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FAST TRANSPORT OPTIMIZATION ON THE CIRCLE

JULIE DELON, JULIEN SALOMON, AND ANDREĬ SOBOLEVSKĬI

Abstract. Consider the problem of optimally matching two measures on
the circle, or equivalently two periodic measures on R, and suppose the cost
c(x, y) of matching two points x, y satisfies the Monge condition: c(x1, y1) +
c(x2, y2) < c(x1, y2) + c(x2, y1) whenever x1 < x2 and y1 < y2. We intro-
duce a notion of locally optimal transport plan, motivated by the weak KAM
(Aubry–Mather) theory, and show that all locally optimal transport plans are
conjugate to shifts.

This theory is applied to a transportation problem arising in image pro-
cessing: for two sets of point masses, both of which have the same total mass,
find an optimal transport plan with respect to a given cost function c that
satisfies the Monge condition. For the case of N real-valued point masses we
present an O(N log ǫ) algorithm that approximates the optimal cost within ǫ;
when all masses are integer multiples of 1/M , the algorithm gives an exact
solution in O(N log M) operations.

1. Introduction

This work is motivated by a transport optimization problem arising in image
processing [13]. A grayscale photograph may be characterized locally by the distri-
bution of directions of brightness gradient. If two angular distributions of gradient
for two different photographs match particularly well, this may indicate that the
photographs feature the same object, even if it is slightly distorted or appears under
different light conditions.

An effective measure of the quality of matching is provided by an optimal value of
the transport cost. For two probability measures µ̂0, µ̂1 on the unit circle T = R/Z

and a given cost ĉ(x̂, ŷ) of transporting a unit mass from x̂ to ŷ in T, it is defined
as the inf of the quantity

(1) Î(γ) =

∫∫

T×T

ĉ(x̂, ŷ) γ(dx̂ × dŷ).

over the set of all couplings γ of the probability measures µ̂0, µ̂1 (i.e., all measures
on T×T with marginals µ̂0, µ̂1). These couplings are usually called transport plans.

Transport optimization on the circle appears in a number of applications and
has long been studied from theoretic as well as algorithmic points of view (see, e.g.,
[10, 16, 1, 6]). In this paper we propose an efficient algorithm for minimizing (1)
when the marginal measures are discrete, which is based on an analogy with the
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weak KAM (Aubry–Mather) theory. The rest of this introduction contains an
informal overview of our results; their relations to previous work are discussed in
more detail in Section 5.

Suppose that the cost function ĉ(·, ·) on T × T is determined via the relation
ĉ(x̂, ŷ) = inf c(x, y) by a function c(·, ·) on R × R satisfying the condition c(x +
1, y + 1) = c(x, y) for all x, y; here inf is taken over all x, y whose projections to
the unit circle coincide with x̂, ŷ. We lift the measures µ̂0 and µ̂1 to R, obtaining
periodic locally finite measures µ0, µ1, and redefine γ to be their coupling on R×R.
It is then convenient to replace the problem of minimizing the integral (1) with
“minimization” of an integral

(2) I(γ) =

∫∫

R×R

c(x, y) γ(dx × dy).

Although the latter integral is infinite, it still makes sense to look for transport
plans γ minimizing I with respect to local modifications, i.e., to require that for
any compactly supported signed measure δ of zero mass and finite total variation,
the difference I(γ + δ)− I(γ), which is defined by a finite integral, be nonnegative.
These locally optimal transport plans are the main object of this paper.

Assume that the cost function c(x, y) satisfies the Monge condition:

(3) c(x1, y1) + c(x2, y2) < c(x1, y2) + c(x2, y1)

for all x1 < x2 and y1 < y2. An example of such a cost function is |x − y|λ,

where λ > 1; in this case the quantity MKλ(µ̂0, µ̂1) = (infγ Î(γ))1/λ turns out
to be a metric on the set of measures on the circle, referred to as the Monge–
Kantorovich distance of order λ. The particular case λ = 1 is sometimes called
the Kantorovich–Rubinshtein metric or, in image processing literature, the Earth
Mover’s distance [14].

The Monge condition (3) implies that whenever a transport plan reverses the
mutual order of any two elements of mass, the transport cost can be strictly reduced
by exchanging their destinations. It follows that a locally minimal transport plan
must move elements of mass monotonically, preserving their spatial order.

The whole set of locally optimal transport plans for a given pair of marginals
µ0, µ1 can be conveniently described using the following construction (fig. 1). Let
F0, F1 be cumulative distribution functions of the measures µ0, µ1 normalized so
that F0(0) = F1(0) = 0. We shall regard graphs of F0, F1 as continuous curves
including, where necessary, the vertical segments corresponding to jumps of these
functions (or, equivalently, to atoms of µ0, µ1). Each of these curves specifies a
correspondence, F−1

0 or F−1
1 , between points of the vertical axis Ov, represent-

ing elements of mass, and points of the horizontal axis Ou, representing spatial
locations, and induces the relative measure (µ0 or µ1) on the Ou axis. This corre-
spondence is monotone and defined everywhere except on an (at most countable)
set of v values that correspond to vacua of the measure in the Ou axis.

Define now F θ
1 (u) = F1(u) − θ. Then (F θ

1 )−1 represents a shift of the Ov axis
by θ followed by an application of the correspondence F−1

1 , and still induces on the
Ou axis the same measure µ1 as F1. A transport plan γθ that takes an element of
mass represented by v from F−1

0 (v) to (F θ
1 )−1(v) is, by construction, a monotone

coupling of µ0 and µ1, and thus a locally optimal transport plan. Moreover, it is
shown in Section 3 that all locally optimal transport plans can be obtained using
this construction for different values of the parameter θ.
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Figure 1. Construction of the locally optimal transport plan γθ.

Finally define the average cost C[F0,F1](θ) of the plan γθ per unit period:

C[F0,F1](θ) =

∫ 1

0

c(F−1
0 (v), (F θ

1 )−1(v)) dv.

It is shown in Section 4 that the Monge condition implies convexity of C[F0,F1](θ)
and that its global minimum in θ coincides with the minimum value of the transport
cost on the unit circle (1).

When the marginals µ0, µ1 are purely atomic with finite numbers n0 and n1

of atoms in each period, the function C becomes piecewise affine. In Section 4
we present an algorithm to approximate its minimum value to accuracy ǫ, using
a binary search that takes O((n0 + n1) log(1/ǫ)) operations in the real number
computing model. When masses of all atoms are rational numbers with the least
common denominator M , this approximate solution turns out to be exact provided
that ǫ < 1/M . This gives an O((n0 + n1) log M) exact transport optimization
algorithm on the circle.

