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Constraint-based Subspace Clustering

Elisa Fromonit Adriana Pradd Céline Robardét

Abstract est, for example: the expected number of clusters, the mini-

In high dimensional data, the general performance of trafijal or maximal cluster size, weights for different objectd a
tional clustering algorithms decreases. This is partlyabee dimensions, constraints on the clustering parameters- (den
the similarity criterion used by these algorithms becom@dy threshold, chosen distance function, entropy thriesho
inadequate in high dimensional space. Another reasorfig.), but also instance-level constraints, suctMast-link
that some dimensions are likely to be irrelevant or contdf0 Objects must be in the same cluster) &ahnot-link
noisy data, thus hiding a possible clustering. To overcorff@0 objects must be in different clusters), are useful ke ta
these problems, subspace clustering techniques, which 4@ account user’s preferences or background knowledge on
automatically find clusters in relevant subsets of dimarsio@ Subject. With these two last constraints, the algorithm be
have been developed. However, due to the huge numbefdNes semi-supervised.

subspaces to consider, these techniques often lack effjicien 10 the best of our knowledge, there exist no constraint-
In this paper we propose to extend the framework of bottoRaSed subspace clustering algorithms, in particular semi-
up subspace clustering algorithms by integrating backmo@upervised subspace algorithms, even though the integrati
knowledge and, in particular, instance-level constratots of instance-level constraints in traditional clusteringoa
speed up the enumeration of subspaces. We show how fi#i§ns has proven to be successful in [30, 21, 7, 28, 26] and
new framework can be applied to both density and distané@"- another type of semi-supervised clustering in [9]. listh
based bottom-up subspace clustering techniques. Our—exF@PteXt’ the aim of this work is to investigate how instance-
iments on real datasets show that instance-level contstraifive! constraints can influence the subspace clustering pro
cannot only increase the efficiency of the clustering precé€Ss, making it not only more efficient but also more accu-

but also the accuracy of the resultant clustering. rate. Towards this goal, we propose to extend the common
framework of bottom-up subspace clustering algorithms by
1 Introduction integrating instance-level constraints into the mining-pr

. . . . .__cess. The extended framework is able to consider several
Clustering techniques are widely used unsupervised @ilassi

cation techniques to discover groupings of similar objc'n:tsevaluatIon criteria (e.g. density, distance) in order eniify

data. However, when the dimensionality of the data becomganmgful _clus'gers n th_e data. _
The article is organized as follows. The next section

too high, usual criteria to define similarity between olgect

based on distance or density become irrelevant [1]. Be,sidssdedlcated to the related work on the subject. Section 3

. ) ; . . escribes a common framework for subspace clustering and
some dimensions may be too noisy to clearly identify clus; . :
) . . . Shows how constraints can be added to this framework. Sec-

ters in the original data. Subspace clustering technigaes h. L .

. tion 4 presents a data mining algorithm called SONER,
been developed to overcome these problems. The idea, re- ; )
) . . S which can mine subspace clusters under instance-level con-
lated to feature selection or dimension reduction, is td&loQ, . . X .
. ) . Straints, and shows how it can be applied to density-based
for clusters in subsets of dimensions.

: . nld distance-based subspace clustering techniquesorsecti
Subspace clustering techniques have been success@l . . ;
ows some results which prove that the integration of con-

applied to text mining [18] and gene expression analyss'tsraints into the bottom-up subspace clustering techsique
[19]. In these applications, the user may already have some

can improve not only their efficiency but also the quality of

knowledge of how the clustering should be, although he or ; .
the resultant clustering. The last section presents some co
she may not have enough labeled examples to use a su&(ar—

vised classification method. As pointed out in [15], there eX sions and future work.
ist many ways to describe or constraint a clustering ofint%r Related work

o & de L Universit de StEti £.42000. UMR CNR In [25], Parson et al. give a survey of many subspace clus-
niversie de Lyon, Universit de st-tlienne - ' Yering techniques. These techniques can be divided into two
5516, Laboratoire Hubert-Curien, France

tUniversiteit Antwerpen, Belgium categories. Top-down subspace clustering techniquets star

tuniversié de Lyon, CNRS, INSA Lyon, LIRIS, UMR5205, F-69621With an initial approximation of the clusters in the full fea
France



ture space and iteratively refine the clustering by assigain —@w dataset

weight to each of the dimensions. These techniques do nots; df df Grid

guarantee to find the best clustering and tend to find only Zz 3 ; bao ‘3‘ 04 0 910

hyper-spherical clusters [25]. os | 1| 4 d2 by 2 os [or  os
On the contrary, bottom-up subspace clustering algg- Zb ?1 1 1 e B

rithms start by first detecting interesting clusters in low{ o, | 3 | 2 bi1 bia

dimensional subspaces according to (grid-based) density ¢ gg ‘3‘ g &

teria [2, 23, 12, 27, 19, 5] or a distance measure [22]. Theo,, | 4 | 4

subspace cluste(®), D) whereO is a set of objectsanba ) ) o )
subspacei,e. a set of dimensions (attributes), are then iterfigure 2: Raw dataset and its resulting partitioning with 2
tively merged to form higher-dimensional subspace claste?ins per dimension using CLIQUE.
The bottleneck of these algorithms is the NP-completeness
of the enumeration of the subspace clusters. To make the (01,0 om} is a set of objects and —
bottom-up algorithms more efficient, strong constraintseha,, "1 2 %m ; 1€ .
: : dy.da,...,d,} a set of symbolic or continuous attributes
to be pushed in the enumeration process to prune large pAfts : .
also called dimensions.

of the search space.

