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Constraint-based Subspace Clustering

Elisa Fromont∗ Adriana Prado† Céline Robardet‡

Abstract

In high dimensional data, the general performance of tradi-
tional clustering algorithms decreases. This is partly because
the similarity criterion used by these algorithms becomes
inadequate in high dimensional space. Another reason is
that some dimensions are likely to be irrelevant or contain
noisy data, thus hiding a possible clustering. To overcome
these problems, subspace clustering techniques, which can
automatically find clusters in relevant subsets of dimensions,
have been developed. However, due to the huge number of
subspaces to consider, these techniques often lack efficiency.
In this paper we propose to extend the framework of bottom-
up subspace clustering algorithms by integrating background
knowledge and, in particular, instance-level constraintsto
speed up the enumeration of subspaces. We show how this
new framework can be applied to both density and distance-
based bottom-up subspace clustering techniques. Our exper-
iments on real datasets show that instance-level constraints
cannot only increase the efficiency of the clustering process
but also the accuracy of the resultant clustering.

1 Introduction

Clustering techniques are widely used unsupervised classifi-
cation techniques to discover groupings of similar objectsin
data. However, when the dimensionality of the data become
too high, usual criteria to define similarity between objects
based on distance or density become irrelevant [1]. Besides,
some dimensions may be too noisy to clearly identify clus-
ters in the original data. Subspace clustering techniques have
been developed to overcome these problems. The idea, re-
lated to feature selection or dimension reduction, is to look
for clusters in subsets of dimensions.

Subspace clustering techniques have been successfully
applied to text mining [18] and gene expression analysis
[19]. In these applications, the user may already have some
knowledge of how the clustering should be, although he or
she may not have enough labeled examples to use a super-
vised classification method. As pointed out in [15], there ex-
ist many ways to describe or constraint a clustering of inter-
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est, for example: the expected number of clusters, the mini-
mal or maximal cluster size, weights for different objects and
dimensions, constraints on the clustering parameters (den-
sity threshold, chosen distance function, entropy threshold
etc.), but also instance-level constraints, such asMust-link
(two objects must be in the same cluster) andCannot-link
(two objects must be in different clusters), are useful to take
into account user’s preferences or background knowledge on
a subject. With these two last constraints, the algorithm be-
comes semi-supervised.

To the best of our knowledge, there exist no constraint-
based subspace clustering algorithms, in particular semi-
supervised subspace algorithms, even though the integration
of instance-level constraints in traditional clustering algo-
rithms has proven to be successful in [30, 21, 7, 28, 26] and
for another type of semi-supervised clustering in [9]. In this
context, the aim of this work is to investigate how instance-
level constraints can influence the subspace clustering pro-
cess, making it not only more efficient but also more accu-
rate. Towards this goal, we propose to extend the common
framework of bottom-up subspace clustering algorithms by
integrating instance-level constraints into the mining pro-
cess. The extended framework is able to consider several
evaluation criteria (e.g. density, distance) in order to identify
meaningful clusters in the data.

The article is organized as follows. The next section
is dedicated to the related work on the subject. Section 3
describes a common framework for subspace clustering and
shows how constraints can be added to this framework. Sec-
tion 4 presents a data mining algorithm called SC-MINER,
which can mine subspace clusters under instance-level con-
straints, and shows how it can be applied to density-based
and distance-based subspace clustering techniques. Section
5 shows some results which prove that the integration of con-
straints into the bottom-up subspace clustering techniques
can improve not only their efficiency but also the quality of
the resultant clustering. The last section presents some con-
clusions and future work.

2 Related work

In [25], Parson et al. give a survey of many subspace clus-
tering techniques. These techniques can be divided into two
categories. Top-down subspace clustering techniques start
with an initial approximation of the clusters in the full fea-



ture space and iteratively refine the clustering by assigning a
weight to each of the dimensions. These techniques do not
guarantee to find the best clustering and tend to find only
hyper-spherical clusters [25].

