
 

Abstract— We consider a class of controlled timed event
graphs subject to strict temporal constraints. Such a graph is
deterministic, in the sense that its behaviour only depends on
the initial marking and on the control that is applied. This
behaviour can be modelled by a system of difference equations
that are linear in the Min-Plus algebra. The temporal constraint 
is represented by an inequality that is also linear in the min-plus
algebra. Then, a method for the synthesis of a control law
ensuring the respect of constraints is described. We give explicit
formulas characterizing a control law, which, if two conditions
are satisfied, ensures the validity of the temporal constraints. It
is a causal state feedback, involving delays. The method is
illustrated on an example.

I. INTRODUCTION

E consider in the sequel a class of deterministic
controlled processes subject to strict time constraints.

Such time critical systems are frequent in the industry, for
instance in the case of a thermal of chemical treatment, and
also in the food industry. Of course the question is to validate 
some temporal conditions (see for instance [1, 5, 6, 7, 8]). In
the present contribution, we formulate this problem in terms
of a control problem, assuming that the process is subject to
some control (it is generally the case) and proposing a
method to solve the inverse problem, synthesizing of a
control so that the constraint is validated. Following [2, 10],
we shall use the formalism of timed event graph, and their
algebraic models which are linear models over dioids [4].
Then the problem is formulated in terms of equations and of
inequalities in the so-called Min-Plus algebra. The equation
is the usual model representing the behaviour of a timed
event graph, and the inequalities represent the temporal
constraints to be validated. The control we are interested in
is quite different from that considered within the so-called
supervisory control framework [9, 11]. Here the time is
explicitly taken into account At the contrary, the authors of
[2, 10] consider timed event graphs and have used the
formalism of dioids, but they treated other versions of such a
problem. The first aim of their synthesis was rather a certain
closed-loop property, expressed in terms of disturbance
rejection or in terms of model matching, respectively, and the 

S. Amari is with Institute of Research in Communications and
Cybernetic of Nantes, 1 rue de la Noë, BP 92101, 44321 Nantes cedex 03,
France (phone: +33-240376978 ; e-mail: said.amari@irccyn.ec-nantes.fr).

I. Demongodin is with Laboratory of Engineering for Automated
Systems, 62 avenue Notre Dame du Lac, 49000 Angers, France (e-mail:
isabel.demongodin@univ-angers.fr).

J.J. Loiseau is with Institute of Research in Communications and
Cybernetic of Nantes, 1 rue de la Noë, BP 92101, 44321 Nantes cedex 03,
France (phone: +33-240376967; e-mail: jean-jacques.loiseau@irccyn.ec-
nantes.fr).

temporal constraint appeared as an additional requirement.
We focus here on the validation of the time constraints, and
the results are not easily comparable. Our work also differs
from the existing literature on the control of (timed) discrete
event systems, since the control laws we consider may
involve some delays. In the present paper, we propose a
method for the synthesis of a control that permits to validate
a given set of time constraints. The control law itself is
finally defined by a Min-Plus linear difference equation,
involving a finite number of delays. Such an equation
corresponds to a timed event graph, too. A first approach
towards this method of synthesis was presented in [3]. The
present contribution is a generalization for the timed event
graphs subjected to several time constraints, and multiple
controls.

The paper is organized as follows. In Section 2, some
backgrounds are recalled, notably some notations concerning
the Min-Plus semiring, the timed event graphs and their Min-
Plus linear models, the concept of a state equation. The
problem, of finding a causal control verifying critical time
constraints, is formulated in Section 3, and we propose in
Section 4 a procedure for the control synthesis. We first
consider the case of a single temporal constraint. Two
conditions are proposed, which are sufficient for ensuring the 
existence of a solution. A simpler condition, which is
satisfied in many practical cases, and is simpler to check, is
also provided. Then we extend the method to the case of
many different constraints. Section 5 is devoted to some
illustrative examples, and finally Section 6 is devoted to the
conclusion.