All existing subspace clustering algo_rlthms use mpgt.ll Pre-processingThe pre-processing step mainly con-
parameters that can be seen as constraints. For EXaMBTis algorithms which first partition the raw dataset into
CLIQUE [2] uses a threshold on the minimum density & g b

cluster can have. Although small changes in these parei"‘pew(-ﬂexmle) grid suitable to be used as input by standard

. : : mset mining algorithms (e.g. Apriori [3], Eclat [31], Fp
eters might completely change the resulting clustering, 0 owth [16]). In this case, a new binary data table is created

values of these thresholds are typically never known in e dimensions of the raw data are partitioned into intstval

vance by the user. On the other hand, more intuitive U lled bins, which are the attributes of this new table.

constraints, such as knowledge of the a-priori grouping 6 L
. _ The partitioning process depends on the subspace clus-
some objects within clusters has, to the best of our knowyl-. . . )
edge, not yet been taken into account in subspace clus g algorithms. For_ example, grid-based algorithmshsu
. as CLIQUE [2] and its successors (e.g. [23, 12, 27]) start

ing. These constraints, known as instance-level conssraih . - . A .
(IL constraints), were introduced in [30] and successfulEy discretizing each dimension into bins. The number of
' Ins can be user-defined [2, 12, 27] or based on the distri-

applied to different traditional partitioning or aggloraéve bution of the data [23]. Thg'" bin of the dimension; is
clustering algorithms, [21, 7, 26] and predictive clugigri enoted byb,,,i € [1 '] i ¢ [1,pi], wherep; is the n:Jm-
trees [28] as well. The authors have shown that althoughg;e A 11 J Pily Pi

1 . . er of bins of the dimensiod;. The resulting partitioning
constraints increase the complexity of the algorithms [1 - oo .
. . the original data space can be seen as a multi-dimensional
they allow to obtain clusters that are more meaningful.

In the remainder of this paper we focus on bottom- rid, where the intersection of exactly one of the bins of ev-

. . . : . ry dimension is called a unitz = by; x --- x b,, where
subspace clustering algorithms since their exhaustive ¢ v 1 nd

. : € [1,p1],q € [1,pn]. A k—dimensional unit is a unit
sideration of the search space allow us to answer constrain ; . . . . .
. : ; Created by intersecting bins from &k different dimensions.
user queries without uncertainty.

Figure 2 represents the partitioning of the given raw datase

3 Common Framework for Constraint-based Subspace made by C.:LIQUE when th_e number OT bingaisin this ex-
ample, unit{b1, bo; } contains three objects, namely, o-

Clustering andos.

Subspace clustering aims at identifying subspace projegti  after the partitioning, the raw dataset is encoded into a
of the original dataseti.e. sets of attributes or intervalSggglean dataset that states the presence or absence of each
within the range of the attributes, where relevant clustérspject in each of the units. Figure 3 shows the pre-processed
objects can be found. dataset constructed by CLIQUE from the grid illustrated in
In this section, we describe a common framework f@figyre 2. It is worth noting that the pre-processed dataset
subspace clustering that motivates the constraint-bdged acan pe constructed in a different format, such as the vértica
rithm proposed in the next section. As depicted in Figui§rmat used by SCHISM [27].
1, most of the bottom-up subspace clustering algorithms can pistance-based subspace clustering algorithms, such
be described in terms of a (facultative) pre-processing®has nCLUSTER [22], first compute the distance between
that prepares the data, a data mining phase that minesgig¢h object pairs on each dimension. For each dimension
clusters and a (facultative) post-processing phase toenesg two different objects are within the same set if the
clusters or remove the redundant ones. distance between them on that dimension is below a user-
In the following, we call S a raw dataset wheregefined threshold x R (whereR is the range length af;).
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Figure 1: Framework for bottom-up subspace clusteringrélyuos.

Boolean Dataset for CLIQUE Boolean Dataset for NCLUSTER

b11 | b1z | ba1 | ba22 bi1 | biz | bizg | b2a1 | baz | bas
01 1 0 1 0 01 1 0 0 1 0 0
02 1 0 1 02 1 1 0 1 0 0
03 1 0 1 0 03 1 1 0 1 1 0
04 1 0 0 1 04 1 0 0 0 0 1
o5 0 1 1 0 o5 0 1 1 1 0 0
06 0 1 1 0 06 0 0 1 1 0 0
or 0 1 1 0 or 0 1 1 1 1 0
os 0 1 1 0 0s 0 0 1 1 1 0
09 0 1 0 1 o) 0 1 1 0 1 1
010 0 1 0 1 010 0 0 1 0 0 1

Figure 3: Boolean dataset constructed by CLIQUE, froRigure 5: Boolean dataset constructed\dyL USTER, from
the grid in Figure 2. the bins in Figure 4.

