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Supervision of an industrial plant subject to a maximal duration

constraint

Abdourrahmane M. ATTO Claude MARTINEZ Saı̈d AMARI

Abstract—This paper presents a method for the supervision

of an industrial plant. This supervision is aimed at guaranteeing
the respect of a maximal duration constraint for some specific
processing, and is addressed by considering a discrete event
system model for this industrial plant. In this associated model,
the time constraint is reduced to elementary constraints whose
contributions are taken into account in the state equation of
the system, yielding a constrained state equation for the plant.
Supervisors are then synthesized by looking for solutions of this
constrained state equation.

Keywords: Discrete event systems, (max,+) algebra,

time constraints, supervisor, control.

I. INTRODUCTION

This work concerns the supervision of a manufacturing

unit that produces rubber hoses for the automotive industry.

The development of this industry requires optimization of its

productivity, while respecting a strict temporal constraint for

specific processing. The sizing of this industrial plant has

been solved and validated via computational simulations in

[1], and the resource optimization for the manufacturing unit

has been treated in [2]. The problem addressed in this paper

concerns the supervision of the plant in order to guarantee the

respect of a strict temporal constraint for the thermal treat-

ments involved. The supervision is aimed at guaranteeing that

this time constraint is met without impacting significantly

the production rate of the manufacturing unit. It is shown

that this supervision can be performed thanks to analytical

techniques.

The industrial plant studied can be modelled as a Discrete

Event System (DES). Several approaches have been proposed

for the analysis of DES these last few decades [3]. A DES

can be modelled with a Timed Event Graph (TEG) [4],

[5] when it represents phenomena requiring synchronisations

and excluding competition as well as conflict. The analysis

of such a system can then be described with linear equations

in (max,+)-algebra [4], [6]. The industrial plant under

consideration satisfies these assumptions. Thus, in order to

guarantee the time constraint imposed, we propose solutions

based on the constrained (max,+) state equation of the TEG

model of the plant.

Performance evaluation is of great interest in the literature

on the (max,+)-algebra topic [4], [6], [7]. In this appli-

cation, the performance of a supervisor will be measured

according to the maximum production throughput of the

supervised plant. According to this particular performance
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measure, we can classify supervisors between those which

slow down the production throughput and those which pre-

serve this production rate. The cycle time of such a plant

modelled as a TEG corresponds to the eigenvalue of the

matrix associated with its graph [6], [8], [9], the production

throughput is the inverse of the cycle time. Similar problems

of meeting time constraints have been recently addressed

with different approaches[10], [11], [12], [13].

This work is organised as follows. Section II briefly recalls

the fundamentals of (max,+) algebra, section III presents

a TEG model for the plant and gives its corresponding

linear (max,+) model. Section IV addresses the supervision

problem and provides a simple way for synthesizing super-

visors for time constrained systems. This section provides 3

supervisors for the manufacturing plant and classifies them

by showing that some preserve the production throughput

of the plant, in comparison to that of the non-supervised

plant. Finally, section V gives a conclusion and addresses

perspectives to extend this work.

II. (max,+) ALGEBRA

This section briefly recalls the fundamentals of (max,+)
algebra, which is largely used for the analysis of DES.

Further details on this theory may be found in [4], [6], [14],

[15]. In what follows, D denotes a set.

Definition 1 (Monoid): A monoid is an algebraic set with

an associative internal operation and an identity element.

Definition 2 (Semiring): (D,⊕,⊗) is a semiring if:

• (D,⊕) is a commutative monoid. Its identity element

is denoted by � (null element).

• (D,⊗) is a monoid. Its identity element is denoted by

e (unit element).

• Multiplication ⊗ distributes over addition and every x ∈
D is such that x⊗ � = �⊗ x = �.

Definition 3 (Dioid): A dioid (D,⊕,⊗) is an idempotent

semiring (every x ∈ D is such that x ⊕ x = x).
Hereafter, the product a⊗ b will be denoted a.b or ab when

there is no possible confusion.

