up. The electrical pulse 

output at regular distance intervals by the topometer is duplicated and sent to the cameras, which are 

then able to freeze their images. The two views will then be returned onto the PC via an IEEE 1394 

interface. The equipped vehicle has enabled demonstrating system feasibility: 1 280 × 1 024-pixel 

stereo pairs can be recorded at 5-m intervals for vehicle speeds reaching 110 km�h−1. On this basis, 

the development of a stereo version of the MLPC IRCAN package is underway. In conjunction with this 

effort, adaptation of the system to cameras with a resolution of 1 920 × 1 024 pixels and extension to 

shooting 3 or 4 simultaneous views will also be pursued.

Experimental operating software designed for stereovision›
Prior to being run, the stereo pairs acquired using the equipment described above must fi rst undergo 

processing. As a preliminary, each camera is calibrated according to classical techniques, accessi-

ble from the MLPC IREVE software. Note that an automatic technique described in [7] has been used 

herein to simultaneously detect the ground marking lines that make up the calibration patterns.

Upon completion of this calibration step, the epipolar geometry is known; it then becomes possi-

ble to perform a software-based epipolar rectifi cation, since the mechanically-generated alignment 

was naturally imperfect. This transformation is carried out on each acquired stereo pair. At the 

same time, the images obtained are corrected for optical distortion and, if necessary, compressed 

(Figure 4). Here once again, compatibility with operational tools has been directly incorporated 

into the software development, so as to ensure quick transfer to IREVE.

A demonstrator program, called STEREO, was also launched by ERA 27; this program enables the 

use of stereo pairs for performing road network analysis. Its main functionalities include: naviga-

Figure 3 
The ERA 27 experimental 

vehicle designed by the 
Strasbourg regional Ponts 

et Chaussées laboratory 
(images courtesy of CECP)

Figure 4 
Rectifi ed stereo pair, 

following distortion cor-
rection. The green line 

in the right-hand image 
traces the epipolar line 

associated with the point 
marked by a cross in the 

left-hand view.
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tion within the image sequence, matching and dimensional measurement, as well as depth map 

computation.

The point-matching technique employed in this application is based on the zero mean normal-

ized cross-correlation (ZNCC) between windows of variable dimensions. Furthermore, this tech-

nique applies the uniqueness constraint [3], i.e. only the correspondences detected in both the 

left-right and right-left directions are to be validated. Shape matching has also been introduced 

for geometric objects such as columns, panels and miscellaneous supports (Figures 5 and 6,

left view).

The computation of disparity maps, whether dense or sparse, is also based on correlation tech-

niques. An analysis of these maps, according to the u/v-disparity technique, as proposed by the 

Laboratory on Vehicle-Infrastructure-Driver Interactions (LIVIC) and discussed in the following 

section, highlights vertical objects present in the scene (Figure 6, right view). The depth map 

measurement and computation functionalities described in this section are aimed at being inte-

grated into an upcoming version of the IREVE operating software, as part of the stereo IRCAN

development effort.

Figure 5 
Graphic interface of the 
STEREO demonstrator 

software. Measurement of 
the dimensions of a J6 bea-

con (left); point-specifi c 
matching and diagram of 

(dis)similarity (right).

Figure 6 
Matching of a triangular 

shape and measurement of 
the dimensions of an AB3a 

panel (left); detection of 
vertical objects by means 
of disparity map analysis 

(right)

Obstacle detection on pavements by means of u/v-disparity projection■

The automatic detection of objects located on the pavement in front of the vehicle, is a key task in 

furthering the development of driving assistance systems; as an example, this capability serves to set 

up emergency braking or avoidance systems. In this aim, the LIVIC has devised an original approach, 

called v-disparity [8, 9], which will be described below. Its guiding principle consists of extracting the 

longitudinal road profi le and then searching for the shapes located above this profi le.
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Principle implemented›
According to the proposed approach, it is considered that the road comprises a succession of por-

tions of both horizontal and oblique planes with respect to the stereoscopic sensor plane. As such, 

an object positioned on the pavement (vehicle, pedestrian, tree, etc.) is characterized by a vertical 

or quasi-vertical portion of plane in the scene (Figure 7). The objective then entails seeking such 

planes based on a stereoscopic view of the scene. The originality and robustness of the method lies 

in the procedure by which this particular step is executed.