The number of maximal sets that can be created for e%cnhe bin for each different value of each dimension
dimensiond; determines the number of bins @f. Figure ' : vald ! on.

4 shows the bins created byCLUSTER, with § = 0.5, for - .
the raw dataset in Figure 2. In this example, dimensiﬁns?".2 Data Mining BOtFom'“P algorithms start by enumer-
tH"lg the relevant 1-dimensional subspaces and iterativel

andds have3 bins each. Observe that some objects can &

up in multiple bins if they are close to multiple other Se%enerate higher dimensional ones that satisfy the clugter ¢

of objects in the same dimension. For instance, ohjeds eria [2, 23 12,27, 19’ 5.’ 22). To make Fhe_enumerathn pro-
within bins by, andbys. In this case, we say that the binSeSS effluent, the criteria should consist in anti-moniaton
are overlapping. In [22], the authors also consider an inpc&nstramts that are u;ed to prune the sear (.:h space.
parameter to control the overlap between bins. When the_ dimensions have bee_n p_artl_tloned beforehand
(see Subsection 3.1), the enumeration is, in fact, not done o

subspaces but on candidate subspace clusters. A subspace

bins object sets

b1y {01, 02,03,04} cluster is a k-dimensional unit that has, for example in the
b12 {02, 03,05, 07, 00} case of density-based clustering, a high density of objects
b13 {05, 06,07, 08,009,010} . L. . .

ba1 | {o1,02,03,05,06,07,08} The density constraint is provided to the algorithms. If we
22 {?3;40(7);02’1 gi} regard the pre-processed dataset as transactional data, th

mining for k—dimensional dense units reduces to the task of
mining frequent—itemsets [3]. In our case, the transaction
Figure 4: Bins constructed bMCLUSTER, for the raw set is equal to the object sét and the items are the previ-
dataset in Figure 2. ously computed bins. In the following, instead of using the
term itemset, we will denote the output of this mining task
Again, the raw dataset is finally encoded into a Booledwy binset A k—dimensional unit with density greater than
table where the Boolean values state the presence or abseande viewed as a frequent binset of sizeith a frequency
of each objectin every bin. The corresponding table is shogreater tharr. We can observe that as bins do not overlap,
in Figure 5. two different bins of the same dimension cannot occur in the
Note that both distance and density-based approackame frequent binset and thus the computed frequent binset
can be adapted to the use of symbolic dimensions by creatiag be viewed as a denge-dimensional unit. CLIQUE



takes advantage of the anti-monotonic property of the deering algorithms increases their efficiency, by pruning th
sity constraint: if & dimensional space is dense, then any eéarch space. For existing bottom-up subspace clustering
its (k — 1)-dimensional subspaces is also dense [2]. algorithms, the few constraints currently considered db no

In the case of the distance-based algorithm, the betempt to increase the accuracy of the final clustering by
may overlap. This can result in more bins than in thetegrating expert knowledge, since they are mainly relate
density-based approaches, increasing the complexityeof th the parameters of the algorithms, not taking into account
algorithm. To overcome this problemCLUSTER directly external information. Motivated by this need, we propose
mines for maximal clusters, by adopting a closed itemgetextend the common framework for bottom-up subspace
mining strategy [29]. NCLUSTER uses the following anti- clustering techniques, by integrating IL constraints sash
monotonic property: if a set of object2 and a set of bins Must-link and Cannot-link constraints into the data mining
D form aé — nCluster (i.e. for every two object®,, and step, so as to obtain not only more efficient algorithms but
o, of O and every bin;; € D, o, ando, are neighbors also more accurate results. These two constraints enable th
w.r.t. the distance measure dnand the threshold), thenO end-user to guide the unsupervised subspace clusterikg tas
forms ad — nCluster with every subset oD andD forms a by adding some expert knowledge.
0—nCluster with every subset af). Additionally, it regards In a subspace clustering, we formally define these con-
a subspace cluster as being meaningful if it is composeddtsaints as follows:
m,. objects andn. dimensions.. andm, are provided to
the algorithm). DEFINITION 1. (CANNOT-LINK) A Cannot-link constraint

We believe that the addition of more constraints to thigtween two objects ando; written C'L(o;, 0;) is satisfied
data mining step can make the clustering process not obyya subspace clusterin§C' iff for every subspace cluster
more efficient but also more accurate. In Section 4, W€, D) € SC, {0;,0;} € O.
present this idea in more details.