Example 1: Examples of dioids:

• Let R be the set of real numbers. (R∪{−∞},max,+)
is a commutative dioid for which � = −∞ and e = 0.
This dioid is denoted by Rmax and is called (max,+)
algebra.

• Let (D,⊕,⊗) be a dioid and Dn×n the set of square

matrices of order n over D. (Dn×n,⊕,⊗) is a dioid

called a matrix dioid. The sum and the matrix product

are defined as follows: if A = (Aij), B = (Bij), then
(A⊕B)ij = Aij ⊕Bij and (A⊗B)ij =

�n

k=1
Aik ⊗
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Bkj . The null element of the matrix dioid is the matrix

composed of �. The unit matrix is the matrix with e on

the main diagonal and � elsewhere.

III. TEG REPRESENTATION AND LINEAR (max,+)

MODEL FOR A MANUFACTURING UNIT

A Petri net consists of places, directed arcs, and transi-

tions. Directed arcs connect places and transitions (there is

no direct connection between two places or between two

transitions). TEGs are a subclass of Petri Nets in which

every place is connected to only one input and one output

transitions. According to the nature of the problem tackled

in this paper, we focus on the particular case where crossing

transitions is instantaneous. In such cases, temporisations are

set only over places [5]. The temporisation associated with

each place corresponds to the minimum duration of a specific

process running in this place and marked by a token. Each

transition xj is associated with a function that gives the firing

time for the kth occurrence xj(k).
A nice example of TEG is that of the manufacturing unit of

the industrial plant under consideration. This unit specialises

in manufacturing rubber tubes for automotive equipment and

is represented in figure 1. This figure represents three con-

1

2

3

A

IO

E

Fig. 1. Manufacturing unit.

veyor belts connected in loops. Loops 1 and 2 are identical.

Each one is composed of a loading station (A, on loop 2)

where parts subject to heat treatment are fixed on specific

pallets, a unloading station (E) where parts are dismounted,

and a furnace (IO cells). The furnace itself consists of two

parts, a heating zone and a cooling zone. The parts are

subjected to high temperatures during the time they spent

in the first half of the furnace. Then, they are cooled in the

second half. After cooling of parts, pallets are brought to the

unloading station where an operator removes the parts from

the pallets and dispatches them in batches towards another

unit of the production workshop. The transport device is

not always available for the evacuation of treated parts and

this could cause an accumulation of pallets at the unloading

station. In such cases, saturation may occur at the entry of the

unloading station, causing the system to block. The pallets

present in the furnace then exceed their processing time and

the embarked products are burned and lost. Thus, for this

application, the time spent in the heating zone is critical: the

maximal heating time should not be exceeded even when

non-evacuation of treated products occurs at the unloading

station.

Loops 1 and 2 being identical, we can restrict our attention

in one loop (2 in the sequel). We adopt an analytical approach

to solve the supervision problem for this application. This

manufacturing unit reveals synchronisations between loops.

Indeed, loading pallet is possible only if an empty pallet and

parts to supply it are present at the loading station A. In the

same way, availability of the transport device is necessary at

the unloading station to take away the treated parts (station

E) and make available an empty pallet for forthcoming use.

This type of industrial plant requiring synchronisations can

be modelled as a TEG. The TEG model of this application

is that of figure 2. In this graph, transitions are associated

y
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Fig. 2. TEG model for loop 2 of the industrial plant.

with the following events:

• u: arrival of the parts;

• x1: beginning of the loading operation;

• x2: starting transport to the furnace;

• x3: entry to the heating zone of the furnace;

• x4: entry to the cooling zone of the furnace;

• x5: starting transport to the evacuation zone;

• x6: beginning of the unloading operation;

• x7: part evacuation;

• q: transport device (may be present or absent).

• y: departure of the parts.