On the contrary, bottom-up subspace clustering algo-
rithms start by first detecting interesting clusters in low-
dimensional subspaces according to (grid-based) density cri-
teria [2, 23, 12, 27, 19, 5] or a distance measure [22]. The
subspace clusters(O,D) whereO is a set of objects andD a
subspace,i.e. a set of dimensions (attributes), are then itera-
tively merged to form higher-dimensional subspace clusters.
The bottleneck of these algorithms is the NP-completeness
of the enumeration of the subspace clusters. To make the
bottom-up algorithms more efficient, strong constraints have
to be pushed in the enumeration process to prune large parts
of the search space.

All existing subspace clustering algorithms use input
parameters that can be seen as constraints. For example,
CLIQUE [2] uses a threshold on the minimum density a
cluster can have. Although small changes in these param-
eters might completely change the resulting clustering, the
values of these thresholds are typically never known in ad-
vance by the user. On the other hand, more intuitive user
constraints, such as knowledge of the a-priori grouping of
some objects within clusters has, to the best of our knowl-
edge, not yet been taken into account in subspace cluster-
ing. These constraints, known as instance-level constraints
(IL constraints), were introduced in [30] and successfully
applied to different traditional partitioning or agglomerative
clustering algorithms, [21, 7, 26] and predictive clustering
trees [28] as well. The authors have shown that although the
constraints increase the complexity of the algorithms [13],
they allow to obtain clusters that are more meaningful.

In the remainder of this paper we focus on bottom-up
subspace clustering algorithms since their exhaustive con-
sideration of the search space allow us to answer constraint
user queries without uncertainty.

3 Common Framework for Constraint-based Subspace
Clustering

Subspace clustering aims at identifying subspace projections
of the original dataset,i.e. sets of attributes or intervals
within the range of the attributes, where relevant clustersof
objects can be found.

In this section, we describe a common framework for
subspace clustering that motivates the constraint-based algo-
rithm proposed in the next section. As depicted in Figure
1, most of the bottom-up subspace clustering algorithms can
be described in terms of a (facultative) pre-processing phase
that prepares the data, a data mining phase that mines for
clusters and a (facultative) post-processing phase to merge
clusters or remove the redundant ones.

In the following, we call S a raw dataset where

Raw dataset

d1 d2

o1 1 1
o2 2 1
o3 2 2
o4 1 4
o5 3 1
o6 4 1
o7 3 2
o8 4 2
o9 3 3
o10 4 4

Grid
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b22
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3 o9

b21
2 o3 o7 o8
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Figure 2: Raw dataset and its resulting partitioning with 2
bins per dimension using CLIQUE.

O = {o1, o2, . . . , om} is a set of objects andD =
{d1, d2, . . . , dn} a set of symbolic or continuous attributes
also called dimensions.

3.1 Pre-processingThe pre-processing step mainly con-
cerns algorithms which first partition the raw dataset into
a (flexible) grid suitable to be used as input by standard
itemset mining algorithms (e.g. Apriori [3], Eclat [31], Fp-
growth [16]). In this case, a new binary data table is created.
The dimensions of the raw data are partitioned into intervals,
called bins, which are the attributes of this new table.

The partitioning process depends on the subspace clus-
tering algorithms. For example, grid-based algorithms, such
as CLIQUE [2] and its successors (e.g. [23, 12, 27]) start
by discretizing each dimension into bins. The number of
bins can be user-defined [2, 12, 27] or based on the distri-
bution of the data [23]. Thejth bin of the dimensiondi is
denoted bybij , i ∈ [1, n], j ∈ [1, pi], wherepi is the num-
ber of bins of the dimensiondi. The resulting partitioning
of the original data space can be seen as a multi-dimensional
grid, where the intersection of exactly one of the bins of ev-
ery dimension is called a unit:u = b1l × · · · × bnq where
l ∈ [1, p1], q ∈ [1, pn]. A k−dimensional unit is a unit
created by intersectingk bins fromk different dimensions.
Figure 2 represents the partitioning of the given raw dataset
made by CLIQUE when the number of bins is2. In this ex-
ample, unit{b11, b21} contains three objects, namelyo1, o2

ando3.
After the partitioning, the raw dataset is encoded into a

Boolean dataset that states the presence or absence of each
object in each of the units. Figure 3 shows the pre-processed
dataset constructed by CLIQUE from the grid illustrated in
Figure 2. It is worth noting that the pre-processed dataset
can be constructed in a different format, such as the vertical
format used by SCHISM [27].