DEFINITION 2. (MUST-LINK) A Must-link constraint be-

3.3 Post-processingThe post-processing step can haJ¥/een two objects; ando; written M L(o;, ;) is satisfied
several purposes. One of them is to identify maximal clestd & subspace clusterin§C' iff for every subspace cluster
and generate their corresponding descriptions. CLIQUE, {§ D) € SC,{0i,0;} € O or{o;,0;} N O = 0.
example, generatdsdimensional-maximal clusters by con- . . .
nectingk-dimensional dense units (obtained in the previoués The_l_fillowmg propemes shov; hov:f_ I\_/Ius;t-llnk andh
step) that have common faces. In the case@EUSTER the annot-link constraints can be used to efficiently prune the

applied closed set mining algorithm computes a closed Se?gymeratlon of the subspace clusters.

bins astso?llatsd to ta clos_ed ISEthqlf ObJeCt.Sd’ b.Ut s;)hmed(_)f trﬁ%PERTM.l. The Cannot-link constrainCL(o;,0;) is
can actualy be not maximal whie considening the dimely_ yonotonic wrt. ¢ VP C O {o;,0;} ¢ O =
sions instead of the bins computed on them. Therefore, nzg; 0;} ¢ P

maximal subspace clusters are removed in a post-processing ’ '

step. . . PROPERTY4.2. The Must-link constraint\/ L(o;, 0;) is a

At the end of this step, the maximal clusters are dgsjunction of a monotonic and a anti-monotonic constrgint
scribed as a paifO, D) whereQ is a set of objects anf? a ¢ . {0:,0;} C O'is monotonic ando;,0;} N O = () is
set of bins of different dimensions (subspace). In the casesgti-monotonic:

NCLUSTER, the binsb;; are substituted by the correspond-
ing original dimensionl;. For example, the maximal cluster e VP C O: {0;,0;} C P = {0;,0;} CO
({bn, bgl}, {017 02, 03}) becomes{{dl, dg}, {017 02, 03}).

This step can also be used to prune redundant subspace
clusters or those that, for example, do not fulfill certain
constraints that could not be efficiently enforced into ﬂﬁL(
mining process (e.g., hon-monotonic constraints).

VP C O: {O%O(j}ﬂO:@@{Oi,Olj}ﬂP:@

Property 4.1 states that to fulfill the constraint
0;,05), we should look for subspace clusters where the
objectso; and o; are never present together. Sincé:-a

4 Constraint-based Subspace Clustering Algorithm dlmensmnal gluster_ can never cc_)ntam more object_s than any
of its k — 1-dimensional projections, the Cannot-link con-

In this section, we present SC4NER, a data mining algo- straint is anti-monotonic.
rithm that mines subspace clusters under instance-level co  property 4.2 states that to fulfill the constraint

straints and can be integrated into the common framewoykr, o, o,), we should look for subspace clusters where the

presented in the previous section. _ objectso; ando; are either both present or both absent. If one
“As pointed out in Subsection 3.2, the exploitation ¢ff the objects is present but not the other, the subspace clus

anti-monotonic constraints within the existing subspdes-c ey is not relevant. As fo€'L(0;, 0;), since ak-dimensional



cluster can never contain more objects than any df itsl- e the coupleY = (O’, D’) contains the objects and the
dimensional projections, the Must-link constraint is a-dis  bins that still have to be enumerated.
junction of an anti-monotonic constraint;(@ndo; are in the
same subspace cluster) and a monotonic constraint (objecfs . N . .
o; ando, are never present in the same subspace cluster). cIo;eness constraint, which is neither monotonic nor

However, the efficient use of these constraints may de- anti-monotonic. ~ These elements have already been
pend on the enumeration process of the algorithms. Indeed, enumerated as elements that 9'0 not belong to any
algorithms such as SUBCLU [19] or DUSC [5] directly subspace cluster under construction.
detect clusters in the enumerated subspace by applying a
DBSCAN:-like algorithm. As a consequence, IL constrainfggorithm 1 SC-MINER ((X,Y,N))
should be pushed directly into that algorithm. This has ai—if not PRUNE((X, Y, N)) then
ready been tackled, for example, in C-DBSCAN [26] and ¢y _ (0, 0) then
will not be developed in this paper. Instead, we focus on the output’X — (0, D)
family of algorithms which partition the data beforehand. else ’

As mentioned in Subsection 3.2, the existing bottom-up Choose from Y
techniques use a (closed) itemset mining algorithm to enu- SC-MINER((X, Y \ {a}, N U {a}))
merate the possible subspace clusters. Usual itemsetgninin PROPAGATION(X, Y)
algorithms (e.g., Apriori [3]), however, do not handle anti SC-MINER((X U {a}, Y \ {a}, N))
monotonic constraints together with monotonic constsaint end if
since pushing monotone constraints can lead to a reductiop,q i
of anti-monotone pruning [17, 10]. However, the computa-
tion of subspace cluste(®, D) satisfying IL constraints re-
quires the use of monotonic and anti-monotonic constrairrlltt%
on the set of bind as well as on the object sét

the coupleN = (On,Dy) is used to ensure the

The pseudo-code of the algorithm is given in Algo-
m 1. At the first line, the pruning function BRNE) pre-
In this context we have thus decided to extend ['57_ented in Subsection 4.2 is called to check if the recursion

MINER [6], a closed-set mining algorithm that can taKBrocess can be stopped. If the recursion is not stopped, the

. . second test evaluates if there are still elements to be earume
into account both types of constraints, towards SGK, ated. If not, the candidate is a valid subspace cluster that

which handles IL constraints and enumerates both bln% : .
and objects. We opted to mine only closed itemsets g hus output. Otherwise, an elements picked up from
) ' P y ' & or D’ and the function is recursively called twice: once

avoid redundant subspaces that can occur with prev'%%outainthe candidate and its descendants, and once with

techniques. )
Observe that the proposed extension can be applie(fl‘t(%n both callsa is removed front’, but before the second

either density or distance-based bottom-up algorithmsgsi one, the RopAGATIONfunction is called to push the IL con-

) - traints as explained in Subsection 4.3.
it affects only the data mining step of the whole framework. . .