2. Preliminaries

Let T = R/Z be the unit circle, i.e., the segment [0, 1] with identified endpoints.
By π : R → T denote the projection that takes points of the universal cover R to
points of T.

2.1. The cost function. A cost function is a real-valued function c(·, ·) defined
on the universal cover R of the circle T. We assume that it satisfies the Monge
condition: for any x1 < x2 and y1 < y2,

(4) c(x1, y1) + c(x2, y2) − c(x1, y2) − c(x2, y1) < 0.

Additionally c is assumed to be lower semicontinuous, to be invariant with respect
to integer shifts, i.e.,

(5) c(x + 1, y + 1) = c(x, y)
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for all x, y, and to grow uniformly as |x − y| → ∞: for any P there exists a
finite R(P ) ≥ 0 such that

(6) c(x, y) ≥ P whenever |x − y| ≥ R(P ).

Note that the latter condition implies that the lower semicontinuous function c is
bounded from below (and guarantees that the minima in a number of formulas
below are attained).

Note that the Monge condition (4) holds for any twice continuously differentiable
function c such that ∂2c(x, y)/∂x ∂y < 0. If the cost function depends only on
x−y, this reduces to a convexity condition: −∂2c(x−y)/∂x ∂y = c′′(x−y) > 0. In
particular, all the above conditions are satisfied for the function c(x, y) = |x − y|λ,
which appears in the definition of the Monge–Kantorovich distance (1), and, more
generally, for any function of the form c(x − y) + f(x) + g(y) with convex c and
periodic f and g.

For a cost function c satisfying all the above conditions, the cost of transporting
a unit mass from x̂ to ŷ on the circle is defined as ĉ(x̂, ŷ) = inf c(x, y), where x̂, ŷ
are points of T and inf is taken over all x, y in R such that πx = x̂ and πy = ŷ.
Using the integer shift invariance, this definition can be written on the universal
cover as ĉ(x, y) = infk∈Z c(x, y + k).

Condition (4) is all that is needed in Section 3, which is concerned with gen-
eral locally optimal transport plans on R. Conditions (5), (6) come into play in
Section 4, which deals with transport optimization on the circle.

2.2. Distribution functions. For a given locally finite measure µ on R define its
distribution function Fµ by

(7) Fµ(0) = 0, Fµ(x) = µ((0, x]) for x > 0, Fµ(x) = −µ((x, 0]) for x < 0.

Then µ((x1, x2]) = Fµ(x2)−Fµ(x1) whenever x1 < x2, and this identity also holds
for any function that differs from Fµ by an additive constant (the normalization
Fµ(0) = 0 is arbitrary). When µ is periodic with unit mass in each period, the
equality

(8) Fµ(x + 1) = Fµ(x) + 1

holds for all x in R.
The inverse of a distribution function Fµ is defined by

(9) F−1
µ (y) = inf{x : y < Fµ(x)} = sup{x : y ≥ Fµ(x)}.

Definitions (7) and (9) mean that Fµ, F−1
µ are right-continuous. Discontinuities of

Fµ correspond to atoms of µ and discontinuities of its inverse, to “vacua” of µ, i.e.,
to intervals of zero µ measure.

For a distribution function Fµ define its complete graph to be the continuous
curve formed by the union of the graph of Fµ and the vertical segments correspond-
ing to jumps of Fµ. Accordingly, by a slight abuse of notation let Fµ({x}) denote the
set [Fµ(x−0), Fµ(x)] (warning: Fµ({x}) ⊇ {Fµ(x)}) and let Fµ(A) =

⋃

x∈A Fµ({x})
for any set A.

2.3. Local properties of transport plans. Let µ̂0, µ̂1 be two finite positive
measures of unit total mass on T and µ0, µ1 their liftings to the universal cover R,
i.e., periodic measures such that µi(A) = µ̂i(πA), i = 0, 1, for any Borel set A that
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fits inside one period. Periodicity of measures here means that µ(A + n) = µ(A)
for any integer n and any Borel A, where A + n = {x + n : x ∈ A}.

Definition 1. A (locally finite)1 transport plan with marginals µ0 and µ1 is a
locally finite measure γ on R × R such that

(i) for any x in R the supports of measures γ((−∞, x]×·) and γ(·× (−∞, x]) are
bounded from above and the supports of measures γ((x,∞)× ·), γ(· × (x,∞))
are bounded from below;

(ii) γ(A × R) = µ0(A) and γ(R × B) = µ1(B) for any Borel sets A, B.

The quantity γ(A×B) is the amount of mass transferred from A to B under the
transport plan γ. Condition (i) implies that the mass supported on any bounded
interval gets redistributed over a bounded set (indeed, a bounded interval is the
intersection of two half-lines), but is somewhat stronger.

Definition 2. A local modification of the locally finite transport plan γ is a trans-
port plan γ′ such that γ and γ′ have the same marginals and γ′ − γ is a compactly
supported finite signed measure. A local modification is called cost-reducing if

∫∫

c(x, y) (γ′(dx × dy) − γ(dx × dy)) < 0.

A locally finite transport plan γ is said to be locally optimal with respect to the cost
function c or c-locally optimal if it has no cost-reducing local modifications.

3. Conjugate transport plans and shifts

Let U0, U1 be two copies of R respectively equipped with positive periodic mea-
sures µ0, µ1 whose distribution functions F0, F1 satisfy (8), so that all intervals
of unit length have unit mass. Let furthermore V0, V1 be two other copies of R

equipped with the uniform (Lebesgue) measure.

3.1. Normal plans and conjugation. We introduce the following terminology:

Definition 3. A locally finite transport plan ν on V0 × V1 with uniform marginals
is called normal.

Definition 4. For a normal transport plan ν its conjugate transport plan ν[F0,F1]

is a transport plan on U0 × U1 such that for any Borel sets A, B

(10) ν[F0,F1](A × B) = ν(F0(A) × F1(B)).

Lemma 5. For a normal transport plan ν its conjugate ν[F0,F1] is a locally finite
transport plan on U0 × U1 with marginals µ0, µ1.

Proof. Since distribution functions F0, F1 and their inverses preserve boundedness,
condition (i) of Definition 1 is fulfilled. Definition 4, condition (ii) of Definition 1,
and formula (7) together imply that

ν[F0,F1]((u1, u2] × U1) = ν(F0((u1, u2]) × F1(U1)) = ν([F0(u1), F0(u2)] × V1)

= F0(u2) − F0(u1) = µ0((u1, u2]).