The input transition u models the arrival of parts to be

treated and the transition q models the transport device for

evacuating finished parts. When the transport device fails,

saturation can occur because of non-evacuation of treated

products. The output transition y corresponds to actually

treated and evacuated parts. Crossing transition xi corre-

sponds to the occurrence of an event, for example, crossing

x1 corresponds to the beginning of the loading operation on

a pallet, x2 to the end of this operation and the beginning

of transport to the furnace. Operation durations are indicated

close to places; for example, the transfer of a pallet from the

loading station to the entry of the furnace (station I) is about

3 time units.

Tokens (in places) model the resources of the manufac-

turing unit: pallets, operators, capacity of conveyors, etc.

For instance, the transfer time from unloading station E
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to loading station A is four time units. In addition, there

are actually seven free pallets and there remain two places

available on the conveyor (in the graph of figure 2).

The state vector, x, of this TEG is composed of transitions

x1, x2, · · · , x7; and the input vector, v, is composed of

transitions u and q. The state and output equations that

describe the dynamic behaviour of the TEG of figure 2 are

given in (max,+)-algebra by

x1(k + 1)= x2(k) ⊕4x7(k − 6) ⊕u(k + 1),
x2(k + 1)=1 x1(k + 1)⊕ x3(k − 1),
x3(k + 1)=3 x2(k + 1)⊕ x4(k − 1),
x4(k + 1)=10x3(k + 1)⊕ x5(k − 1),
x5(k + 1)=10x4(k + 1)⊕ x6(k − 2),
x6(k + 1)=3 x5(k + 1)⊕ x7(k),
x7(k + 1)=2 x6(k + 1)⊕ x1(k − 1) ⊕q(k + 1),
y(k) = x7(k).

(1)

In these equations, ⊕ denotes the max operator and the

multiplication corresponds to the natural element addition

in the set of real numbers (see [4], [6] for further details

about (max,+)-algebra). These equations yield a matrix

representation where state x(k) at time k depends on states

x(k), x(k−1), x(k−2), x(k−3), x(k−7) and on input v(k).
However, there exists a simplified representation of the TEG

state of the form: x(k+1) = A0x(k+1)⊕Ax(k)⊕Bv(k+1).
Indeed, a place with m tokens and temporisation α is

equivalent to m places, each of them having only one token

and temporisation αi, with
�

αi = α. According to this

decomposition, the TEG model of the manufacturing unit is

that of figure 3 (reduction from depth 7 to depth 1).
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Fig. 3. Simplified model for loop 2 of the manufacturing unit.

The dynamic behaviour of the simplified TEG obtained

(figure 3) is described by a system of the form:
�

x(k + 1) = H0x(k + 1)⊕ H1x(k)⊕ K0v(k + 1),
y(k) = Sx(k),

(2)

where matrices K0, H0, H1 and S are omitted here because

of their large size and the limited length of the present paper.

After reduction (using the Kleene star operator, see [6], [4]),

system Eq. (2) is equivalent to:
�

x(k + 1) = Hx(k)⊕ Kv(k + 1),
y(k) = Sx(k),

(3)

where H and K are given below. In these matrices, e =
0 denotes the unit element; and the null element, −∞, is
replaced by a dot.

H =

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

. e . . . . . . . . . . . . . . . . e

. 1 . . . . . e . . . . . . . . . . 1

. 4 . . . . . 3 e . . . . . . . . . 4

. 14 . . . . . 13 10 e . . . . . . . . 14

. 24 . . . . . 23 20 10 e . . . . . . . 24

. 27 . . . . e 26 23 13 3 . . . . . . . 27

. 29 . . . . 2 28 25 15 5 . e . . . . . 29

. . e . . . . . . . . . . . . . . . .

. . . e . . . . . . . . . . . . . . .

. . . . e . . . . . . . . . . . . . .

. . . . . . . . . . . e . . . . . . .

. . . . . e . . . . . . . . . . . . .
e . . . . . . . . . . . . . . . . . .
. . . . . . 4 . . . . . . . . . . . .
. . . . . . . . . . . . . e . . . . .
. . . . . . . . . . . . . . e . . . .
. . . . . . . . . . . . . . . e . . .
. . . . . . . . . . . . . . . . e . .
. . . . . . . . . . . . . . . . . e .