Figure 7 
Geometric confi guration 

of the stereovision sensor 
and representation of the 

scene by use of horizontal 
and oblique planes for the 
road, and vertical planes 

for the obstacles

The images are assumed to be corrected of any radial distortion and the method begins within a 

rectifi ed geometry, where the intrinsic camera parameters are considered to be identical. In this 

confi guration, the epipolar lines are parallel and overlap with the image scanning lines. The projec-

tion of a point P of the scene thus lies on the same line in both the left and right-hand views, i.e. 

v
r
 = v

l
 = v, where:

in denoting the following, for the extrinsic sensor parameters (Figure 7):

– the angle between the direction of the camera optical axis and the horizontal (pitch);

h–  the camera height with respect to the ground;

b–  the spacing between cameras (also called the stereoscopic base).

The disparity  for point P, i.e. the column position difference in the P projection between left and 

right views, is given by the following equation:

Let’s assume a plane described by the equation Y = aZ + d within the scene (according to the geo-

metric confi guration shown in Figure 7) and any point M on this plane, with coordinates (X, aZ + d, 

Z)T. By expressing Z as a function of v, derived in Equation (1), and by substituting this value into 

Equation (2), it is shown that the disparity of M equals:

Accordingly, all points on the plane of equation Y = aZ + d are projected onto the straight line 

given by Equation (3) within a space (v, ). Let’s now note that if a = 0 in (3), the equation obtained 

(1)

(2)

(3)
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corresponds to the projection of a vertical plane located at distance Y = d (e.g. a plane defi ning an 

obstacle), and if a tends to infi nity, the equation obtained corresponds to the projection of a horizon-

tal plane Z = 0 (e.g. plane defi ning the road).

At this point, let’s consider an image with a coordinate system positioned on the upper left-hand 

side, with an x-axis indicating disparity and a y-axis, oriented downwards, representing the image 

line number. This image, denoted , will be called the v-disparity projection of disparity . This 

search for scene planes that contain the x-axis consists of fi nding straight lines in the IvD projec-

tion image. In the current LIVIC sensor confi guration, i.e. with b = 1 m, h = 1.40 m and  = 5o, the 

straight line corresponding to an obstacle is just about vertical (i.e. slope of less than 0.1), while the 

straight line corresponding to the road displays a much different slope (0.7). In this manner, we are 

able to make the transition from a three-dimensional representation of planes to a two-dimensional 

one, which turns out to use much less computing time to analyze and moreover allows for much 

more robust extractions, thanks to the accumulation effect provided by this latter representation.

Road slopes›
Since the search for road straight lines takes place within the v-disparity space, the initial step must 

be to perform matching between information stemming from the stereo pair in order to estimate the 

disparity. Given the very stringent constraints in terms of computation time, a sparse disparity map 

(solely along the contours) is built thanks to the simplest possible realigned similarity measurements.

The contour extraction phase in both views (based on a gray-level gradient computation) yields images 

IG
r
 and IG

l
 shown in Figure 8. A comparison of windows along these contours then enables associat-

ing a disparity value, resulting in map , presented in the lower left-hand view on Figure 8 (the color 

chart employed serves to highlight decreasing disparities, over the spectrum from blue to red).

Figure 8 
Flowchart of the detection 
method employed. A gradi-
ent extraction (G function) 

highlights the contours 
of perceived shapes (red: 

black-white transitions, 
green: white-black transi-

tions). The matching of 
contours between images 

IGr and IGl yields the 
ID disparity map. Colors 

range from blue to red 
when making the transition 
from maximum to minimum 

disparity. The dispar-
ity map accumulation 

technique along the image 
lines provides the v-dispar-
ity projection, IvD. Lastly, 

a line segment extrac-
tion technique (Hough's 

transform in this case) 
reveals the road line in the 

v-disparity.
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For each image line of , points with the same disparity are then summed, which provides the 

v-disparity projection image . For image line j therefore, the x-coordinate u
M
 of point M in 

corresponds to disparity and its gray level I
M
 corresponds to the number of points featuring the 

same disparity  on line j:

where  denotes Kronecker’s symbol (  if i = j;  otherwise).

As pointed out above, the planes composing the pavement are projected in straight lines in ,

whose equations are correlated with plane parameters (see the  image in Figure 8). As a result 

of the  construction, the complex 3D plane detection problem can be reduced to a much simpler 

alignment detection problem within a 2D space. Straight line detection in  may be performed 

by means of robust methods, like Hough’s transform or an M-estimator regression (see the oblique 

straight line representing the road in Figure 8).