Distance-based subspace clustering algorithms, such
as NCLUSTER [22], first compute the distance between
each object pairs on each dimension. For each dimension
di, two different objects are within the same set if the
distance between them on that dimension is below a user-
defined thresholdδ × R (whereR is the range length ofdi).



Figure 1: Framework for bottom-up subspace clustering algorithms.

Boolean Dataset for CLIQUE
b11 b12 b21 b22

o1 1 0 1 0
o2 1 0 1 0
o3 1 0 1 0
o4 1 0 0 1
o5 0 1 1 0
o6 0 1 1 0
o7 0 1 1 0
o8 0 1 1 0
o9 0 1 0 1
o10 0 1 0 1

Figure 3: Boolean dataset constructed by CLIQUE, from
the grid in Figure 2.

The number of maximal sets that can be created for each
dimensiondi determines the number of bins ofdi. Figure
4 shows the bins created byNCLUSTER, with δ = 0.5, for
the raw dataset in Figure 2. In this example, dimensionsd1

andd2 have3 bins each. Observe that some objects can end
up in multiple bins if they are close to multiple other sets
of objects in the same dimension. For instance, objecto2 is
within bins b11 andb12. In this case, we say that the bins
are overlapping. In [22], the authors also consider an input
parameter to control the overlap between bins.

bins object sets
b11 {o1, o2, o3, o4}
b12 {o2, o3, o5, o7, o9}
b13 {o5, o6, o7, o8, o9, o10}
b21 {o1, o2, o3, o5, o6, o7, o8}
b22 {o3, o7, o8, o9}
b23 {o4, o9, o10}

Figure 4: Bins constructed byNCLUSTER, for the raw
dataset in Figure 2.

Again, the raw dataset is finally encoded into a Boolean
table where the Boolean values state the presence or absence
of each object in every bin. The corresponding table is shown
in Figure 5.

Note that both distance and density-based approaches
can be adapted to the use of symbolic dimensions by creating

Boolean Dataset for NCLUSTER

b11 b12 b13 b21 b22 b23
o1 1 0 0 1 0 0
o2 1 1 0 1 0 0
o3 1 1 0 1 1 0
o4 1 0 0 0 0 1
o5 0 1 1 1 0 0
o6 0 0 1 1 0 0
o7 0 1 1 1 1 0
o8 0 0 1 1 1 0
o9 0 1 1 0 1 1
o10 0 0 1 0 0 1

Figure 5: Boolean dataset constructed byNCLUSTER, from
the bins in Figure 4.

one bin for each different value of each dimension.

3.2 Data Mining Bottom-up algorithms start by enumer-
ating the relevant 1-dimensional subspaces and iteratively
generate higher dimensional ones that satisfy the cluster cri-
teria [2, 23, 12, 27, 19, 5, 22]. To make the enumeration pro-
cess efficient, the criteria should consist in anti-monotonic
constraints that are used to prune the search space.

When the dimensions have been partitioned beforehand
(see Subsection 3.1), the enumeration is, in fact, not done on
subspaces but on candidate subspace clusters. A subspace
cluster is a k-dimensional unit that has, for example in the
case of density-based clustering, a high density of objects.
The density constraint is provided to the algorithms. If we
regard the pre-processed dataset as transactional data, then
mining fork−dimensional dense units reduces to the task of
mining frequentk−itemsets [3]. In our case, the transaction
set is equal to the object setO and the items are the previ-
ously computed bins. In the following, instead of using the
term itemset, we will denote the output of this mining task
by binset. A k−dimensional unit with density greater thanσ
can be viewed as a frequent binset of sizek with a frequency
greater thanσ. We can observe that as bins do not overlap,
two different bins of the same dimension cannot occur in the
same frequent binset and thus the computed frequent binset
can be viewed as a densek−dimensional unit. CLIQUE



takes advantage of the anti-monotonic property of the den-
sity constraint: if ak dimensional space is dense, then any of
its (k − 1)-dimensional subspaces is also dense [2].