Similarly ν[F0,F1](U0 × (u1, u2]) = µ1((u1, u2]). Thus ν[F0,F1] satisfies condition (ii)
of Definition 1 on intervals and therefore on all Borel sets. �

1In what follows the words ‘locally finite’ defining a transport plan will often be dropped.
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Lemma 6. For any transport plan γ on U0 × U1 with marginals µ0 and µ1 there
exists a normal transport plan ν such that γ is conjugate to ν: γ = ν[F0,F1].

Proof. For non-atomic measures µ0 and µ1 the required transport plan is given by
the formula ν(A × B) = γ(F−1

0 (A) × F−1
1 (B)), which is dual to (10). However if,

e.g., µ0 has an atom, then the function F−1
0 is constant over a certain interval and

maps any subset A of this interval into one point of fixed positive measure in U0,
so information on the true Lebesgue measure of A is lost. In this case extra care
has to be taken.

Recall that a locally finite measure has at most a countable set of atoms. Let
atoms of µ0 be located in (0, 1] at points u1, u2, . . . with respective masses m1, m2,
. . . . Since γ({ui}×U1) = µ0({ui}) = mi > 0, there exists a conditional probability
measure ρ(· | ui) = γ({ui}×·)/mi. For a set A ⊂ (0, 1] define a “residue” transport
plan

γ̄(A × B) = γ(A × B) −
∑

i mi δui
(A) ρ(B | ui),

where δu is the Dirac unit mass measure on U0 concentrated at u, and extend γ̄ to
general A using periodicity. We thus remove from γ̄ the part of γ whose projection
to the first factor is atomic. Define a transport plan κ on V0 × U1 by

κ(C × B) =
∑

i λ(C ∩ F0({ui})) ρ(B | ui) + γ̄(F−1
0 (C) × B),

where C is a Borel set in V0 and λ(·) denotes the Lebesgue measure in V0. Clearly
κ(F0(A) × B) = γ(A × B). Repeating this construction for the second factor,
with κ in place of γ, we get a normal transport plan ν such that γ(A × B) =
ν(F0(A) × F1(B)). �

Since we are ultimately interested in transport optimization with marginals
µ0, µ1 rather than with uniform marginals, two normal transport plans ν1, ν2 will be
called equivalent if they have the same conjugate. Two different normal transport
plans can only be equivalent if one or both measures µ0 or µ1 have atoms, causing
loss of information on the structure of ν in segments corresponding to these atoms.
The proof of Lemma 6 gives a specific representative of this equivalence class of
normal plans.

3.2. Locally optimal normal transport plans are shifts. Fix a cost function
c : U0 × U1 → R that satisfies the Monge condition (4) and define

(11) c[F0,F1](v0, v1) = c
(

F−1
0 (v0), F

−1
1 (v1)

)

.

For non-atomic measures µ0, µ1, it satisfies the Monge condition

c[F0,F1](v
′, w′) + c[F0,F1](v

′′, w′′) − c[F0,F1](v
′, w′′) − c[F0,F1](v

′′, w′) < 0

whenever v′ < v′′ and w′ < w′′; this inequality can only turn into equality if
either v′, v′′ or w′, w′′ correspond to an atom of the respective marginal (µ0 or µ1)
of ν[F0,F1], i.e., if c[F0,F1] is constant in either first or second argument. In spite
of this slight violation of definition of Section 2.1, we will still call c[F0,F1] a cost
function.

Here and below, variables u, u′, u0, u1, . . . are assumed to take values in U0

or U1 and variables v, v′, v0, v1, . . . , w, w′, . . . , in V0 or V1.

Lemma 7. A transport plan γ on U0×U1 with marginals µ0, µ1 is c-locally optimal
if and only if it is conjugate to a c[F0,F1]-locally optimal normal transport plan ν. In
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particular, all normal transport plans with the same locally optimal conjugate are
locally optimal.

Proof. Note that ν′ − ν is compactly supported if and only if the difference of the
respective conjugates γ′ − γ is compactly supported. The rest of the proof follows
from the identity

∫∫

c[F0,F1](v1, v2)
(

ν′(dv1 × dv2) − ν(dv1 × dv2)
)

=

∫∫

c(u1, u2)
(

γ′(du1 × du2) − γ(du1 × du2)
)

established by the change of variables v1 = F0(u1), v2 = F1(u2) (here jumps of
the distribution functions are harmless because c[F0,F1] is constant over respective
ranges of its variables). �

Transport optimization with marginals µ0, µ1 is thus reduced to a conjugate
problem involving uniform marginals and the cost c[F0,F1]. It turns out that any
c[F0,F1]-optimal normal transport plan must be supported on a graph of a monotone
function, and due to uniformity of marginals this function can only be a shift by a
suitable real increment θ. More precisely, the following holds:

Theorem 8. Let µ0, µ1 be two periodic positive measures defined respectively
on U0, U1 with unit mass in each period and let Fi : Ui → Vi, i = 0, 1, be their distri-
bution functions. Then any c[F0,F1]-locally optimal normal transport plan on V0×V1

is equivalent to a normal transport plan νθ with supp νθ = {(v, w) : w = v + θ}, and
conversely νθ is c[F0,F1]-locally optimal for any real θ. All c-locally optimal transport

plans on U0 × U1 with marginals µ0, µ1 are of the form γθ = (νθ)
[F0,F1].

The proof, divided into a series of lemmas, is based on the classical argument: a
nonoptimal transport plan can be modified by “swapping” pieces of mass to render
its support monotone while decreasing its cost. This argument, carried out for
plans with uniform marginals on V0 × V1, is combined with the observation that
a monotonicaly supported plan with uniform marginals can only be a shift. Then
Lemma 7 is used to extend this result to transport plans on U0 × U1.

Throughout the proof fix a normal transport plan ν and define on V0 × V1 the
functions

(12) rν(v, w) = ν((−∞, v] × (w,∞)), lν(v, w) = ν((v,∞) × (−∞, w]).

To explain the notation rv, lv observe that, e.g., rν(v, w) is the amount of mass
that is located initially to the left of v and goes to the right of w.

Lemma 9. The function rν (resp. lν) is continuous and monotonically increasing
in its first (second) argument and is continuous and monotonically decreasing in its
second (first) argument, while the other argument is kept fixed.

Proof. Monotonicity is obvious from (12). To prove continuity observe that the
second marginal of ν is uniform, which together with positivity of all involved
measures implies that in the decomposition

ν(V0 × · ) = ν((−∞, v] × · ) + ν((v,∞) × · ),

both measures in the right-hand side cannot have atoms. This implies continuity
of rν , lν with respect to the second argument. A similar proof holds for the first
argument. �
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Lemma 10. For any v there exist wν(v) and mν(v) ≥ 0 such that

(13) rν(v, wν(v)) = lν(v, wν(v)) = mν(v).