When the road is fl at, it appears as an oblique straight line in , which makes the longitudinal 

road profi le a straight line. In the presence of an ascent or a descent, the road profi le becomes 

a simple curve (a cylindrical surface) that may be approximated by either a polynomial or a 

piecewise linear curve, with the surface thus being modeled by a succession of plane portions. 

Instead of searching for a peak in Hough’s transform, the method records the m maximum values 

lying in the vicinity of a peak. These m selected points correspond to m straight line segments 

in .

The target piecewise linear curve is either the upper envelope (when approaching an ascending 

slope) or lower envelope (when approaching a descent) of the family of the m generated lines. The 

choice between these two is made by identifying the envelope that superimposes the best with the 

pixels contained in . This process involves progressing along each of the two curves and sum-

ming the value of the . This process involves progressing along each of the two curves and summing 

the value of the  pixels encountered, with the curve ultimately selected being the one that yields 

the highest cumulative value (Figure 9).

(4)

Figure 9 
Extraction of the longitudi-

nal road profi le. From left 
to right: an image of the 

stereo pair corresponding 
to an upcoming descent, 

the corresponding IvD 
image, the associated 

Hough's transform (the 
white rectangle encom-
passes the search zone 
for the k highest values 
in Hough's space), the 

bundle of m straight lines 
generated, the two calcu-
lated envelopes, and the 

longitudinal profi le of the 
downward-sloping road.

 Road obstacle detection›
The intended objects correspond to vertical straight lines located above the curve showing the pave-

ment within the v-disparity space. The base of these straight lines corresponds to the point of inter-

section between the considered plane and the pavement surface (see the intersection of the two red 

lines in the v-disparity image on Figure 10). Moreover, segment height provides the object height. 

In analyzing the segments representing vertical planes of the scene, both the base and summit of a 

box bounding the targeted object are obtained.

In order to identify the sides of this bounding box, it is necessary to detect the edge corresponding 

to the summit of the considered vertical plane. To proceed, the IuΔ projection, called u-disparity, 
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is introduced. Like for v-disparity, u-disparity is built by summing points with the same disparity, 

yet in this case in each column u of the disparity image (see the lower left-hand image shown in 

Figure 10).

This cumulative projection will serve to draw straight line segments within the u-disparity space. 

The ends of each segment are in fact the sides of the boxes bounding the targeted objects. Within 

the scope of defi ning driving assistance systems, this technique has been successfully implemented 

for the onboard detection of vehicles or pedestrians (Figure 11).

Figure 10 
Localization of each 

object on the road. The 
straight vertical segment 

corresponding to the plane 
of the targeted object (in 

back of the vehicle in this 
image) detected in the v-

disparity image IvD offers 
the base and height of the 

given object. This same 
plane seen from above pro-
duces a straight horizontal 
segment in the u-disparity 

image IuD (visible in the 
red ellipse), which provides 
an indication on the object 

extension widthwise. The 
object detected on the road 
is then framed by a bound-

ing box.

Figure 11 
Detection of obstacles 

on the road and vertical 
elements contained in the 
scene (as indicated by the 

bounding boxes)

Contextual visibility and stereovision■

In the presence of poor meteorological conditions, fog in particular, onboard camera operations 

are far less effi cient. Similarly, driver perception becomes altered. Being able to detect deteriorated 

sensor operations or inappropriate driver behavior, given the meteorological conditions, proves to 

be a critical feature. The tools presented herewith, as developed at the LIVIC in collaboration with 

LCPC-ESE (LCPC’s Operations, Signaling and Lighting Division), describe such a contextual visibility 

diagnostic method with the help of a stereoscopic sensor.

Mobilized and mobilizable visibility distances›
Under foggy weather conditions, visual information gets modifi ed. A drastic drop is found in con-

trast vs. observation distance. This effect may be described by the meteorological visibility V
met

,

defi ned as the greatest distance at which a suitably-sized black object can be recognized during the 
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daytime against the background sky. A derived and patented method estimates this meteorological 

visibility using just a single camera [10, 11].

This visibility distance however is merely the refl ection of an atmospheric parameter and does not 

incorporate the type of road scene. As such, two new visibility distances have been defi ned: the 

mobilized visibility distance V
mob

, which indicates the distance to the object lying furthest on the 

pavement yet still visible; and the mobilizable visibility distance V
max

, i.e. the maximum distance at 

which a potential object on the pavement could be seen. For a visibility threshold of 5% contrast, 

an order-of-magnitude relationship among the three aforementioned distances was established, i.e. 