In the case of the distance-based algorithm, the bins
may overlap. This can result in more bins than in the
density-based approaches, increasing the complexity of the
algorithm. To overcome this problem,NCLUSTER directly
mines for maximal clusters, by adopting a closed itemset
mining strategy [29]. NCLUSTER uses the following anti-
monotonic property: if a set of objectsO and a set of bins
D form a δ − nCluster (i.e. for every two objectsow and
oz of O and every binbij ∈ D, ow andoz are neighbors
w.r.t. the distance measure ondi and the thresholdδ), thenO
forms aδ−nCluster with every subset ofD andD forms a
δ−nCluster with every subset ofO. Additionally, it regards
a subspace cluster as being meaningful if it is composed by
mr objects andmc dimensions (mc andmr are provided to
the algorithm).

We believe that the addition of more constraints to this
data mining step can make the clustering process not only
more efficient but also more accurate. In Section 4, we
present this idea in more details.

3.3 Post-processingThe post-processing step can have
several purposes. One of them is to identify maximal clusters
and generate their corresponding descriptions. CLIQUE, for
example, generatesk-dimensional-maximal clusters by con-
nectingk-dimensional dense units (obtained in the previous
step) that have common faces. In the case ofNCLUSTER, the
applied closed set mining algorithm computes a closed set of
bins associated to a closed set of objects, but some of them
can actually be not maximal while considering the dimen-
sions instead of the bins computed on them. Therefore, non-
maximal subspace clusters are removed in a post-processing
step.

At the end of this step, the maximal clusters are de-
scribed as a pair(O,D) whereO is a set of objects andD a
set of bins of different dimensions (subspace). In the case of
NCLUSTER, the binsbij are substituted by the correspond-
ing original dimensiondi. For example, the maximal cluster
({b11, b21}, {o1, o2, o3}) becomes({d1, d2}, {o1, o2, o3}).

This step can also be used to prune redundant subspace
clusters or those that, for example, do not fulfill certain
constraints that could not be efficiently enforced into the
mining process (e.g., non-monotonic constraints).

4 Constraint-based Subspace Clustering Algorithm

In this section, we present SC-MINER, a data mining algo-
rithm that mines subspace clusters under instance-level con-
straints and can be integrated into the common framework
presented in the previous section.

As pointed out in Subsection 3.2, the exploitation of
anti-monotonic constraints within the existing subspace clus-

tering algorithms increases their efficiency, by pruning the
search space. For existing bottom-up subspace clustering
algorithms, the few constraints currently considered do not
attempt to increase the accuracy of the final clustering by
integrating expert knowledge, since they are mainly related
to the parameters of the algorithms, not taking into account
external information. Motivated by this need, we propose
to extend the common framework for bottom-up subspace
clustering techniques, by integrating IL constraints suchas
Must-link and Cannot-link constraints into the data mining
step, so as to obtain not only more efficient algorithms but
also more accurate results. These two constraints enable the
end-user to guide the unsupervised subspace clustering task
by adding some expert knowledge.

In a subspace clustering, we formally define these con-
straints as follows:

DEFINITION 1. (CANNOT-LINK ) A Cannot-link constraint
between two objectsoi andoj writtenCL(oi, oj) is satisfied
by a subspace clusteringSC iff for every subspace cluster
(O,D) ∈ SC, {oi, oj} * O.

DEFINITION 2. (MUST-LINK ) A Must-link constraint be-
tween two objectsoi andoj written ML(oi, oj) is satisfied
by a subspace clusteringSC iff for every subspace cluster
(O,D) ∈ SC, {oi, oj} ⊆ O or {oi, oj} ∩ O = ∅.

The following properties show how Must-link and
Cannot-link constraints can be used to efficiently prune the
enumeration of the subspace clusters.

PROPERTY4.1. The Cannot-link constraintCL(oi, oj) is
anti-monotonic w.r.t. ⊆: ∀P ⊆ O: {oi, oj} * O ⇒
{oi, oj} * P .

PROPERTY4.2. The Must-link constraintML(oi, oj) is a
disjunction of a monotonic and a anti-monotonic constraints
w.r.t. ⊆. {oi, oj} ⊆ O is monotonic and{oi, oj} ∩ O = ∅ is
anti-monotonic:

• ∀P ⊆ O: {oi, oj} ⊆ P ⇒ {oi, oj} ⊆ O

• ∀P ⊆ O: {oi, oj} ∩ O = ∅ ⇒ {oi, oj} ∩ P = ∅

Property 4.1 states that to fulfill the constraint
CL(oi, oj), we should look for subspace clusters where the
objectsoi and oj are never present together. Since ak-
dimensional cluster can never contain more objects than any
of its k − 1-dimensional projections, the Cannot-link con-
straint is anti-monotonic.