The correspondence v 7→ wν(v) is monotone: wν(v1) ≤ wν(v2) for v1 < v2.

Proof. Clearly rν(v,−∞) = ∞, rν(v,∞) = 0, lν(v,−∞) = 0, lν(v,∞) = ∞. The
continuity of the functions rν(v, ·), lν(v, ·) in the second argument for a fixed v im-
plies that their graphs intersect at some point (wν(v), mν(v)), which satisfies (13).
Should the equality rν(v, w) = lν(v, w) hold on a segment [w′, w′′], we set wν(v)
to its left endpoint w′; this situation, however, will be ruled out by the corol-
lary to Lemma 12 below. Monotonicity of wν(v) follows from monotonicity of
rν(·, w), lν(·, w) in the first argument for a fixed w: indeed, for v2 > v1 the equal-
ity rν(v2, w) = lν(v2, w) is impossible for w < wν(v1) because for such w we have
rν(v2, w) > rν(v1, wν(v)) = lν(v1, wν(v)) > lν(v2, w). �

Equalities (13) mean that the same amount of mass mν(v) goes under the plan ν
from the left of v to the right of wν(v) and from the right of v to the left of wν(v).
We are now in position to use the Monge condition and show that this amount can
be reduced to zero by modifying the transport plan locally without a cost increase.

Lemma 11. For any v there exists a local modification νv of ν such that wνv
(v) =

wν(v) (with wν defined as in Lemma 10), mνv
(v) = 0, and νv is either cost-reducing

in the sense of Definition 2 or is equivalent to ν.

Proof. Let w = wν(v) and m = mν(v). If m = 0, there is nothing to prove. Suppose
that m > 0 and define

w− = sup{w′ : lν(v, w′) = 0}, w+ = inf{w′ : rν(v, w′) = 0},

v− = sup{v′ : rν(v′, w) = 0}, v+ = inf{v′ : lν(v′, w) = 0}.

By local finiteness of the transport plan ν all these quantities are finite. Since
m > 0, continuity of rν , lν implies that w− < w < w+ and v− < v < v+. Consider
the measures

ρ−(·) = ν( · × (w, w+)) on (v−, v), ρ+(·) = ν( · × (w−, w)) on (v, v+),

σ−(·) = ν((v, v+) × · ) on (w−, w), σ+(·) = ν((v−, v) × · ) on (w, w+).

Equalities (13) mean that all these measures have the same positive total mass m.
Note that the Lebesgue measures of intervals (v−, v), (v, v+), (w−, w), and (w, w+)
may be greater than m, because some mass in these intervals may come from or go
to elsewhere.

The functions rw(·) = rν(·, w), lv(·) = lν(v, ·) are monotonically increasing and
rv(·) = rν(v, ·), lw(·) = lν(·, w) are monotonically decreasing, with their inverses
r−1
w , l−1

v , r−1
v , l−1

w defined everywhere except on an at most countable set of points.
These functions may be regarded as a kind of distribution functions for the measures
ρ−, σ−, σ+, ρ+ respectively, mapping them to the Lebesgue measure on (0, m).

Under the plan ν, mass m is sent from (v−, v) to (w, w+) and from (v, v+) to
(w−, w). We now construct a local modification νv of the transport plan ν that
moves mass m from the interval (v−, v) to (w−, w) and from (v, v+) to (w, w+),
and show that it is cost-reducing unless measures µ0, µ1 have atoms corresponding
to the intervals under consideration.
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Observe first that the normal plan ν induces two transport plans τr , τl that map
measures ρ− to σ+ and ρ+ to σ− correspondingly:

τr(A × B) = ν(A ∩ (−∞, v) × B ∩ (w, +∞)) = ν(A ∩ (v−, v) × B ∩ (w, w+)),

τl(A × B) = ν(A ∩ (v, +∞) × B ∩ (−∞, w)) = ν(A ∩ (v, v+) × B ∩ (w−, w)),

where A ⊂ (v−, v+), B ⊂ (w−, w+) are two arbitrary Borel sets and the ∩ oper-
ation takes precedence over ×. By an argument similar to the proof of Lemma 6,
there exist two transport plans χr and χl mapping the Lebesgue measure on (0, m)
respectively to σ+, σ− and such that

τr(A × B) = χr

(

rw(A ∩ (v−, v)) × B ∩ (w, w+)
)

,

τl(A × B) = χl

(

lw(A ∩ (v, v+)) × B ∩ (w−, w)
)

.

Define now two transport plans τ̄l, τ̄r that send mass elements to the same desti-
nations but from interchanged origins:

τ̄r(A × B) = χr

(

lw(A ∩ (v, v+)) × B ∩ (w, w+)
)

,

τ̄l(A × B) = χl

(

rw(A ∩ (v−, v)) × B ∩ (w−, w)
)

.

This enables us to define

νv(A × B) = ν(A × B) − τr(A × B) − τl(A × B) + τ̄r(A × B) + τ̄l(A × B).

Since τr(A × R) = τ̄r(A × R) = ρ−(A) etc., the transport plan νv has the same
uniform marginals as ν, i.e., it is a local modification of ν. Observe furthermore
that by the construction of νv no mass is moved under this plan from the left-hand
side of v to the right-hand side of w and inversely, i.e., that mνv

(v) = 0.
It remains to show that νv is either a cost-reducing modification of ν or equivalent

to it. By the disintegration lemma (see, e.g., [2]) we can write χr(dα × dw′) =
dα dGr(w

′ | α) and χl(dα×dw′) = dα dGl(w
′ | α), where Gr( · | α) (resp. Gl( · | α))

are distribution functions of probability measures defined on [w, w+] (resp. [w−, w])
for almost all 0 < α < m. Denote their respective inverses by G−1

r (· | α), G−1
l (· | α)

and observe that w− ≤ G−1
l (β′ | α) ≤ w ≤ G−1

r (β′′ | α) ≤ w+ for any β′, β′′. Thus
∫∫

c(v′, w′) τr(dv′ × dw′) =

∫∫

c(r−1
w (α), w′) χr(dα × dw′)

=

∫ m

0

dα

∫

c(r−1
w (α), w′) dGr(w

′ | α)