: : ) . Subspace clusters are made of maximal sets of objects
Moreover, the current exploited anti-monotonic constsin

can still be considered here and bins that are in relation: each object@imust belong
' to the k-dimensional unit defined by) and each bin of

D must contain every object ap. This is also handled

4.1 Candidate generationThe core technique used b . .
SC-MINER to handle IL constraints is based on the “dividg?_y the function called ROPAGATION (see Subsection 4.3).

., . . . The couple of setsV is used in the RUNE function to
and-conquer” generic algorithm proposed in [6, 14]. In a . .
. . . ensure that the subspace clusters are maximal, as explained
nutshell, SC-MNER recursively enumerates, in depth-ﬂrs? .
manner, all subspace clusté¢s, D) that contain an element"" Subsecno_n 4.2.
SRR ' For the first callX = (,0) andY = (O, B), whereO
(object or bin)a, and then all subspace clusters that do not - . . .

; . X IS the original set of objects ariglis the whole set of bins.
containa. During the enumeration process, elements that
have qlready been enumerated are dlffe_rentlated to thg opgs Pruning Let us now explain how the density-based
that still have to be enumerated. To this end, we defmest%s ace constraint and th&nCluster constraint are
candidate of the enumeration process by a tripltY, N) P

composed of three couples of sets: checked in SC-MNER.
P P ' SC-MINER algorithm can push monotonic and anti-

e the coupleX = (O, D) is the set of objects and themonotonic constraints on the set of objects or on the set of
set of bins contained in the candidate and its descdams. This interesting property relies on the fact thatpfro
dants (those obtained by recursive calls). These efegiven candidatéX,Y, ), the subspace clustef®;, D;)
ments have already been enumerated as members ofltlae can be generated are those that satisfy:
subspace clusters under construction. OCO;COuO andD C D; CDUD’



As in many data mining algorithms, the contraposition didate(X U{o;},Y \ {o;}, N) is generated, theAFor
of the monotonic and anti-monotonic constraints is checked AGATION function automatically removes from Y.

to eventually stop the recursion process and thus prune the ) )
search space: e For a Must-link constrainfi/ L(o;, 0;), when the can-

didate(X U{o0;},Y \ {0;}, N) is generated, thedoP-

e Recall that if g is monotone,A and B sets, thus AGATION function automatically pushes; in X and
VA C B —q(B) = —q(A). In SC-MINER, the removes the element from’ that are not in relation
monotonic constraints are evaluated on the couple of ith 0;. When the candidatgX, Y \ {o;}, N U {0;})
sets(O U O, D U D'), abbreviated in the following by s generated, theRPAGATION function automatically
X UY. If the evaluation of the constraint ok U Y’ removes also; from Y.

is false (g(X UY)), we have the guarantee that every
subspace cluster generated from this candidate can be Next, we provide some experiments on the usefulness of
pruned since none of them satisfiesFor example, if the proposed algorithm to improve the techniques CLIQUE
{0i,0;} € (O U O'), then{o;,0,} does not belong to andNCLUSTER We show that the use of Must-Link and
any subset 0® U O’ and consequently to any subspadeannot-Link constraints increases the relevance of the com
clusters that are under construction. puted subspace clusters. We also show that these constraint
o ) enable the computation of such clusters in some contexts
Recall that ifq is anti-monotoneA and B sets, thus \yhere it would not be possible for the aforementioned tech-

VA C B: —q(A) = —¢(B). In SC-MINER, anti- ni?ues to provide any results.
monotone constraints are evaluated on the couple o

setsX = (0,D). If ¢(X) is false, we have theg Experimental Results

uarantee that every subspace cluster generated ftgm . . . . L
9 y P 9 ?qg\és experimental section aims at investigating the advan-

this candidate can be pruned since none of them satis f the or d contributions with r - istin
q. For example, if0;,0;} N O # 0, we have{o;, 0;} N ages of the proposed co utions v espect 1o €ys
/ subspace clustering methods. In particular, we would tike t
0; #0,vO; COUO'. . ) i
answer five main questions:
The density-based subspace constraint consists in con- ) )
sidering binset¢0, D) that have a density greater thane. 1+ Does the generation of frequent closed patterns instead

101 > o. This constraint is monotonic w.r.tZ and thus if of frequent patterns modify the performance of the

0] ) CLIQUE [2] method?
|O U 0’| < o x |0, the function RUNE returntrue. The QUE [2] metho

constraint ensuring thd0, D) forms a binset (i.e. whether 2 Does the use of instance-level constraints influence the

there existe € O andd € D such thato andd are not in efficiency of existing subspace clustering methods?
relation in the dataset) is guaranteed by BROPAGATION
function (see Subsection 4.3). 3. Does the use of instance-level constraints influence the