Property 4.2 states that to fulfill the constraint
ML(oi, oj), we should look for subspace clusters where the
objectsoi andoj are either both present or both absent. If one
of the objects is present but not the other, the subspace clus-
ter is not relevant. As forCL(oi, oj), since ak-dimensional



cluster can never contain more objects than any of itsk − 1-
dimensional projections, the Must-link constraint is a dis-
junction of an anti-monotonic constraint (oi andoj are in the
same subspace cluster) and a monotonic constraint (objects
oi andoj are never present in the same subspace cluster).

However, the efficient use of these constraints may de-
pend on the enumeration process of the algorithms. Indeed,
algorithms such as SUBCLU [19] or DUSC [5] directly
detect clusters in the enumerated subspace by applying a
DBSCAN-like algorithm. As a consequence, IL constraints
should be pushed directly into that algorithm. This has al-
ready been tackled, for example, in C-DBSCAN [26] and
will not be developed in this paper. Instead, we focus on the
family of algorithms which partition the data beforehand.

As mentioned in Subsection 3.2, the existing bottom-up
techniques use a (closed) itemset mining algorithm to enu-
merate the possible subspace clusters. Usual itemset mining
algorithms (e.g., Apriori [3]), however, do not handle anti-
monotonic constraints together with monotonic constraints,
since pushing monotone constraints can lead to a reduction
of anti-monotone pruning [17, 10]. However, the computa-
tion of subspace clusters(O,D) satisfying IL constraints re-
quires the use of monotonic and anti-monotonic constraints
on the set of binsD as well as on the object setO.

In this context, we have thus decided to extend D-
M INER [6], a closed-set mining algorithm that can take
into account both types of constraints, towards SC-MINER,
which handles IL constraints and enumerates both bins
and objects. We opted to mine only closed itemsets, to
avoid redundant subspaces that can occur with previous
techniques.

Observe that the proposed extension can be applied to
either density or distance-based bottom-up algorithms, since
it affects only the data mining step of the whole framework.
Moreover, the current exploited anti-monotonic constraints
can still be considered here.

4.1 Candidate generationThe core technique used by
SC-MINER to handle IL constraints is based on the “divide-
and-conquer” generic algorithm proposed in [6, 14]. In a
nutshell, SC-MINER recursively enumerates, in depth-first
manner, all subspace clusters(O,D) that contain an element
(object or bin)a, and then all subspace clusters that do not
containa. During the enumeration process, elements that
have already been enumerated are differentiated to the ones
that still have to be enumerated. To this end, we define a
candidate of the enumeration process by a triplet〈X,Y,N〉
composed of three couples of sets:

• the coupleX = (O,D) is the set of objects and the
set of bins contained in the candidate and its descen-
dants (those obtained by recursive calls). These ele-
ments have already been enumerated as members of the
subspace clusters under construction.

• the coupleY = (O′,D′) contains the objects and the
bins that still have to be enumerated.

• the coupleN = (ON ,DN ) is used to ensure the
closeness constraint, which is neither monotonic nor
anti-monotonic. These elements have already been
enumerated as elements that do not belong to any
subspace cluster under construction.

Algorithm 1 SC-MINER (〈X,Y,N〉)

if not PRUNE(〈X,Y,N〉) then
if Y = (∅, ∅) then

output X = (O,D)
else

Choosea from Y
SC-MINER(〈X,Y \ {a}, N ∪ {a}〉)
PROPAGATION(X,Y )
SC-MINER(〈X ∪ {a}, Y \ {a}, N〉)

end if
end if

The pseudo-code of the algorithm is given in Algo-
rithm 1. At the first line, the pruning function (PRUNE) pre-
sented in Subsection 4.2 is called to check if the recursion
process can be stopped. If the recursion is not stopped, the
second test evaluates if there are still elements to be enumer-
ated. If not, the candidate is a valid subspace cluster that
is thus output. Otherwise, an elementa is picked up from
O′ or D′ and the function is recursively called twice: once
withouta in the candidate and its descendants, and once with
a. In both calls,a is removed fromY , but before the second
one, the PROPAGATIONfunction is called to push the IL con-
straints as explained in Subsection 4.3.