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

,

and

K =

„
e 1 4 14 24 27 29 . . . . . . . . . . . .
. . . . . . e . . . . . . . . . . . .

«
t

,

where t denotes matrix transposition.

IV. SUPERVISION OF THE INDUSTRIAL PLANT

A. Maximal duration constraints

The minimum duration of tokens in places is expressed

by temporisations of these places. On the other hand, if we

wish to express a maximum duration in a place, we must then

add an additional constraint. Consider the TEG represented

in figure 4.

s

xj xi xg

τ(� τmax)

β

r

Fig. 4. Temporal constraint

Let pij be the place linking transition tj to transition ti,
and pig the place linking transition tg to transition ti. The
marking (number of tokens) of place pij is r. If we want to

enforce a maximum time duration τmax to tokens in place

pij , then the following inequality must be satisfied:

xi(k) � τmaxxj(k − r). (4)

In addition, according to the graph of figure 4, transition

ti firing is governed by:

xi(k) = τxj(k − r)⊕ βxg(k − s), (5)
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where s is the number of tokens in place pig , τ � τmax is

the temporisation of place pij , and β is the temporisation of

place pig .
From Eqs. (4) and (5) we derive the (necessary and

sufficient) condition under which a token will not exceed

the duration constraint τmax in place pij :

βxg(k − s) � τmaxxj(k − r). (6)

Note that for TEGs, a place with m > 1 tokens can be

decomposed in m places with one token. For this reason, we

focus on the special case where s − r = 1. The maximum

duration constraint Eq. (4) is then expressed in the following

form:

βxg(k − 1) � τmaxxj(k). (7)

The next example shows how to express the maximum

duration constraint in the form of Eq. (7).

Example 2: Consider the TEG given in figure 5.

Durations τmax

1
and τmax

2
are the normal durations of tokens

3

1

2

θ1

θ2θ3

θ4

τmax

1

τmax

2

Fig. 5. TEG with two duration constraints.

in corresponding places and these durations should not be

exceeded. The constraints are:

(a) θ1(k) � τmax

1 θ4(k),
and

(b) θ2(k) � τmax
2 θ1(k).

These constraints are respected if:

(a) true if 3θ2(k − 1) � τmax

1
θ4(k),

(b) true if θ3(k − 1) � τmax
2 θ1(k),

that is, if
„

� � e �
� 3 � �

«

θ(k) �

„
τmax

2 � � �
� � � τmax

1

«

θ(k + 1),

with θ = (θ1 θ2 θ3 θ4)
t
.

Consider a TEG governed by a state equation of the form

(general state representation)
�

x(k + 1) = Ax(k)⊕ Bv(k + 1),
y(k) = Cx(k).

(8)

Assume that we want to impose on this TEG, a set of time

constraints of the form

Ex(k) � Fx(k + 1). (9)

where E and F are � × n matrices, � being the number of

constraints and n the length of the state vector x.

Supervisors guaranteeing that the constraints Eq. (9) are

met can be calculated by applying a state modification

(constrained state equation) given by

x(k + 1) = (A ⊕ M)x(k)⊕ Bv(k + 1), (10)

where M (supervision matrix) is a matrix satisfying

E � FM. (11)

B. Constraint expression for the industrial plant

The supervision is aimed at preventing parts being lost

because of possible failure in the transport device. The

(max,+)-equation that governs the time spent by a part in

the heating zone of the furnace is derived from the dynamic

behaviour of the simplified TEG of figure 3 and is:

x4(k + 1) = 10x3(k + 1)⊕ x10(k). (12)

To avoid losing parts, a product should not exceed 10 time

units in the heating zone of the furnace (place that links

transition x3 to transition x4 in figures 2 and 3). Thus, the

constraint will be respected by forcing

x4(k + 1) = 10x3(k + 1), (13)

Taking Eq. (12) into account, condition Eq. (13) will be

satisfied iff:

x10(k) � 10x3(k + 1). (14)

Denoting

Q1 =
`

. . . . . . . . . e . . . . . . . . .
´
,

Q2 =
`

. . 10 . . . . . . . . . . . . . . . .
´
,

the constraint condition Eq. (14) is thus of the form Eq. (9):

Q1x(k) � Q2x(k + 1).