II. BACKGROUNDS

A. Dioid algebra
A monoid is a set, say D , endowed with an internal law,

noted ⊕ , which is associative and has a neutral element,
denoted e , , .a D a a ae e∀ ∈ ⊕ = ⊕ = . A semiring is a
commutative monoid endowed with a second internal law,
denoted⊗ , which is associative, distributive with respect to
the first law ⊕ , has a neutral element, denoted e , and
admits e like absorbing element:

, .a D a ae e e∀ ∈ ⊗ = ⊗ =
Finally, a diod is a semiring with an idempotent addition:

, .a D a a a∀ ∈ ⊕ = The dioid is called commutative if the
second law ⊗  is commutative.
We shall consider in the sequel the so-called Min-Plus
algebra that is { } { }( ,min, )∪ −∞ ∪ +∞ + . The Min–Plus
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algebra, denoted min is a commutative dioid for which
the law ⊕ is the operation min, having the neutral element
ε = +∞ , and the second law, ⊗ , is the usual addition, with
neutral element 0e= .

If n∈ and min, nv w∈ , we denote v w⊕ , the vector
with components : min( , )i i i iv w v w⊕ = for 1i= to n. If no

confusion can arise, when ,p q∈ , min
p nA ×∈ and

min
n qB ×∈ are given matrices, .A B (or just AB ) will

denote the matrix multiplication in min , defined by

1
( . ) ( ) : min( )

n

ij ik kj ik kjkk
A B A B A B

=
= ⊕ ⊗ = +

The Kleene star of a square matrix min
n nM ×∈ , denoted

M ∗ is defined by i

i
M M∗

∈
= ⊕ , where 0M denotes the unit 

matrix, which entries equal e on the diagonal, and e
elsewhere. Let us recall that min

nv∈  then x M v∗= is the 
maximal solution of both the inequality, .x M x v≤ ⊕ , and
the equality, .x M x v= ⊕  [4].

B. Timed event graphs and Min-Plus linear models
An event graph is an ordinary Petri net where each place

has exactly one upstream transition and one downstream
transition. A timed event graph is obtained by associating
delays to the places of an event graph. We shall use the
following notations P will denote the set of places of the
considered graph, and T its set of transitions. The number
of transitions having at least one upstream place is denoted n,
and m stands for the number of source transitions, having
no upstream place. If ,i jt t T∈ , the unique place relying jt

to it is denoted ijp , if any, the corresponding delay is

denoted ijτ and the marking of this place is denoted ijm .

The maximal delay arising in the graph is denoted maxτ , i.e.

{ }max max
ij

ijp P
τ τ

∈
= .

A path, denoted α , from transition it to transition jt is a

sequence of transitions and places, of the form

1 1 1 2 2
( , , , , , ..., )i ik k k k k jt p t p t t , where

1 1 2
, ,... .ik k kp p P∈ We

denote ατ the sum of delays along path α ,
kl

kl
p

α
α

τ τ
∈

= ∑ .

One associates to each transition of the considered timed
event graph a function of time t , corresponding to the
cumulated number of firings of the transition at time t. Such
a function is called a counter. The counters corresponding to
source transitions form the components of a vector,

min( ) mu t ∈ , and the ones corresponding to the other

transitions form the components of the vector, min( ) ntθ ∈ .

As it is well known (see [4]), the dynamical behaviour of a
timed event graph can be expressed by means of a linear
equation over min , as follows.

max

0
( ) ( . ( ) . ( ))t A t B u t

τ

τ ττ
θ θ τ τ

=
= ⊕ − ⊕ − , (1)

where min
n nAτ

×∈ is a matrix which entry ,ijAτ equals to ijm ,

the number of initial tokens in place ijp , if this place exists
and the associated delay is τ , and ε else. Similarly, the
entries of matrices min

n mBτ
×∈ correspond to the initial

tokens of the places following source transitions.
Equation (1) is implicit in general. It is worth replacing it

by the following explicit equation,

0 00
( ) ( . . ( ) . . ( ))t A A t A B u tτ ττ

θ θ τ τ∗ ∗

>
= ⊕ − ⊕ − , (2)

where 0A∗ is the Kleene star of 0A , defined in the previous
section.

C. Explicit and state equation
We shall now state some simplifying hypothesis, these are

the following.
1( )H All the delays equal 0 or 1. Analogously to the case

of usual linear systems, the explicit equation 2 can be
brought in state space form, if all the delays in the timed
event graph are commensurable to a single delay. We can
assume without loss of generality that this elementary delay
equals 1, this is the hypothesis 1( )H . For obtaining a state
space model, we first expand all the places with delay 1τ >
intoτ places with delays equal to 1. Hence one adds ( 1)τ −
intermediate transitions.

The added intermediate transitions are associated to
counters that form the components of a vector, '

min( ) ntθ ∈ ,

and we denote ( )x t  the resulting extended state vector,

( )
( )

( )

t
x t

t

θ

θ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, which belongs to min
N , with 'N n n= + .