Subspace clusters are made of maximal sets of objects
and bins that are in relation: each object ofO must belong
to the k-dimensional unit defined byD and each bin of
D must contain every object ofO. This is also handled
by the function called PROPAGATION (see Subsection 4.3).
The couple of setsN is used in the PRUNE function to
ensure that the subspace clusters are maximal, as explained
in Subsection 4.2.

For the first call,X = (∅, ∅) andY = (O,B), whereO
is the original set of objects andB is the whole set of bins.

4.2 Pruning Let us now explain how the density-based
subspace constraint and theδ-nCluster constraint are
checked in SC-MINER.

SC-MINER algorithm can push monotonic and anti-
monotonic constraints on the set of objects or on the set of
bins. This interesting property relies on the fact that, from
a given candidate〈X,Y,N〉, the subspace clusters(Oi,Di)
that can be generated are those that satisfy:

O ⊆ Oi ⊆ O ∪ O′ andD ⊆ Di ⊆ D ∪ D′



As in many data mining algorithms, the contraposition
of the monotonic and anti-monotonic constraints is checked
to eventually stop the recursion process and thus prune the
search space:

• Recall that if q is monotone,A and B sets, thus
∀A ⊆ B: ¬q(B) ⇒ ¬q(A). In SC-MINER, the
monotonic constraints are evaluated on the couple of
sets(O ∪ O′,D ∪ D′), abbreviated in the following by
X ∪ Y . If the evaluation of the constraint onX ∪ Y
is false (¬q(X ∪ Y )), we have the guarantee that every
subspace cluster generated from this candidate can be
pruned since none of them satisfiesq. For example, if
{oi, oj} * (O ∪ O′), then{oi, oj} does not belong to
any subset ofO ∪O′ and consequently to any subspace
clusters that are under construction.

• Recall that ifq is anti-monotone,A and B sets, thus
∀A ⊆ B: ¬q(A) ⇒ ¬q(B). In SC-MINER, anti-
monotone constraints are evaluated on the couple of
sets X = (O,D). If q(X) is false, we have the
guarantee that every subspace cluster generated from
this candidate can be pruned since none of them satisfies
q. For example, if{oi, oj}∩O 6= ∅, we have{oi, oj}∩
Oi 6= ∅, ∀Oi ⊆ O ∪ O′.

The density-based subspace constraint consists in con-
sidering binsets(O,D) that have a density greater thanσ i.e.
|O|
|O| ≥ σ. This constraint is monotonic w.r.t.⊆ and thus if
|O ∪ O′| < σ × |O|, the function PRUNE returntrue. The
constraint ensuring that(O,D) forms a binset (i.e. whether
there existso ∈ O andd ∈ D such thato andd are not in
relation in the dataset) is guaranteed by thePROPAGATION

function (see Subsection 4.3).
As explained in [22], theδ-nCluster are closed binsets

supported by a minimum number of objectsmr. SC-MINER

algorithm checks the closeness constraint by ensuring that
every element that has been discarded during the candidate
generation process cannot be added to the current candidate,
i.e. it has to check whether each such element, inN , is not
in relation with at least one element ofX ∪ Y . Otherwise,
the candidate and all its descendants are not closed (since
this element fromN can be added to form a larger binset
having the same support) and they can be safely pruned.
Furthermore, if|O ∪ O′| < mr, the function PRUNE return
true.

4.3 Propagation SC-MINER ensures that(O,D) is a bin-
set in the following way: when an elementa is enumerated
and put inX, the PROPAGATION function removes all the
elements ofY that are not in relation witha in the dataset.

Furthermore, thePROPAGATIONtakes advantages of the
two IL constraints as described below:

• For a Cannot-link constraintCL(oi, oj), when the can-

didate〈X ∪{oi}, Y \ {oi}, N〉 is generated, the PROP-
AGATION function automatically removesoj from Y .

• For a Must-link constraintML(oi, oj), when the can-
didate〈X ∪{oi}, Y \ {oi}, N〉 is generated, the PROP-
AGATION function automatically pushesoj in X and
removes the element fromD′ that are not in relation
with oj . When the candidate〈X,Y \ {oi}, N ∪ {oi}〉
is generated, the PROPAGATION function automatically
removes alsooj from Y .