=

∫ m

0

dα

∫ 1

0

dβ c(r−1
w (α), G−1

r (β | α)),

where we write c instead of c[F0,F1] to lighten notation, and similarly

∫∫

c(v′, w′) τl(dv′ × dw′) =

∫ m

0

dα

∫ 1

0

dβ c(l−1
w (α), G−1

l (β | α)),

∫∫

c(v′, w′) τ̄r(dv′ × dw′) =

∫ m

0

dα

∫ 1

0

dβ c(l−1
w (α), G−1

r (β | α)),

∫∫

c(v′, w′) τ̄l(dv′ × dw′) =

∫ m

0

dα

∫ 1

0

dβ c(r−1
w (α), G−1

l (β | α)).
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The integral in Definition 2 now takes the form
∫∫

c(v′, w′) (νv(dv′ × dw′) − ν(dv′ × dw′))

=

∫∫

c(v′, w′)
(

−τr(dv′ × dw′) − τl(dv′ × dw′)

+ τ̄r(dv′ × dw′) + τ̄l(dv′ × dw′)
)

=

∫ m

0

dα

∫ 1

0

dβ
(

−c(r−1
w (α), G−1

r (β | α)) − c(l−1
w (α), G−1

l (β | α))

+ c(l−1
w (α), G−1

r (β | α)) + c(r−1
w (α), G−1

l (β | α))
)

.

As r−1
w (α) ≤ v ≤ l−1

w (α) and G−1
l (β | α) ≤ w ≤ G−1

r (β | α) for all α, β, the Monge
condition (4) implies that either the value of this integral is negative or the function
c (i.e., c[F0,F1]) is constant in at least one of its arguments. In the former case the
transport plan νv is a cost-reducing local modification of ν; in the latter case νv is
equivalent to ν. �

Lemma 12. For any v′ < v′′ there exists a local modification νv′,v′′ of ν such that
wνv′,v′′

(v) = wν(v) for v′ ≤ v ≤ v′′, mνv′,v′′
(v′) = mνv′,v′′

(v′′) = 0, and in the strip

v′ ≤ v ≤ v′′ the support of νv′,v′′ coincides with the complete graph of the monotone
function wν(·).

Proof. Let {vi} be a dense countable subset of [v′, v′′] including its endpoints. Set
ν0 = ν and define νi recursively to be the local modification of νi−1 given by the
previous lemma and such that wνi

(vi) = wν(vi) and mνi
(vi) = 0. Then all νi

are either cost-reducing or equivalent to ν and wνj
(vi) = wν(vi), mνj

(vi) = 0 for
all j > i. Indeed, denote wi = wνi

(vi) and observe that if e.g. vj > vi, then,
as mνi

(vi) = rνi
(vi, wi) = 0, mass from (−∞, vi] does not appear to the right

of wi and so does not contribute to the balance of mass around wj . Therefore
for any j the possible modification of νj−1 is local to the interval (vi′ , vi′′ ), where
vi′ = max{vi : i < j, vi < vj} and vi′′ = min{vi : i < j, vi > vj} (with max
and min of empty set defined, as usual, as −∞ and ∞). Thus there is a well-defined
limit normal transport plan ν∞ that is either a cost-reducing local modification or
equivalent to ν and is such that, by continuity of the functions rν∞

and lν∞
in the

first argument, mν∞
(v) vanishes everywhere on [v′, v′′].

Consider now the function wν∞
(·), which coincides with wν(·) on a dense subset

of [v′, v′′], so that their complete graphs coincide. For any quadrant of the form
(−∞, v0) × (w0,∞) such that w0 > wν∞

(v0), monotonicity of rν∞
in the second

argument implies that

0 ≤ ν∞((−∞, v0) × (w0,∞)) = rν∞
(v0, w0) ≤ rν∞

(v0, wν∞
(v0)) = 0,

i.e., ν∞((−∞, v0) × (w0,∞)) = 0. Similarly ν∞((v0,∞) × (−∞, w0)) = 0 for any
quadrant with w0 < wν∞

(v0). The union of all such quadrants is the complement
of the complete graph of the function v 7→ wν(v); this implies that ν∞ is supported
thereon. �

Corollary 13. For any normal transport plan ν there exists a real number θν such
that wν(v) = v + θν .

Proof. It is enough to show that wν(v′) − v′ = wν(v′′) − v′′ for all v′, v′′. Let
v′ < v′′ and νv′,v′′ be the local modification constructed in the previous lemma.
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Since it has uniform marginals and monotone support, we have wν(v′′)− wν(v′) =
νv′,v′′((v′, v′′) × (wν(v′), wν(v′′))) = v′′ − v′, which completes the proof. �

We call the parameter θν the rotation number of the normal transport plan ν.

Definition 14. A normal transport plan consisting of a uniform measure supported
on the line {(v, w) : w = v + θ} is called a shift and denoted by νθ.

Lemma 15. For any θ the shift νθ is c[F0,F1]-locally optimal.

Proof. Let ν̄ be a local modification of νθ such that the signed measure νθ − ν̄ is
supported in (v′, v′′)×(w′, w′′). Let ν̄v′,v′′ be a local modification of ν̄ constructed in
Lemma 12; it coincides with νθ over v′ < v < v′′, and hence everywhere. Since it is
either cost-reducing or equivalent to ν̄, it follows that ν̄ cannot be cost-reducing with
respect to νθ, i.e., that νθ is a cost minimizer with respect to local modifications. �

Lemma 16. Any c[F0,F1]-locally optimal normal transport ν with rotation num-
ber θ = θν is equivalent to the shift νθ.

Proof. Let v′′i = −v′i = i for i = 1, 2, . . . . All local modifications νi = νv′

i
,v′′

i
of ν

constructed as in Lemma 12 cannot be cost-reducing and are therefore equivalent
to ν. On the other hand, this sequence stabilizes to the shift νθ on any bounded
subset of V0 × V1 as soon as this set is covered by the segment (−i, i). Therefore
νθ has the same conjugate as all νi and is equivalent to ν. �

Lemmas 15, 16, and 7 together imply Theorem 8.

4. Transport optimization for periodic measures

4.1. The average cost of locally optimal transport. Let now c be a cost func-
tion that satisfies the Monge condition (4), the integer shift invariance condition (5),
the growth condition (6), and is bounded from below. Suppose that γθ is a locally
optimal transport plan on U0 ×U1 with marginals µ0, µ1 conjugate to the shift νθ.
Define c[F0,F1] as in (11) and let F θ

1 (u) = F1(u) − θ as illustrated in fig. 1.

Definition 17. We call the quantity

(14) C[F0,F1](θ) =

∫ 1

0

c[F0,F1](v
′, v′ + θ) dv′ =

∫ 1

0

c
(

F−1
0 (v′), (F θ

1 )−1(v′)
)

dv′

the average cost (per period) of the transport plan γθ.