Further one assumes that:
2( )H The control acts without delay, i.e. all the delays

associated to places with a source transition downstream are
equal to 0. This is not limiting, one can always add
intermediate transitions and places so that the resulting
extended graph satisfies this assumption. The dynamic of the
expanded timed event graph is then described by an equation
of the form 0 1

ˆ ˆ ˆ( ) . ( ) . ( 1) . ( )x t A x t A x t B u t= ⊕ − ⊕ , which can
be rewritten into the following explicit form, where

0 1
ˆ ˆ.A A A∗= and 0

ˆ ˆ.B A B∗= ,
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( ) . ( 1) . ( )x t A x t B u t= − ⊕ . (3)
All these notations permit to point out that the behaviour

of a controlled timed event graph is deterministic, depending
on the input ( )u t and on some initial conditions. This
dependence can be explicited, and we shall use the following
formulation:

1

0
( ) . ( ) . . ( )k

k
x t A x t A Bu t k

τ
τ τ

−

=

⎡ ⎤= − ⊕ ⊕ −⎢ ⎥⎣ ⎦
, (4)

which holds true, for every 1τ ≥ .
In the following, we shall assume that the input u(t) is

actually a control, which can be arbitrarily assigned. For
instance in a production process, the input can correspond to
the authorization of performing a certain operation. Typically
the beginning of a task performed by a robot, for instance, is
subject to such a control input.

III. PROBLEM FORMULATION

A. Temporal constraint
Strict time constraints are frequent in industrial processes.

One can for instance consider the example of a production
process with a furnace for realizing a thermal treatment. The
duration of any treatment in the furnace is fixed, or defined
by a time interval. One wants to control the system to respect
this constraint. The definition of a timed event graph already
takes into account a delay on each place that corresponds to
a minimal holding time. The maximal duration appears as an
additional constraint that should be verified. Rather than a
verification problem, we formulate the question as a control
problem.

Hence
ijp is the place subject to a strict constraint. An

interval min , max
ij ijτ τ⎡ ⎤⎣ ⎦ of time is associated to this place,

where is a strict constraint, with min
ij ijτ τ= .

This constraint is expressed through the following inequality,
max( ) ( ) ( )ij j ij i ij j ijm x t x t m x tτ τ− ≥ ≥ − ,

where ijm  is the initial marking of the place ijp . The left 
inequality is already taken into account by the linear model
(3), so that the second one, say:

max( ) ( )i ij j ijx t m x t τ≥ − , (5)

where the product is over min , is actually the additional
constraint to be validated.

B.  Causal feedback
We consider a process modelled by (3), subject to the

additional constraint (5). We want to determine a control
( )u t ensuring the respect of (5) for 0t> . We shall a priori

research this control in the form of a well posed causal
feedback of the form, ( ) . ( 1)u t F x t= − , for 1t> , where the
product is in the sense of the Min–Plus algebra, and

min
m NF ×∈ .

Remark 1. A static control of the form ( ) . ( )u t F x t= may
result in an implicit loop, actually blocking the system. That
is why we prefer using a delayed control law, always leading
to a well-posed closed-loop system. Consider, for instance,
the event graph of Fig. 1, and assume that this graph is
subject to the additional constraint 2 1( ) ( 3)x t x t≥ − . We
remark from the graph equations that 1( ) ( )u t x t≥ , therefore
one can choose 2( ) ( )u t x t= , trying to validate the constraint. 
This control law is of the form ( ) . ( )u t F x t= , with

( )F eε ε= . One can finally check that, actually, this is
an implicit control law, resulting to a blocking of the closed-
loop controlled event graph.

IV. CONTROL SYNTHESIS

A. Single constraint and single control
We propose in [3] a method for the synthesis of a control

law solving our problem, provided that the following
additional hypothesis is satisfied.

3( )H There exists a path α from ut to jt , and we denote

at the cumulated delay along this path.

Taking at t= in (4), and from the definition of ut , we

have ( ) ( ) ( )j ju ux t A x tατ
ατ≤ − , and ( ) ( )ux t u t≤ , from which

it is clear that:
( ) ( ) ( )j jux t A u tατ

ατ≤ − . (6)
Applying again (4) with t f= , we obtain the following

explicit expression:
1

1 1
( ) ( ) ( ) ( ) ( ) ,

N
k

i ir r ir k
x t A x t A B u t k

φ
φ φ

−

= =

⎡ ⎤= ⊕ − ⊕ ⊕ −⎢ ⎥⎣ ⎦
(7)

for every integer 1f≥ , which is the key to obtain the
following result.