Next, we provide some experiments on the usefulness of
the proposed algorithm to improve the techniques CLIQUE
and NCLUSTER. We show that the use of Must-Link and
Cannot-Link constraints increases the relevance of the com-
puted subspace clusters. We also show that these constraints
enable the computation of such clusters in some contexts
where it would not be possible for the aforementioned tech-
niques to provide any results.

5 Experimental Results

This experimental section aims at investigating the advan-
tages of the proposed contributions with respect to existing
subspace clustering methods. In particular, we would like to
answer five main questions:

1. Does the generation of frequent closed patterns instead
of frequent patterns modify the performance of the
CLIQUE [2] method?

2. Does the use of instance-level constraints influence the
efficiency of existing subspace clustering methods?

3. Does the use of instance-level constraints influence the
quality of the resulting subspace clustering?

4. Does SC-MINER scale on real high-dimensional data?

5. Does the use of instance-level constraints lead to the
computation of meaningful clusters?

To answer these questions, we have implemented three
subspace clustering methods.

• CLIQUE: the original technique described in [2] re-
implemented in C++ using the implementation of
APRIORI available in1.

• SC-CLIQUE: an extension of CLIQUE that uses SC-
M INER to handle IL constraints.

• SC-NCLUSTER: an extension ofNCLUSTER that also
uses SC-MINER, with which the search of subspace
clusters can be guided by IL constraints.

1http://www.adrem.ua.ac.be/˜goethals/software/



Notice again that the implementation differences between
SC-CLIQUE and SC-NCLUSTER only lie in the pre-
processing and post-processing phases as discussed in Sec-
tion 3.

All experiments were done on a Pentium 3 with 2 Giga
of memory running on Linux. We used four real benchmark
datasets with numerical attributes and a real gene expression
dataset, called PLASMODIUM [11]. The characteristics of
the benchmark datasets and the gene expression dataset are
presented in Subsections 5.1 and 5.2, respectively.

For every dataset, we only consider the descriptive at-
tributes for clustering, while the class attribute is used in or-
der to generate IL constraints. As in [28], the constraints are
generated as follows: two instances are picked up at random.
If they belong to the same class, then the constraint becomes
a must-link constraint; if they belong to two different classes
then a cannot-link constraint is generated between those two
examples. We augment the set of constraints by adding all
entailed constraints. In other words, for each pair of con-
straints, we generate all the constraints that can be deduced
by transitivity:

• For two constraintsML(oi, oj) and ML(oi, ok), the
constraintML(oj , ok) is added.

• For two constraintsML(oi, oj) and CL(oi, ok), the
constraintCL(oj , ok) is added.

5.1 Benchmark datasetsIn this section, we present the
results obtained over the benchmark datasets, whose charac-
teristics are shown in Table 1.

Dataset #objects #dimensions #classes source

PENDIGITS 7494 16 10 [24]
IMAGE 2310 19 7 [24]
GLASS 214 9 7 [24]
SHAPES 160 17 9 [20]

Table 1: Benchmark datasets used in the experiments and its
corresponding characteristics.

5.1.1 Non-closed vs. closed patternsThis section aims at
evaluating the impact of extracting frequent closed itemsets
instead of frequent itemsets in the CLIQUE algorithm. To
evaluate the results, we compare the number of resulting
subspace clusters as well as the quality of the resulting
clustering generated by CLIQUE and SC-CLIQUE.

As in [5], the resulting clustering is evaluated in terms
of quality and coverage. Thequality measure takes into
account the purity of the subspace clusteringC w.r.t. the
class values and it is determined, for each subspace cluster,

by the entropy:

(5.1) H(C) = −
k∑

i=1

p(i|C) · log(p(i|C))

where p(i|C) is the proportion of objects ofC that are
labeled by theith class andk, the number of different
classes. For readability, the authors of [5] take the inverse
entropy and normalize it by dividing it by the maximum
entropy:

(5.2) (1 − H(C)/ log(k))

To obtain the global quality value for a subspace cluster-
ing, we compute the average entropy of each subspace clus-
ter weighted by the number of objects per subspace cluster
and expresses it in percentage. Notice that the number of
“true” clusters for those datasets corresponds to the number
of classes (see Table 1). Subspace clustering algorithms, as
well as clustering algorithms for which the number of clus-
ters is not given beforehand, tend to find more than one clus-
ters per class. To evaluate the quality of the results, the used
quality measure is more appropriate than looking for an ex-
act match with the true clusters.