As explained in [22], theé-nCluster are closed binsets  quality of the resulting subspace clustering?
supported by a minimum number of objeets. SC-MINER ) ) )
algorithm checks the closeness constraint by ensuring thdr D0€S SC-MNER scale on real high-dimensional data?
every element that has been discarded during the candidaée_z Does the use of instance-level constraints lead to the
generation process cannot be added to the current candidate computation of meaningful clusters?
i.e. it has to check whether each such elementyinis not
in relation with at least one element &f U Y. Otherwise, To answer these questions, we have implemented three
the candidate and all its descendants are not closed (si@espace clustering methods.
this element fromV can be added to form a larger binset
having the same support) and they can be safely prunes® CLIQUE: the original technique described in [2] re-

Furthermore, ifO U 0’| < m,., the function RUNE return implemented in C++ using the implementation of
true. APRIORI available in'.

e SC-CLIQUE: an extension of CLIQUE that uses SC-

4.3 Propagation SC-MINER ensures thatO, D) is a bin- MINER to handle IL. constraints.

set in the following way: when an elememis enumerated

and put inX, the PROPAGATION function removes all the , scNCLUSTER an extension oNCLUSTER that also

elements ol that are not in relation with in the dataset. uses SC-NNER, with which the search of subspace
Furthermore, theROPAGATIONtakes advantages of the  ¢jysters can be guided by IL constraints.

two IL constraints as described below:

e For a Cannot-link constrair¥L(o;, 0;), when the can- ~ Thttp://www.adrem.ua.ac.be/goethals/software/



Notice again that the implementation differences betweleythe entropy:

SC-CLIQUE and SONCLUSTER only lie in the pre- &
processing and post-processing phases as discussed in gefy H(C)=— Zp(i‘c) -log(p(i|C))
tion 3. i=1

All experiments were done on a Pentium 3 with 2 qu{fi
a

of memory running on Linux. We used four real benchma E(;rg ég (E)';:)th':itiheclgégpgrr]té%n ?r:eort:terﬁtserc}?)ftztiaf:e?éit
datasets with numerical attributes and a real gene eXpms’%‘lasses. For readability, the authors of [5] take the irevers

dataset, called ARsmoDIUM [11]. The characteristics of L S :
the benchmark datasets and the gene expression datase%naygpy_ and normalize it by dividing it by the maximum
presented in Subsections 5.1 and 5.2, respectively. entropy:
For every dataset, we only consider the descriptive §-2) (1—-H(C)/log(k))
tributes for clustering, while the class attribute is usedr

der to generate IL constraints. As in [28], the constraings a To obtain the global quality value for a subspace cluster-

generated as follows: two instances are picked up at rand o e compute the average entropy of each subspace clus-

If they belong to the same class, then the constraint becorzﬁe]r W:)'(g?éigebsyi:r:ﬁ nLé?;t;i:aOfeObﬁgttiscgetLZg?ﬁgicjmcgﬁti;
a must-link constraint; if they belong to two different das ., P P ge.

) 0 true” clusters for those datasets corresponds to the numbe
then a cannot-link constraint is generated between those tvy : .
. .~ 0 f:lasses (see Table 1). Subspace clustering algorittens, a
examples. We augment the set of constraints by adding al ; K i

. . . well as clustering algorithms for which the number of clus-
entailed constraints. In other words, for each pair of ol : :

. . ers is not given beforehand, tend to find more than one clus-
straints, we generate all the constraints that can be ddd%ce :
by transitivity: ers per class. TQ evaluate the ql_Jahty of the re_sults, ted us

' quality measure is more appropriate than looking for an ex-
act match with the true clusters.

The coveragemeasure is the percentage of objects in
any subspace cluster, which indicates the ratio of cludtere
objects to noise.

e For two constraintshM L(o;,0;) and CL(o;,0x), the As expected theoretically, Fig. 6 shows that the number
constraintC'L(o;, o) is added. of resulting subspace clusters generated by SC-CLIQUE

is always equivalent or lower than the number of clusters

5.1 Benchmark datasetsIn this section, we present thegenerated by CLIQUE. What is more surprising is that the
results obtained over the benchmark datasets, whose ehaiaglity is equivalent or higher, for the same coverage value

e For two constraintsM L(o;, 0;) and M L(o;, o), the
constraintM L(o;, o) is added.

teristics are shown in Table 1. (always 100%). On ENGIDITS, both methods provide the
same results. In the case ofAGE and Q.Ass datasets, SC-

[ Dataset | #objects| #dimensions]| #classes[ source] CLIQUE generates less subspace clusters than CLIQUE
PENDIGITS | 7494 16 10 24] when the minimum density is low with a higher quality.
IMAGE 2310 19 7 [24] Finally, on SHaPES, CLIQUE was not able to complete the
GLASS 214 9 7 [24] execution in less than two hours for a densitgf 10%.