[12].

Estimation of mobilized visibility›
In order to estimate the mobilized visibility distance, a three-stage process was engaged:

Construction of a precise road surface depth map

Detection of the image elements whose contrast exceeds 5%

Combination of information from the fi rst two stages.

Computation of a precise road scene depth map by means of stereovision

In two iterations, the v-disparity approach yields a high-quality disparity map of the road surface 

(Figure 12). To proceed, once the profi les have been extracted from the v-disparity image, each cou-

ple of previously-matched pixels is verifi ed as belonging or not to one of the profi les. In this manner, 

the number of false matchings can be tremendously reduced (Figure 12d) [13]. This technique was 

utilized for the purpose of measuring the mobilized visibility distance.

Nonetheless, this kind of disparity map is quite sparse, meaning that disparity is only known on the 

vertical contour points. Under adverse visibility conditions, this would cause problems, in particular 

at the level of the summit of vertical objects, such as vehicles, where many false matchings could 

arise.

To remedy this shortcoming, a complementary approach has been developed; it introduces a dis-

parity propagation technique, in a way analogous to regional growth, like in [14], where germs 

composed of matchings assumed to be correct subsequent to an initial algorithm iteration are 

Figure 12 
Overview of the v-disparity 

approach in two passes 
on a pair of stereo images 

acquired during foggy 
weather:

a: left-hand image
b: right-hand image
c: v-disparity profi le 
calculated based on 

images (a) and (b)
d: improved sparse 

disparity map
e and f: examples of 

quasi-dense disparity maps 
obtained using two passes 

(see text for description)

a
b

c d

e f



68 BLPC • n°272 • october/november 2008

propagated. This technique is also inspired from the second algorithm iteration described in [13],

where matching is validated both by using the lines extracted from the v-disparity and by mod-

eling the road profi le. More specifi cally, the proposed method propagates matchings after hav-

ing verifi ed that they belong to one of the v-disparity image profi les. Thanks to this method, the 

disparity map obtained becomes quasi-dense (Figures 12e and 12f), especially on the horizontal 

contours. In comparison with the direct computation of dense disparity maps, this method offers 

the advantage of being less costly in terms of computation time; moreover, it allows for more 

precise positioning, by means of the u-disparity approach, of the bounding boxes around road 

objects [15].

Estimation of contrast exceeding 5%

The local contrast computation in an image has not been addressed to any considerable extent in 

the literature. By relying upon a classical image segmentation method, an original approach has 

been developed; it consists of scanning the image through use of small windows cut in two along 

a boundary so as to maximize contrast, from a logarithmic standpoint, between the two cut parts 

(Figure 13a). This method has been compared with relatively obscure existing methods and proves 

to be just as precise while committing fewer false detections [16].

Figure 13 
Result from application of 

the method for estimat-
ing mobilized visibility 

distance:
a: local contrasts exceed-

ing 5%
b: estimation of the mobi-

lized visibility distance; the 
furthest window displaying 

a contrast of at least 5% 
and over which depth is 
known has been painted 

white; the point is marked 
by a black cross on this 

same window.

Quick combination of the two pieces of information

The objects encountered move closer to the instrumented vehicle the further down they appear 

in the disparity map. For this reason, the algorithm entails scanning the disparity map from top 

to bottom, beginning at the horizon line and then computing the contrast for each pixel of known 

disparity. Once a pixel with a contrast exceeding 5% has been found, the computation routine stops. 

By knowing the disparity of this point, its depth can be derived, and this constitutes the mobilized 

visibility distance (Figure 13b). This method has been detailed in [12] and patented [17].

It was compared with the fi rst method to enable estimating meteorological visibility through use of 

reference data. The two methods show nearly equal precision for meteorological visibility distances 

of between 50 and 200 m. These reference data were obtained on a specifi c site, designed and built 

at the Satory track, which contains large-sized targets for estimating the meteorological visibility 

distance given the attenuation of their contrast vs. distance (Figure 14).

For these specifi c tests, the cameras were adjusted in a realistic manner as regards use conditions, 

i.e. minimum exposure time in order to reduce motion blur and reliance upon an auto-iris lens to 

avoid both over- and underexposures. Details of these validation experiments are provided in [18, 

19].

a b
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Robust matching for road profi le reconstruction■

This discussion will refocus on the problem of accurately determining the road profi le, which offers 

multiple applications from driving assistance features to an evaluation of geometric visibility dis-

tances. According to the v-disparity approach described above, the road is modeled by a succession 

of oblique planes (see Figure 7), which serve to defi ne straight lines within the v-disparity space. 