C. Supervision of the manufacturing unit

The dynamic behaviour of the manufacturing unit is de-

scribed with the (max,+) system Eq. (3). The maximum

duration constraint imposes Q1x(k) � Q2x(k + 1). A

supervisor guaranteeing respect of the duration constraint

can be calculated by searching for a matrix M0 (supervision

matrix) satisfying

Q1 � Q2M0. (15)

The only non null element of Q1 being (Q1)1,10 = e, it is
sufficient to consider the solutions of:

e �

19�

j=1

(Q2)1,j(M0)j,10, (16)

that is,

e � 10(M0)3,10. (17)

The smallest positive (least restrictive) solution of the latter

equation is (M0)3,10 = e. The supervision obtained from

this solution involves adding to the graph of figure 3, a

place having a single token (with no temporisation because

(M0)3,10 = e ≡ 0) from transition x10 to transition x3.

Let mx3 be the state of transition x3 after supervision.

Firing of transition mx3 is then subject to

mx3(k + 1) = x3(k + 1)⊕ x10(k). (18)
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Transition x10 being an auxiliary variable derived from

the expansion of the original model of the manufacturing unit

(represented by the graph of figure 2), we do not have access

to this transition in practice: it is neither controllable, nor

observable [16]. But from Eq. (3) we derive that x10(k) =
x5(k − 1), and equation Eq. (18) becomes

mx3(k + 1) = x3(k + 1)⊕ x5(k − 1). (19)

The resulting graph modification involves adding a single

place with two tokens from transition x5 to transition x3.

State modification driven by Eq. (19) leads to the supervisor

represented in figure 6. This supervision involves imposing

only two tokens in the circuit x3 → x5 → x3 which

corresponds to the IO cells of the plant (figure 1), that is,

the whole furnace (heating and cooling zone). It is easy to

check that if we do this, no product will remain more than 10
time units in the heating zone of the furnace because there

will be a free place in the cooling zone. This supervision

guarantees that parts (a maximum of two parts) entering the

furnace cannot be lost even when saturation occurs at the

evacuation station.

x5

x2

x7

x3

x4

x6

x1
q

u
y

4

1

3

10
10

3

2

Fig. 6. First supervision.

In a similar way, we can obtain other supervisors from Eq.

(19) and by taking into account other equations of Eq. (1) (for

commandability reasons). Indeed, from the fifth equation of

Eq. (1), we have x5(k−1) = 10x4(k−1)⊕x6(k−4). In this

equation, 10x4(k − 1) represents the normal incrementation

of the process due to the dynamic behaviour of the TEG, and

x6(k − 4) represents availability of a resource (conveying

to the unloading station). Non-evacuation of a part treated

affects the availability of the resource: there is no more place

at the unloading station to receive new parts and treated parts

accumulate in the conveyor. It follows that x5(k − 1) =
x6(k − 4). From this latter equation and Eq. (19), we thus

obtain the state modification:

mx3(k + 1) = x3(k + 1)⊕ x6(k − 4). (20)

This new supervision involves adding a single place with five

tokens from transition x6 to transition x3. This leads to the

supervision presented in figure 7. The supervisor imposes a

maximum of five tokens in circuit x3 → x6 → x3. Thus,

imposing five tokens in this circuit makes it possible to

guarantee that no parts will remain more than 10 time units

in the heating zone: five places are available in the circuit

x4 → x6 → x4.

x5

x2

x7

x3

x4

x6

x1
q

u
y

4

1

3

10
10

3

2

Fig. 7. Second supervision.