SHAPES 160 17 9 [20] The obtained results show that enumerating only closed

itemsets is sufficient to obtain meaningful subspace aluste

Table 1: Benchmark datasets used in the experiments anwﬁ’sWh'le providing better scalability to the techniques.

corresponding characteristics. - . . -
P g 5.1.2 Efficiency In this section, we evaluate the efficiency

of the implemented methods, by comparing the number of

candidate subspace clusters generated during the enumera-
5.1.1 Non-closed vs. closed patternhis section aims at tion process, for different numbers of IL constraints. 8inc
evaluating the impact of extracting frequent closed itdmséhe IL constraints are picked randomly, the results are-aver
instead of frequent itemsets in the CLIQUE algorithm. Taged for60 different runs with different random constraints.
evaluate the results, we compare the number of resultifaple 2 shows the thresholds set for each dataset according
subspace clusters as well as the quality of the resultimgthe methods. We opted to consider low densit{SC-
clustering generated by CLIQUE and SC-CLIQUE. CLIQUE) andsé (SCANCLUSTER) thresholds in order to get

As in [5], the resulting clustering is evaluated in terma reasonable number of final subspace clusters and, conse-

of quality and coverage. Thaquality measure takes intoquently, be able to notice the behavior of the methods when
account the purity of the subspace clustertigv.r.t. the different numbers (depending on the number of objects in the
class values and it is determined, for each subspace ¢lustataset) of IL constraints are considered.
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Figure 6: CLIQUE vs. SC-CLIQUE (without instance-level stnaints).

SC-CLIQUE clusters. The relevance of the resulting subspace clogteri
Dataset [ o | Nbbins is evaluated through the quality and coverage measures
PEIND'S'TS g-i;zf’ 140 presented in Subsection 5.1.1. Figures 9 and 10 show the
MAGE . (1] .
GLAss 0T% 0 ::;giﬁgg{?med for SC-CLIQUE and SUGLUSTER,
SHAPES 1.25% 4 )
SCNCLUSTER Observe that the quality of the resulting clustering in-

Dataset | & | m, [ m creases along with the number of constraints, in almost all
PENDIGITS | 0.1% | 80 | 2 experiments. The only exception is SUSLUSTER over
IMAGE 075% | 20 | 2 the IMAGE dataset. In this case, some small fluctuations

2
2

GLASS 0.02% | 20 in the quality values can be observed: adding Must-Link or
SHAPES | 1.75% | 10 Cannot-Link constraints slightly increases or decreases t
quality of the clustering. This can be explained by the fact
tk?at the constraints are randomly generated, pruning a&high
or'lower number of subspace clusters depending on the dis-
tribution of the data.
It is also worth noting that, as depicted in Figures 7 and
8, the use of IL constraints enables a significant reduction o
Figures 7 and 8 show the results obtained for Se number of generated subspace clusters.
CLIQUE and SCNCLUSTER, respectively. Observe that  \ye can therefore conclude that the new constraints en-
SC-NCLUSTER, by allowing overlapping bins, generategpje the extraction of a smaller collection of subspace-clus

more candidates. Nevertheless, for both methods, the nyghs that are of higher quality than those extracted without
ber of candidates generated decreases in inverse prapoiighsidering them.

to the number of IL constraints. As aresult, we can conclude concerning the coverage values, we can see that Must-

that IL constraints are useful, in addition to other mon@ton i,k and Cannot-Link constraints can have an important im-
criteria, to improve the efficiency of the methods. Besidgsact: by discarding subspace clusters that do not satiségth
note that for GAss and SiApesdatasets, the difference begonstraints, this approach provides subspace clustetfiags
tween the number of candidates and the number of final sgg-not cover the whole set of objects. In our experiments,
space clusters remains equal to one order of magnitud&@sconsidered varying numbers of constraints in order to
the number of constraints increases. It is an indicatioh tha|idate the robustness of our approach. In real situation,
the new constraints are useful to prune the search space iy gever, an expert would have provided a lower number of
significant way. constraints.
In summary, we can conclude that IL constraints im-

5.1.3  Quality and Coverageln this section, we eva'“?‘te?lemented in both a density-based and a distance-based sub-
whether the use of IL constraints leads to more meaningful

Table 2: Thresholds used for the computation of Figures
8,9 and 10.
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Figure 7: SC-CLIQUE: number of candidates and resultingpabe clusters as the number of instance-level constraints
increases.
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Figure 8: SCNCLUSTER number of candidates and resulting subspace clusters asithber of instance-level constraints
increases.

space clustering methods can improve the relevance of th 100
resulting subspace clustering. ’—'\\ /
24 30 36 42 4

5.2 Gene Expression Datasetn this section, we aim at
answering the two last questions posed at the beginnin
of Section 5. To this end, we ran experiments over a F e

real high dimensional gene expression data, calledsP X [ 12 18
MODIUM [11], which measures the transcriptome of the in- merozoite Time points (hours)

traerythrocytic developmental cycle of the Plasmodium Fal " oo °"

ciparum, a parasite that causes the human malaria. For our

experiments, we consider 46 biological Sa”.‘p'es (4_6 objec ure 11: Major developmental phases of Plasmodium
Each sample corresponds o the expression profiles of Jé\%ciparum parasites (drawing from [11]). The three curves
gg?ee dszir?faas%(za‘)cl:;iitltci’;:fpsot:g? c‘:fa{r?es'fs\}g;’:;?evr\]’f;;\ﬁépresent the percentage of parasites (y-axis) that aleat t
After the invasion of the red blood cells, the development%]ng’ Trophozoite, or Schizont phase, at every time point.