Observe that it is indifferent whether to integrate here from 0 to 1 or from v
to v + 1 for any real v.

The following lemma provides a “bracket” for the global minimum of C[F0,F1]

and estimates of its derivatives independent of µ0, µ1.

Lemma 18. The average cost C[F0,F1] is a convex function that satisfies the in-
equalities

(15) inf
x,y

c(x, y) ≤ C(θ) ≤ C[F0,F1](θ) ≤ C(θ)

with

(16) C(θ) = inf
−1≤u1≤2

θ−1≤u2≤θ+2

c(u1, u2), C(θ) = sup
−1≤u1≤2

θ−1≤u2≤θ+2

c(u1, u2).
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There exist constants Θ < Θ and L, L > 0 such that the global minimum of C is
achieved on the interval [Θ, Θ] and

(17) − L ≤ C′
[F0,F1](Θ − 0) ≤ 0 ≤ C′

[F0,F1](Θ + 0) ≤ L,

where C′
[F0,F1]

(·) is the derivative of C[F0,F1]. These constants are independent on

µ0, µ1 and are given explicitly by formulas (18), (19) and (20) below.

The bounds given in the present lemma are rather loose. E.g., for c(x, y) =
|x− y|α with α > 1, they are C(θ) = conv min(|θ + 3|α, |θ − 3|α), C(θ) = max(|θ +
3|α, |θ−3|α), and −Θ = Θ = 6. For symmetric costs like this one it is often possible
to replace [Θ, Θ] by the interval [−1, 1] which may be tighter.

Proof. To prove convexity of C[F0,F1] it is sufficient to show that C[F0,F1]

(

1
2 (θ′ +

θ′′)
)

≤ 1
2

(

C[F0,F1](θ
′)+C[F0,F1](θ

′′)
)

for all θ′, θ′′. Let θ′ < θ′′, denote θ = 1
2 (θ′+θ′′)

and write

C[F0,F1](θ) =

∫ 1

0

c[F0,F1](v, v + θ) dv =

∫ θ−θ′+1

θ−θ′

c[F0,F1](v
′, v′ + θ) dv′,

C[F0,F1](θ
′) =

∫ θ−θ′+1

θ−θ′

c[F0,F1](v
′, v′ + θ′) dv′, C[F0,F1](θ

′′) =

∫ 1

0

c[F0,F1](v, v + θ′′) dv.

Making the change of variables v′ = v+θ−θ′ and taking into account that θ−θ′+θ =
2θ − θ′ = θ′′, we get

2C[F0,F1](θ) − C[F0,F1](θ
′) − C[F0,F1](θ

′′)

=

∫ 1

0

(

c[F0,F1](v, v + θ) + c[F0,F1](v + θ − θ′, v + θ′′)

− c[F0,F1](v + θ − θ′, v + θ) − c[F0,F1](v, v + θ′′)
)

dv.

Since v + θ − θ′ > v and v + θ′′ > v + θ, the Monge condition for c implies that
the integrand here is negative on a set of nonzero measure, yielding the desired
inequality for the function C[F0,F1]. Note that convexity of C[F0,F1] implies its
continuity because C[F0,F1] is finite everywhere.

Bounds (15) on C[F0,F1](θ) follow from (14) with v = 0 because v′−1 ≤ F−1
0 (v′) ≤

v′ + 1, v′ + θ − 1 ≤ (F θ
1 )−1(v′) ≤ v′ + θ + 1, and 0 ≤ v′ ≤ 1. Furthermore, the

growth condition (6) implies that C(θ) ≥ P as soon as |θ| > R(P ) + 3. Indeed,
in this case |u2 − u1| ≥ |θ| − 3 ≥ R(P ) and right-hand sides of formulas (16) are
bounded by P from below. Therefore one can set

(18) Θ = inf{θ : C(θ) = min
θ′

C(θ′)} > −∞, Θ = sup{θ : C(θ) = min
θ′

C(θ′)} < ∞,

where min is attained because C is continuous.
The set argminθ′ C[F0,F1](θ

′) lies on the segment [Θ, Θ]. (Indeed, if e.g. θ < Θ,

then C[F0,F1](θ) ≥ C(θ) > minθ′ C(θ′) ≥ minθ′ C[F0,F1](θ
′), so θ cannot belong

to argminθ′ C[F0,F1](θ
′); a similar conclusion holds if θ > Θ.) It follows that

C′
[F0,F1]

(Θ − 0) ≤ 0 ≤ C′
[F0,F1]

(Θ + 0).

By convexity C′
[F0,F1]

(Θ + 0) ≤ (C[F0,F1](θ)−C[F0,F1](Θ))/(θ −Θ) for all θ ≥ Θ.

The right-hand side of the latter inequality can be estimated from above by

(19) L = inf
θ≥Θ

C(θ) − C(Θ)

θ − Θ
.
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The ratio in the right-hand side takes finite values, so L is finite. This establishes
the inequality C′

[F0,F1]
(Θ + 0) ≤ L. The rest of (17) is given by a symmetrical

argument; in particular

�(20) L = inf
θ≤Θ

C(θ) − C(Θ)

Θ − θ
.

Definition 19. A locally optimal transport plan γθ0
is called globally optimal if

θ0 ∈ arg minθ C[F0,F1](θ).

We can now reduce minimization of (1) on the unit circle to minimization of (2)
on R, which involves the cost function c rather than ĉ:

Theorem 20. The canonical projection π : R → T establishes a bijection between
globally optimal transport plans on R × R and transport plans on T × T that mini-
mize (1).

Proof. A transport plan γ on T×T minimizes (1) if it is a projection of a transport
plan on R×R that locally minimizes the transport cost defined by the cost function
ĉ(x, y) = mink∈Z c(x, y + k) (see introduction; min here is attained because of the
integer shift invariance and growth conditions (5), (6)).

Denote S = {(x, y) : c(x, y) = ĉ(x, y)} and observe that the support of the glob-
ally optimal plan γθ0

lies within S: indeed, if it did not, there would exist a modi-
fication of γθ0

bringing some of the mass of each period to S and thus reducing the
average cost. Therefore γθ0

is locally optimal with respect to the cost ĉ(x, y) and
its projection to T × T minimizes (1).