Finally, and in a similar way, a third supervisor is cal-

culated from Eq. (20) and the sixth equation of Eq. (1).

Indeed, we have x6(k − 4) = 3x5(k − 4) ⊕ x7(k − 5),
where 3x5(k − 4) represents the normal incrementation of

a process due to the dynamic behaviour of the TEG and

x7(k−5) represents availability of a resource (unloading op-

erator). Non-evacuation of treated parts only affects resource

availability and it follows that x6(k − 4) = x7(k − 5). We

thus obtain from this equation and Eq. (20) the corresponding

state modification:

mx3(k + 1) = x3(k + 1)⊕ x7(k − 5). (21)

By proceeding in this way, the supervision involves imposing

six tokens in circuit x3 → x7 → x3. The supervision

obtained is given in figure 8.

x5

x2

x7

x3

x4

x6

x1
q

u
y

4

1

3

10
10

3

2

Fig. 8. Third supervision.

D. Classification of supervisors

This section discusses the classification of supervisors

synthesised in section IV-C. Classification is addressed by

comparing the production throughput yielded by systems
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“TEG+supervisor”, in comparison to the production through-

put of the non-supervised manufacturing unit. For this pur-

pose, we compute cycle times associated with the TEGs of

figures 2, 6, 7 and 8. Recall that the cycle time is the inverse

of the production throughput.

Let λ be the cycle time of the non-supervised manufactur-

ing unit (figure 2). The following procedure (see [8] or [17])

makes it easy to determine λ: for every circuit i (sequence

of vertices and arcs which allows a direct connection from i
to i) of the graph, determine the ratio

λi =
Sum of cycle temporisations

Number of tokens in the cycle
. (22)

Then, λ is the maximum of λi.

From the above procedure, the cycle time of the non-

supervised unit is:

λ = max{
33

7
,
1

1
,
3

2
,
10

2
,
10

2
,
3

3
,
2

1
,
0

13
} = 5, (23)

and the cycle times are λ� max{λ, 20/2} = 10, λ�� =
max{λ, 23/5} = 5 and λ��� = max{λ, 25/6} = 5 of the

unit supervised according to figures 6, 7 and 8 respectively.

The cycle time λ� of the supervised TEG of figure 6 is

greater than λ. Thus, the supervision represented in figure 6

affects the production throughput of the industrial plant. In

contrast, λ�� = λ��� = λ: supervisors represented in figures

7 and 8 preserve the initial production throughput of the

industrial plant. Comparing the TEGs in figures 7 and 8, the

cycle time yielded by adding the supervisor’s place, are 23/5
and 25/6, but both supervisors lead to the same resulting

throughput for the plant and they are therefore equivalent

according to production throughput criteria.

In order to illustrate the plant functioning with and without

supervision, assume that the unloading operator may not be

present before 100 time units have passed. Figure 9 shows the

firing of transitions u, x3, x4, and y for the non-supervised

plant and mx3 replaces x3 for the supervised plant, with

the third supervisor (figure 8). We observe that the delay

between firing x3(7) and x4(7) is 86 for the non-supervised

plant: products are lost, while supervision ensures that the

time constraint is met, which is 10 time units in the place

that links transitions mx3(k) to x4(k).

V. CONCLUSION

This paper presents a method for the supervision of a

manufacturing plant subject to strict time constraints. The

method proposed involves injecting the constraint in the

state equation of the TEG model associated with the plant

and solving the constrained state equation just obtained.

This analysis makes it possible to synthesise supervisors

aimed at guaranteeing maximum duration constraints. In

order to classify supervisors, the use of performance criterion

such as the cycle time could be considered. The approach

used in this work for a specific TEG can be extended by

considering general states and time constraint expressions.

This generalisation will be addressed in future work.

Fig. 9. Behaviour of the plant in both unsupervised and supervised cases.
Note that the duration between firings of x3(7) and x4(7) exceeds the
time constraints (10 time units) in the case of the non-supervised plant.
This problem no longer exists for the supervised plant (mx3(7))
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