After matching contour points, the method proceeds in two stages, i.e.: construction of a scene rep-

resentation in the v-disparity space; then, adjustment of a bundle of straight lines within this space 

(Figure 9).

According to the approach initially proposed in [20], the piecewise plane model is replaced by a 

polynomial model. In employing the notations from Figure 7, the following can be expressed:

It is to be noted that this approach, which extends the linear model (3), implicitly uses the 

v-disparity representation, since (5) is equivalent to . Yet, rather than building 

the cumulative v-disparity image, the method simultaneously performs point matching and road 

profi le reconstruction via the robust estimation of polynomial coeffi cients A. This problem set-

up enables introducing the notion of confi dence into model adjustment through the covariance 

matrix associated with the estimation. Such information may prove valuable, e.g. when integrat-

ing profi les obtained on successive image pairs in order to reconstitute road relief over a certain 

distance.

Lastly, it should be remarked that the model shown in Figure 7 only includes angle . One advan-

tage of the representation in (5) is its ease of extension for better representing actual pavements. As 

an illustration, the following is chosen as a model in the space (u,v,disparity):

 where a
u
 is an additional coeffi cient to be estimated. This model turns out to be well adapted for 

incorporating a roll angle (rotation around the y-axis): it corresponds to a fi rst-order approximation 

of the projection of a polynomial pavement model with an incline. Similarly, by multiplying the 

additional term a
u
u

l
 by a polynomial in v, it becomes possible to include an incline variable with 

distance, without changing the nature of the algorithm.

(5)

(6)

Figure 14 
Systematic evaluation of 

results:
a: photograph of the 
Satory experimental 

validation site under good 
weather conditions

b: points: estimation of 
the mobilized visibility 

distance vs. the reference 
visibility distance obtained 

using large-sized targets. 
Right: Least-squares 

adjustment line, whose 
equation is listed on the 
graph. The coeffi cient of 

linear correlation equals 
approximately 97%.

a b
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Formulation of the optimization problem›
Equation (5) relates the coordinates of point pairs that correspond between the left- and right-hand 

images, via a polynomial whose coeffi cients A must be estimated. The correspondence between 

points is obviously unknown upfront and must also be determined. The classical approach adopted 

to solve this type of problem consists of minimizing the quadratic error between the left image 

after application of the target transform and the right image, which is set as the reference. Since the 

information contained inside regions of constant intensity within the images is not discriminating, 

all image points are not considered, but only those contour points extracted from images, which 

substantially limits problem complexity.

Let’s denote (i,j) and (k,j) as the point coordinates potentially in correspondence on each line j of the 

left and right contour images. The method proposed herein consists of minimizing a non-quadratic 

error function, written as follows:

where r((i,j),(k,j)) is a factor introduced to account for local similarities (correlation or ZNCC in 

gray levels, a decreasing function of the color gradient difference) between pixels in correspond-

ence (i,j) and (k,j); moreover, φ(n2) = ϕ(n) is a robust potential function, for which n is a scale 

parameter.

The role of function  is to minimize the infl uence of erroneous correspondences on the estima-

tion of parameters A. Such functions are known in the fi eld of robust statistics [21] under the name 

M-estimators; they also get used for semi-quadratic regularization in image reconstruction [22,23]

and called in this case -function models. A few typical examples of  functions are shown in 

Figure 15.

(7)

Figure 15 
Examples of functions 
φ(n2) = ϕ(n) (left) and 
associated weighting 

functions φ′(n2) = ϕ′(n)/2n
(right, with an arbitrary 
weighting coeffi cient on 

the x-axis u)

 Estimation algorithm›
In order to minimize (7) with respect to A, inspiration is derived from semi-quadratic theory [22, 

23] to linearize the problem and propose a simple iterative algorithm. The Lagrangian formalism 

proposed in [24] and detailed in [25] is to be applied; this step requires that the  function satis-

fi es hypotheses imposed by semi-quadratic theory, i.e. the function must be defi ned and continuous 

over , as are both its fi rst and second derivatives, and be increasing and concave. For further 

details on the formalism introduced for algorithm derivation (which ensures algorithm convergence 

at a local criterion minimum), the interested reader is referred to [7, 24, 25]. The iterated, weighted 

least squares algorithm generated can be written as follows:

Initialize A
0
 and set t = 1
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For all indices (i,j,k), compute the auxiliary variables:

which represent the quadratic calibration error on each pair of points.