Conversely, a minimizing transport plan on T × T can be lifted to R × R in
such a way that its support lies inside S (translations of arbitrary pieces of support
by integer increments along x and y axes are allowed because they leave ĉ(x, y)
invariant). Therefore its average cost per period cannot be less than that of a
globally optimal transport plan on R × R. �

4.2. Fast global transport optimization. In a typical application, such as the
image processing problem described in the introduction, measures µ0 and µ1 come
in the form of histograms, i.e., discrete distributions supported on subsets X =
{x1, x2, . . . , xn0

} and Y = {y1, y2, . . . , yn1
} of the unit circle. These two sets may

coincide. In what follows we replace X and Y with their lifts to the universal cover
and assume that the points are sorted and numbered in an increasing order:

· · · < x0 = xn0
− 1 ≤ 0 < x1 < · · · < xn0

≤ 1 < xn0+1 = x1 + 1 < . . . ,

· · · < y0 = yn1
− 1 ≤ 0 < y1 < · · · < yn1

≤ 1 < yn1+1 = y1 + 1 < . . . .

Denote masses of these points by µ0({xi}) = m′
i, µ1({yj}) = m′′

j ; these are assumed

to be arbitrary positive real numbers satisfying
∑

1≤i≤n0
m′

i =
∑

1≤j≤n1
m′′

j = 1.

Define j(θ) as the index of min{yj : F θ
1 (yj) > 0} and denote yθ

1 = yj(θ), yθ
2 =

yj(θ)+1, . . . , yθ
n1

= yj(θ)+n1−1. All the values

(21) F0(x1), F0(x2), . . . , F0(xn0
), F θ

1 (yθ
1), F θ

1 (yθ
2), . . . , F θ

1 (yθ
n1

)

belong to the segment (0, 1]. We now sort these values into an increasing sequence,
denote its elements by v(1) ≤ v(2) ≤ · · · ≤ v(n0+n1) and set v(0) = 0. Note that for

each v such that v(k−1) < v < v(k) with 1 ≤ k ≤ n0 + n1 the values x(k) = F−1
0 (v)
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v

uO

F0

F−1
0 (F θ

1 (yj)) ≡ X

F θ
1

F θ+∆θ
1

yj yj+1

∆θ

c(X, yj)

c(X, yj+1)

v

uO

F0

F−1
0 (F θ

1 (yj))

F θ
1

F θ−∆θ
1

yj yj+1

∆θ

v

uO

F0

F−1
0 (F θ

1 (yj) − 0)

F θ
1

F θ+∆θ
1

yj yj+1

∆θ

Figure 2. Derivation of expressions (23), (24) for C′
[F0,F1]

(θ ± 0).

Thick lines show fragments of complete graphs of F0, F θ
1 corre-

sponding to jth terms in (23), (24). Top: θ not exceptional. Bot-
tom: exceptional θ; thin dashed line marks the common value of F0

and F θ
1 , left and right panes illustrate the cases C′

[F0,F1](θ−0) and

C′
[F0,F1]

(θ + 0). Note that X = F−1
0 (F θ

1 (yj)) can be alternatively

written as inf{x : F0(x) > F θ
1 (yj)}.

and y(k) = (F θ
1 )−1(v) are uniquely defined and belong to X , Y . It is now easy to

write an expression for the function C[F0,F1]:

(22) C[F0,F1](θ) =
∑

1≤k≤n0+n1

c(x(k), y(k)) (v(k) − v(k−1)).

Observe that, as the parameter θ increases by ∆θ, those v(k) that correspond

to values F θ
1 decrease by the same increment. Let F θ

1 (yj0) be such a value. As it
appears in (22) twice, first as v(k) and then as −v(k−1) in the next term of the sum,

it will make two contributions to the derivative C′
[F0,F1]

(θ): −c(F−1
0 (F θ

1 (yj0)), yj0)

and c(F−1
0 (F θ

1 (yj0)), yj0+1) (see fig. 2, top).
Moreover, there are exceptional values of θ for which two of the values in (21)

coincide and their ordering in the sequence (v(k)) changes. For such values of θ the
derivative C′

[F0,F1]
has different right and left limits, as illustrated in fig. 2, bottom:

C′
[F0,F1]

(θ − 0) =
∑

1≤j≤n1

(

c(F−1
0 (F θ

1 (yj)), yj+1) − c(F−1
0 (F θ

1 (yj)), yj)
)

,(23)

C′
[F0,F1]

(θ + 0) =
∑

1≤j≤n1

(

c(F−1
0 (F θ

1 (yj) − 0), yj+1) − c(F−1
0 (F θ

1 (yj) − 0), yj)
)

.(24)

If θ is not exceptional, the value of C′
[F0,F1]

(θ) is given by the first of these formulas.
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The function C[F0,F1] is therefore piecewise linear; moreover, from the Monge
condition (4) it follows that C′

[F0,F1]
(θ − 0) < C′

[F0,F1]
(θ + 0) at exceptional points,

giving an alternative proof of convexity of C[F0,F1](θ) in the discrete case.

Lemma 21. Values of C and its left and right derivatives can be computed for
any θ using at most O(n0 + n1) comparisons and evaluations of c(x, y).

Proof. Sorting the n0+n1 values (21) into an increasing sequence requires n0+n1−1
comparisons (one starts with comparing F0(x1) and F θ

1 (yθ
1) to determine v(1), and

after this each of the remaining values is considered once until there remains only
one value, which is assigned to v(n0+n1) with no further comparison). At the same
time, pointers to x(k) and y(k) should be stored. After this preliminary stage, to
find the values for C[F0,F1] and its one-sided derivatives it suffices to evaluate each of
the n0+n1 terms in (22) and to take into account the corresponding contribution of
plus or minus c(x(k), y(k)) to the value of C′

[F0,F1]
(θ), paying attention to whether

the value of θ is exceptional or not. All this can again be done in O(n0 + n1)
operations. �

Now fix ǫ > 0 and set L = max{L, L}. Recall that L, L, as well as the parameters
Θ, Θ that are used in the algorihtm below, are defined by explicit formulas in
Lemma 18 and do not depend on measures µ0, µ1. The minimum of C[F0,F1](θ) can
be found to accuracy ǫ using the following binary search technique:

(A1) Initially set θ := Θ and θ := Θ, where Θ, Θ are defined in Lemma 18.
(A2) Set θ := 1

2 (θ + θ).
(A3) Compute C′

[F0,F1]
(θ − 0), C′

[F0,F1]
(θ + 0).

(A4) If C′
[F0,F1]

(θ− 0) ≤ 0 ≤ C′
[F0,F1](θ +0), then θ is the required minimum; stop.

(A5) If θ − θ < ǫ/L, then:

(a) compute C[F0,F1](θ), C[F0,F1](θ);
(b) set θ equal to the solution of

(25) C[F0,F1](θ) + C′
[F0,F1](θ + 0)(θ − θ) = C[F0,F1](θ) + C′

[F0,F1](θ − 0)(θ − θ);

(c) stop.
(A6) Otherwise set θ := θ if C′

[F0,F1]
(θ + 0) < 0, or θ := θ if C′

[F0,F1]
(θ − 0) > 0.