Theorem 1. Taking max 1ij af t t= + + , the inequality,

1
( ) (( ) ( ) ) ( 1)

N

ir ju ij r
r

u t A A m x tatf

=
≤ ⊕ − − −

defines causal controls which guarantee that constraint (5) is
satisfied if the two following sets of conditions hold :
(i) ( ) ( )ir ju ijA A mατφ ≥ + for 1r =  to N ,

(ii) ( ) ( )k
i ju ijA B A mατ≥ + for 0k = to ( 1)φ − .

Proof .  See [3]. 

Remark 2. The sufficient conditions depend on the initial
markings of place ijp and  of the path a .

Corollary 1. There always exists a causal control
validating constraint (5), if all initial markings of place pij
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and of places of path a from ut to it are null. Such a
control is given by:

1
( ) ( ) ( 1)

N

ir r
r

u t A x tf

=
= ⊕ − .

Remark 3. It is important to notice that the control law
proposed in theorem 1 is suboptimal. It is not optimal in
general.
In our context, a control law '( )u t is said to be more
permissive then a control ( )u t if it majorizes it in the sense of 
the usual order,

'( ) ( )u t u t≥ , 0t∀ ≥ .

Therefore, one could call optimal a control u∗ if the
inequality

( ) ( )u t u t∗ ≥ , 0t∀ ≥
holds for every control ( )u t guaranteeing the respect of the
considered temporal constraint. The initial conditions

(0)x should be fixed to give sense to this definition. The
problem is then that, even with a fixed initial condition, the
existence of such an optimal control is not ensured. This
simply comes from the fact, that, in general, if ( )x t and '( )x t

are the solutions respectively corresponding to the controls
( )u t and '( )u t , then max( ( ), '( ))x t x t is not always the

solution corresponding to the control max( ( ), '( ))u t u t . Then
the existence of a most permissive control for the problem of
time constraints is not guaranteed.

B. Control synthesis to the case of multiple constraints
We consider now the case of a timed event graph, having

one source transition which is a control, but Z places are
constrained, noted

zp , for 1z = to Z . For each constrained

place zp , let zm , zτ and max
zτ respectively denote the initial

marking, the minimal and maximal delays. Further, let zt

and '
zt respectively denote the input and output transitions of

the place, zx and '
zx denote the corresponding counters, and

zl denote the cumulated delay along a path going from ut to

zt . These constraints are expressed by the inequalities:
' max( ) ( ) ( )z z z z z z zm x t x t m x tτ τ− ≥ ≥ − , (8)

for 1z =  to Z .
We denote ( )zu t the control law that satisfies the
corresponding constraint (8).

Theorem 2. The equation,
1

( )
Z

zz
u u t

=
= ⊕ , with

'1
( ) (( ) ( ) ) ( 1)z z

N

z x r xu z rr
u t A A m x tφ τ

=
⎡ ⎤= ⊕ − − −⎣ ⎦ ,

and max 1z z zφ τ τ= + + , for 1z = to Z , defines a causal
control ensuring the respect of all constraints (8), if the two
following sets of sufficient conditions are satisfied:

(iii) '( ) ( )z z
x r xu zA A mφ τ≥ + for 1r =  to N ,

(iv) '( ) ( )zk
x xu zA B A mτ≥ + for 0k = to ( 1)zφ − ,

for 1z = to Z .
Proof. See [3].

Remark 4. The satisfaction of simultaneous constraints
leads to the simultaneous satisfaction of the corresponding
conditions, which is quite natural. In this sense, the extension
of Theorem 1 that is done in Theorem 2 is not restrictive.

C. Generalization to the case of multiple controls
Now, we consider in this section a timed event graph with

m source transitions. Firstly, we suppose that ijp is the

single place subjected to an additional temporal constraint.
We calculate a vector, min( ) mu t ∈ , with 1m ≥ , which is a
control law that must satisfy the constraint (5). For each
transition source, a variable counter is associated, noted

( )su t , for 1s = to m . We also note by sλ , the cumulated

delay along a path going from
sut to jt .