For all indices (i,j,k), compute the weightings (Lagrangian coeffi cients):

Solve the following linear system in order to determine A
t
 :

If , increment t and return to Step 2. Otherwise, set A = A
t

Steps 2 and 3 introduce a soft matching between the points of indices i and k on line j, via the score

provided by . This approach incites correspondences both in sync with the model, i.e. associ-

ated with a small quadratic error (which means that weighting  lies close to 1, see Figure 15), and 

photometrically consistent (the value of r((i,j),(k,j)) then also lies close to 1). Next, Step 4 updates 

the estimation of the road model coeffi cients A, by ascribing greater weight to the highly-scored

matchings.

It is to be noted that the parameter s enables a multi-scale search, within a continuation approach 

called gradual non-convexity (GNC) [26]: an initial estimation is performed at a rather coarse scale, 

with this result then serving as an initialization on a more refi ned scale, and so forth. This heuristic 

enables signifi cantly improving algorithm convergence. Furthermore, let’s indicate that in practice, 

in order to accelerate the algorithm, indices (i,k) are not all considered for each line: r((i,j),(k,j)) gets 

cancelled when its value is small (the corresponding weighting value amounts to nearly zero, 

which brings about practically no change at all).

Experimental results›
Figure 16 illustrates algorithm robustness in the presence of many perturbations caused by verti-

cal elements such as trees, houses or vehicles. The proposed algorithm is a robust estimator on 

the matchings between points. The robust function  may be chosen so as to accept up to 50% of 

erroneous matchings [25]. Let’s note that a large share of these erroneous data may be eliminated 

a priori by using the pavement segmentation technique described in [27]. Figure 16 also reveals 

the benefi t of applying a polynomial model: the left-hand transform image contours overlap much 

better with those from the right-hand image than when employing a plane model. In this experi-

ment, the model in (6) has been implemented in order to incorporate the roll angle, which enhances 

results even further.

Lastly, a recalibration experiment was performed between successive local profi les (Figure 17).

Once the adjustment has been carried out, it is indeed possible to deduce the spatial point positions, 

particularly their altitude. Since the same point had been visible in several stereo pairs, it also proves 

possible to recalibrate the various profi les between themselves by means of an iterative procedure, 

which generates a global profi le over the studied itinerary. It is obvious that this procedure is sub-

ject to alteration, and the profi le derived is quantitatively quite removed from that capable of being 

extracted from the itinerary map. Yet, from a qualitative perspective, the profi le corresponds to the 

relief actually observed. These preliminary results are thus promising from the standpoint of inte-

gration into a more complete system yielding absolute information, e.g. via a GPS.
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Figure 16 
Comparison of the read-

justed contour map (shown 
in red) with respect to the 
reference map (black) for 

two pairs of stereo images. 
Top: a plane model is 

used; bottom: a 6-order 
polynomial model is 

applied. The roll angle has 
also been included.

Figure 17 
Map of the studied itinerary: 

the local RD 166 road (France's 
Bas-Rhin department) traveled 

in the direction of the arrow, 
between the intersection with 

RD 41 (lower horizontal 
red line) and the Dingsheim 

Calvary monument (upper hori-
zontal line, IGN. Right: eleva-
tion profi le obtained by means 
of recalibrating local profi les. 

The absence of absolute 
recalibration causes a shift with 
respect to the profi le potentially 

extracted from this map.

CONCLUSION

In this article, we have proposed a summary of the various research projects devoted to apply-

ing stereovision techniques to an analysis of road scenes, as recently conducted by several teams 

belonging to the Transport Ministry’s RST network. These efforts have enabled developing a unifi ed 

methodological framework; moreover, they have led to operational or nearly operational solutions, 

whether specifi c to facility studies, through the development of a new generation of IRCAN and IREVE

tools from the Ponts et Chaussées Laboratories, or to driving assistance systems, through the devel-
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opment of patented visibility distance estimation tools or onboard road obstacle detection systems. 

Stereovision techniques offer a general interest, which extends beyond the domain of road scene 

analysis, and many dimensional measurement and shape analysis applications could be enhanced 

within the fi eld of civil engineering.
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