(A7) Go to step (A2).

It follows from inequalities (17) of Lemma 18 that the minimizing value of θ
belongs to the segment [Θ, Θ]. Therefore at all steps

(26) C′
[F0,F1]

(θ + 0) ≤ 0 ≤ C′
[F0,F1]

(θ − 0)

and the segment [θ, θ] contains the minimum of C.
Step (A5) requires some comments. By convexity, −L ≤ C′

[F0,F1]
(θ ± 0) ≤ L for

all Θ ≤ θ ≤ Θ, i.e., |C′
[F0,F1]

(θ ± 0)| ≤ L at all steps. When θ − θ < ǫ/L, this

bound ensures that for any θ′ in [θ, θ] the minimal value of C is within ǫ/L · L = ǫ
from C[F0,F1](θ

′). If there is a single exceptional value of θ in that interval, then it
is located precisely at the solution of (25) and must be a minimum of C because
of (26), so the final value of θ is the exact solution; otherwise it is an approximation
with guaranteed accuracy.

The final value of θ will certainly be exact when masses of all atoms are rational
numbers having the least common denominator M and ǫ < 1/M . Indeed, in this

case any interval [θ, θ] of length ǫ can contain at most one exceptional value of θ.



16 J. DELON, J. SALOMON, AND A. SOBOLEVSKĬI

Since at each iteration the interval [θ, θ] is halved, step (A5) will be achieved in
O(log2((Θ−Θ)/(ǫ/L))) iterations. By Lemma 21 each step (A3) (and (A5b)) takes
O(n0 + n1) operations. Together these observations establish

Theorem 22. The above binary search algorithm takes O((n0 +n1) log(1/ǫ)) com-
parisons and evaluations of c(x, y) to terminate. The final value of θ is within ǫ/L
from the global minimum, and C[F0,F1](θ) ≤ minθ C[F0,F1](θ) + ǫ. When all masses
m′

i, m′′
j are rational with the least common denominator M , initializing the algo-

rithm with ǫ = 1/2M leads to an exact solution in O((n0 + n1) log M) operations.

5. Relations to the previous work

The problem of finding an optimal coupling between two measures is very well
understood when both marginals are finite measures supported on convex compacts
in the n-dimensional Euclidean space (see, e.g., [9] or the comprehensive recent
monograph [15] and references therein). In particular, when c(x, y) = |x − y|2,
there is a unique optimal transport plan which is essentially a map T from the
support of µ0 to that of µ1 such that µ1(A) = µ0(T

−1A) for all A. Moreover this
map is the (sub)gradient of a suitable convex function, which satisfies a certain
Monge–Ampère equation in a weak sense.

Everything becomes especially simple in the one-dimensional case, when the
optimal coupling is monotone and can thus be established by sorting the elements of
the two measures left-to-right. In fact sorting works for any cost function satisfying
the Monge condition (alternatively known as the continuous Monge property, see [1,
5]). If the data come in the form of discrete n-point histograms whose points are
already sorted, then the solution can be constructed in O(n) operations; if sorting
is needed, the operation count rises to O(n log n).

When marginals live on a compact Riemannian manifold rather than in Eu-
clidean space, existence of the optimal coupling is also well-known [8]. For the
specific case of T

n and a quadratic cost it has been established almost a decade
ago by Cordero-Erausquin [6]. Again, the optimal coupling here is realized by a
gradient of a suitable function. This characterization becomes particularly trans-
parent if one lifts the problem to the universal cover R

n of the torus T
n, where

this function is convex and its gradient is monotone and satisfies an integer shift
invariance condition similar to (8).

However in the simplest one-dimensional case the fundamental set T is no longer
ordered but merely oriented. Hence, for the sorting method to work, one has to
artificially “cut” T at some point to make it into the ordered convex set (0, 1]. A
brute-force approach to finding a minimizer of (1) for n-point histograms requires to
cut one of the circular histograms at each of the n possible locations and to compute
the corresponding values of transport cost, thereby involving O(n2) operations.

Faster algorithms for the transportation problem on the circle have been pro-
posed in a number of works. Karp and Li [10] consider an unbalanced matching,
where the total mass of the two histograms are not equal and elements of the smaller
mass have to be optimally matched to a subset of elements of the larger mass. A
balanced optimal matching problem has later been considered independently by
Werman et al [16]; clearly, the balanced problem can always be treated as a par-
ticular case of the unbalanced one. In both these works O(n log n) algorithms are
obtained for the case where all points have unit mass and the cost function on the
universal cover is given by the Euclidean distance |x − y|.
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Aggarwal et al [1] present an algorithm improving Karp and Li’s results for an
unbalanced transportation problem on the circle with general integer weights and
the same cost function |x−y|. They also consider a general cost function c(x, y) that
satisfies the Monge condition and an additional condition of bitonicity: for each x,
the function c(x, y) is nonincreasing in y for y < y0(x) and nondecreasing in y for
y > y0(x). Note that this rules out the circular case. The second algorithm of [1]
is designed for bitonic Monge costs and runs in O(n log M) time for an unbalanced
transportation problem with integer weights on the line, where M is the total weight
of the matched mass and n is the number of points in the larger histogram.

The algorithm proposed in the present article only applies to the balanced prob-
lem for a Monge cost. However it does not involve bitonicity and is therefore
applicable on the circle, where it achieves the same O(n log M) time as the second
algorithm of [1] if all weights are integer multiples of 1/M .

The results of [1] were extended in a different direction by McCann [12], who
provides, again in the balanced setting, a generalization of their first algorithm to
the case of a general cost of the concave type on the open line.

Finally, we note that an important device of the present work is the notion of
locally optimal transport plan in an unbounded domain, i.e., a plan whose (infi-
nite) cost cannot be improved by any local modification. Different locally optimal
transport plans cannot be deformed into each other by local rearrangement. There
is a common pattern between this notion and action minimizing measures in the
weak KAM (Aubry–Mather) theory (see, e.g., [7, 11]). In particular, a cost function
satisfying conditions (4)–(6) can be generated by a natural Lagrangian with a time-
periodic potential [11, 4], the conjugacy to shifts of the universal cover (or rotations
of the circle) established in Section 3 is a counterpart of conjugacy to (irrational)
rotations in the one-dimensional weak KAM theory [3], whereas the average cost
C[F0,F1](θ) is similar to the averaged Lagrangian or Mather’s α function (see, e.g.,
[7]).
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