Theorem 3. The respect of the temporal constraint (5), is
guaranteed if:
(a) there exits s  such that:

max

1
( ) (( ) ( ) ) ( )s s

s

N

s ir ju ij r s ij sr
u t A A m x tφ λ φ τ λ

=
⎡ ⎤≤ ⊕ − − − + +⎣ ⎦

with max 1s ij sφ τ λ= + + , ( )lu t e=  for l s≠ , and 
(b) the both following sets of conditions are satisfied:

(v) ( ) ( )s s

sir ju ijA A mφ λ≥ + for 1r =  to N ,

(vi) '( ) ( )s

s

k
ii ju ijA B A mλ≥ + for 0k =  to ( 1)sφ − , and

for ' 1i =  to m .

Proof. We replace τ by sλ in (4), and from the definition
of the function counter of jt , we have,

( ) ( ) ( )s

sj ju s sx t A u tλ λ≤ − . (9)

Applying again (4) for : sτ φ= , we obtain,
1

0
( ) ( ) ( ))

s
s k

s k
x t A x t A Bu t k

φ
φ φ

−

=

⎡ ⎤
= − ⊕ ⊕ −⎢ ⎥

⎣ ⎦
, in particular,

1

' '1 0 ' 1
( ) ( ) ( ) ( ( ) ( ))

sN m
k

i ir r s ii ir k i
x t A x t A B u t k

φ
φ φ

−

= = =

⎡ ⎤
=⊕ − ⊕ ⊕ ⊕ −⎢ ⎥

⎣ ⎦
. (10)

Taking (10) into account, it appears that constraint (5) is
satisfied if the both following conditions hold,

max

1
( ) ( ) ( )s

N

ir r s ij ij jr
A x t m x tφ φ τ

=
⊕ − + ≥ , and,

1
max

' '0 ' 1
( ( ) ( )) ( )

s m
k

ii i ij ij jk i
A B u t k m x t

φ

τ
−

= =
⊕ ⊕ − + ≥ .

Father, taking (9) into account, these conditions become
max

1
(( ) ) ( ) ( ) ( )s s

s

N

ir ij r s ij ju s sr
A m x t A u tφ λφ τ λ

=
⊕ − − + ≥ − , and,
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1
max

' '0 ' 1
(( ) ) ( ) ( ) ( )

s
s

s

m
k

ii ij i ij ju s sk i
A B m u t k A u t

φ
λτ λ

−

= =

⎡ ⎤⊕ ⊕ − − + ≥ −⎢ ⎥⎣ ⎦
.

Choosing, max 1s ij sφ τ λ= + + , conditions (v) and (vi) being
verified, and the control law satisfying the inequality of the
theorem, one can check that the constraint (5) is satisfied. 

Corollary 2. Let a timed event graph with m source
transitions ( 1m ≥ ) and Z additional temporal constraints of
type (8) ( 1Z ≥ ). The causal control law which guarantees
the respect of the Z constraints (8) is defined by:

For l z=  to Z ,

1
( ) ( )

Z

l zz
u t u t

=
= ⊕ ,

where ( )zu t is the control law, calculated by Theorem 3, to
check the zth constraint and ( )lu t e=  for l z≠ .
Proof. A control law ( )zu t , validates the zth constraint, if
conditions (v) and (vi) of Theorem 3 are satisfied. Thus, we

have, for 1z = to Z,
1

( ) ( )
Z

z zz
u t u t

=
≥ ⊕ . According to Theorem

3, it is clear that the control law 1( ) ( )Z
l z zu t u t== ⊕ for l z=

to Z , guarantees the respect of all Z temporal constraints.

V. EXAMPLE

Consider the timed event graph of Fig.1. This graph
contains two source transitions modelling respectively,
control 1u and control 2u , ( 2)m= .

Two additional temporal constraints, 1Z and 2Z , are
added to this graph, and are expressed respectively by the
following inequalities:

2 1( ) ( 1)x t x t≥ − , 3 2( ) ( 1)x t x t≥ − , for 1t ≥ .

Fig. 1 . Timed event graph-Example

The problem consists in calculating a control vector,

1

2

( )
( )

( )
u t

u t
u t
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

which satisfies these both constraints.