cycle is divided into three phases: the Ring (until f7é"
i i i i th i i -
fume point), Trophozoite (until t_h@9 time point) and Sch tice the behavior of the subspace clustering methods when
izont phases, as shown on Figure 11. These three phaqsﬁs : ;
determine the class of each of the samples Ifférent numbers of IL constraints are considered.
' As shown in Figure 12, for both methods, the number

521 Scalability To evaluate the scalability of our pro_of final subspace clusters dt_ecreases in inverse proportion

. to the number of IL constraints. As a consequence, the
posed algorithm, we ran SC-CLIQUE and SN\GLUSTER . . S

}otal execution time also decreases, which indicates the

over the RASMODIUM dataset using different numbers 0|mprovement in efficiency offered by the methods with the

IL constraints. Again, the thresholds were set so as to no- .
uSe of the new constraints.

Considering the quality of the final clustering, SC-
CLIQUE was able to extract subspace clusters with higher
quality and higher coverage than those extracted by SC-

8

2The selected genes are known to play an important role in telafe
mental cycle of the Plasmodium.
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Figure 10: SCNCLUSTER quality (%) and coverage (%) as the number of instancd-tmmstraints increases.

NCLUSTER. This can be justified by the fact that, for thision, the subspace clusters that contained at least 35 dimen
experiment, SONCLUSTER generates a high number obions, that is, 35 genes. We obtained 26 different such sub-
overlapping bins, which contributes to the low quality argpace clusters having a quality of 77.18% and a coverage of
coverage of the final clustering. Yet, for both methods, t194.30%. Each subspace cluster contained consecutive sam-
quality of the resulting clustering increases along with tiples. Seven of these subspace clusters concerned samples
number of constraints. corresponding to the Ring phase, two corresponding to the

In order to also evaluate how efficient SC-CLIQUE (th&rophozoite phase, eight were pure Schizont subspace clus-
best implementation for the experiments done in this seytiders and finally nine were Schizont samples plus the two ini-
was in comparison to CLIQUE, we ran both algorithms witthal samples.
the same parameters (number of bins set to 4 and minimum Table 3 presents the average number of genes (according
densityo set to 26%), providing 50 randomly generated cotn their corresponding functional group) present in each of
straints for SC-CLIQUE. Not surprisingly, CLIQUE wagdhe selected subspace clusters (grouped by the correspond-
not able to finish the computation, running out of memoigg developmental phase they concern). The values that
while generating candidates of size This is mainly due to match the biological knowledge, illustrated in Figure 11& a
the fact that CLIQUE does not prune as many candidatesradold. We can observe that the subspace clusters gath-
SC-CLIQUE, as SC-CLIQUE takes advantage of IL corred genes whose functions are known to be important in
straints and uses a more efficient enumeration stratedy, tha corresponding developmental phase. For instance, the
is, it enumerates objects as well as bins. cytoplasmic translation and the transcription machineey a

known to be active in the Ring and early Trophozoite phases.

5.2.2 Evaluation of Computed Subspace Cluster3his The proteasome functions play an important role during the
section evaluates the meaningfulness of some computedphozoite phase. Analogously, the plastid genome, mito-
clusters extracted from theLRsmobDIUM data. For this chondrial, deoxynucleotide synthesis and dna replicatien
dataset, relevant subspace clusters should be of the féunctions that characterize the Schizont phase.
(O, D), whereO is a set of samples belonging to the same From this experiment, we can conclude that our pro-
class (the same developmental phase) Bral set of genes posed algorithm is capable to compute meaningful subspace
that are known to be related to the developmental phasesters over a real high-dimensional gene expression data
represented bg.

For this evaluation, we selected, from the result of SC-
CLIQUE in the last experiment reported in the previous sec-
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Functional Group

| Ring [ Trophozoite [ Schizont| Schizont+beginning|

cytoplasmic translation 15,000 10,500 9,375 13,045
transcription machinery 4,143 3,500 1,875 2,331
proteasome 2,286 3,500 2,0 2,981
ribonucleotide synthesis | 1,143 15 0,625 1,513
actin myosin motility 0,143 1,000 0,875 1,195
mitochondrial 0,143 15 0,625 1,968
deoxynucleotide synthesis 0,000 0,000 1,250 0,000
dna replication 2,143 2,000 5,00 4,558
plastid genome 1,286 1,0 1,75 0,481
glycolytic pathway 0,000 0,500 2,000 1,955
merozoite invasion 10,714 5,000 7,625 3,792

100

90

85

80

75

[Coverage]

Table 3: Average number of genes of a given functional graupe selected subspace clusters. The subspace clusters are
identified by the developmental phase they concern.
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