By applying Corollary 2, the previous graph, see Fig. 1, has
been transformed into that of Fig. 2, with max 1t = . To do so, 
place 43p has been split into three places timed to 1. The
state equations associated with this new timed event graph,

see Fig. 2, is:
2 3 4

1 2
1

( ) ( 1) ( ),

e
e e

e
x t x t u t

e
e

e

e e e e
e e e e

e e e e e e
e e e e e e e
e e e e e e e
e e e e e e e

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜= − ⊕⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟

where the components of ( )x t are the functions of counters
associated to transitions 1t , 2t , 3t , 4t , 5t and 6t , and the
vector ( )u t is the control law. We shall then apply Corollary
2 to calculate a control ( )u t which guarantees the respect of
the both temporal constraints 1Z  and 2Z .
For this example, it is enough to find, for each temporal
constraint, only one component of the vector ( )u t to
guarantee the respect of this constraint. Firstly, we determine
a component of the vector ( )u t , which satisfies constraint

1Z . For this example, we have, max max
21 1ijτ τ= = , and 1 eλ = ,

the delay of the path 1α from transition 1u to a transition 1t .

The initial marking of the place 21p is 21ijm m e= = , and the

initial marking of the path 1α is 1

1 11( ) ( )e
ju uA A eλ = = . We

choose,
max

1 21 1 1: 2φ τ λ= + + = .
We take account of (4) with 2t = , the state equation this
example is equivalent to the following expression

3 4 4 5
1 2 2 3

1 1 2
( ) ( 2 )

1

2 3
1

( )

e
x t x t

e

e

e

e
e e

e
u t

e e
e e
e e

e e e e e
e e e e
e e e e e

e
e
e e e
e e e e
e e e e
e e e e

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜= −⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎜ ⎟
⎛ ⎞ ⎛ ⎞⎟⎜ ⎜⎟⎜ ⎜⎟⎜ ⎜⎟⎜ ⎜⎟⎜ ⎜⎟⎜ ⎜⎟⎟⎜ ⎜⎟⎜ ⎜⎟⎜ ⎜⊕ ⊕⎟⎜ ⎜⎟⎜ ⎜⎟⎜ ⎜⎟⎜ ⎜⎟⎜ ⎜⎟⎟⎜ ⎜⎟⎜ ⎜⎟⎜ ⎜⎟⎜ ⎜⎟⎜ ⎜⎟⎝ ⎠ ⎝ ⎠⎜ ⎜⎟⎜ ⎜⎟

( 1 )u t

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟ −⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

Fig. 2. Extended timed event graph

According to Corollary 1, conditions (v) and (vi) of Theorem

t t

0

1 t
1 10

0

t
1 1

t t

0

0

u

u

0
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3 are checked. Thus, the equation which guarantees the
respect of constraint 1Z  is,

6
2

1 21

1 2 5 6

( ) ( ) ( 1)

1 ( 1) 2 ( 1) 2 ( 1) 3 ( 1)
r rr

u t A x t

x t x t x t x t
=

=⊕ −

= − ⊕ − ⊕ − ⊕ −
Secondly, in a similar way, we calculate a control which

satisfies constraint 2Z . In this case, we have, max max
32 1ijτ τ= = ,

and 2 eλ = , which is the delay of path 2α from transition 2u

to 2t . The initial marking of place 32p is 32ijm m e= = , and

the initial marking of path 2α is 2

2 22( ) ( )e
ju uA A eλ = = . We

choose, max
2 32 2 1: 2φ τ λ= + + = . According to Corollary 1, the

equation,
6

2
2 31

1 2 5 6

( ) ( ) ( 1)

( 1) 1 ( 1) 1 ( 1) 2 ( 1),
r rr

u t A x t

x t x t x t x t
=

= ⊕ −

= − ⊕ − ⊕ − ⊕ −

is a component of a vector, ( )u t , that assures the respect of
constraint 2Z .

After the corollary 2, the control law which guarantees the
respect of both temporal constraints, 1Z and 2Z , is given by:

1 2 5 6

1 2 5 6

( 1) 1 ( 1) 1 ( 1) 2 ( 1)
( )

( 1) 1 ( 1) 1 ( 1) 2 ( 1)
x t x t x t x t

u t
x t x t x t x t

− ⊕ − ⊕ − ⊕ −⎛ ⎞
=⎜ ⎟− ⊕ − ⊕ − ⊕ −⎝ ⎠

.

VI. CONCLUSIONS

We have recalled two conditions which are sufficient for
the existence of a causal control ensuring the satisfaction of a 
given temporal constraint in a controlled timed event graph.
We have also applied this approach to the case of a timed
event graph subject to multiple constraints. A generalization
of this approach for timed event graphs with multivariable
control has been proposed in this paper. This method is

illustrated on an example. We trust that it could be valuable
as well in different contexts, notably for the verification and
validation of automated systems as well as
telecommunication processes and real-time software.
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