The coveragemeasure is the percentage of objects in
any subspace cluster, which indicates the ratio of clustered
objects to noise.

As expected theoretically, Fig. 6 shows that the number
of resulting subspace clusters generated by SC-CLIQUE
is always equivalent or lower than the number of clusters
generated by CLIQUE. What is more surprising is that the
quality is equivalent or higher, for the same coverage value
(always 100%). On PENGIDITS, both methods provide the
same results. In the case of IMAGE and GLASS datasets, SC-
CLIQUE generates less subspace clusters than CLIQUE
when the minimum densityσ is low with a higher quality.
Finally, on SHAPES, CLIQUE was not able to complete the
execution in less than two hours for a densityσ of 10%.

The obtained results show that enumerating only closed
itemsets is sufficient to obtain meaningful subspace cluster-
ing while providing better scalability to the techniques.

5.1.2 Efficiency In this section, we evaluate the efficiency
of the implemented methods, by comparing the number of
candidate subspace clusters generated during the enumera-
tion process, for different numbers of IL constraints. Since
the IL constraints are picked randomly, the results are aver-
aged for60 different runs with different random constraints.
Table 2 shows the thresholds set for each dataset according
to the methods. We opted to consider low densityσ (SC-
CLIQUE) andδ (SC-NCLUSTER) thresholds in order to get
a reasonable number of final subspace clusters and, conse-
quently, be able to notice the behavior of the methods when
different numbers (depending on the number of objects in the
dataset) of IL constraints are considered.
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Figure 6: CLIQUE vs. SC-CLIQUE (without instance-level constraints).

SC-CLIQUE
Dataset σ Nb bins

PENDIGITS 0.67% 10
IMAGE 0.43% 4
GLASS 0.47% 20
SHAPES 1.25% 4

SC-NCLUSTER

Dataset δ mr mc

PENDIGITS 0.1% 80 2
IMAGE 0.75% 20 2
GLASS 0.02% 20 2
SHAPES 1.75% 10 2

Table 2: Thresholds used for the computation of Figures 7,
8, 9 and 10.

Figures 7 and 8 show the results obtained for SC-
CLIQUE and SC-NCLUSTER, respectively. Observe that
SC-NCLUSTER, by allowing overlapping bins, generates
more candidates. Nevertheless, for both methods, the num-
ber of candidates generated decreases in inverse proportion
to the number of IL constraints. As a result, we can conclude
that IL constraints are useful, in addition to other monotonic
criteria, to improve the efficiency of the methods. Besides,
note that for GLASS and SHAPESdatasets, the difference be-
tween the number of candidates and the number of final sub-
space clusters remains equal to one order of magnitude as
the number of constraints increases. It is an indication that
the new constraints are useful to prune the search space in a
significant way.

5.1.3 Quality and CoverageIn this section, we evaluate
whether the use of IL constraints leads to more meaningful

clusters. The relevance of the resulting subspace clustering
is evaluated through the quality and coverage measures
presented in Subsection 5.1.1. Figures 9 and 10 show the
results obtained for SC-CLIQUE and SC-NCLUSTER,
respectively.

Observe that the quality of the resulting clustering in-
creases along with the number of constraints, in almost all
experiments. The only exception is SC-NCLUSTER over
the IMAGE dataset. In this case, some small fluctuations
in the quality values can be observed: adding Must-Link or
Cannot-Link constraints slightly increases or decreases the
quality of the clustering. This can be explained by the fact
that the constraints are randomly generated, pruning a higher
or lower number of subspace clusters depending on the dis-
tribution of the data.

It is also worth noting that, as depicted in Figures 7 and
8, the use of IL constraints enables a significant reduction of
the number of generated subspace clusters.

We can therefore conclude that the new constraints en-
able the extraction of a smaller collection of subspace clus-
ters that are of higher quality than those extracted without
considering them.

Concerning the coverage values, we can see that Must-
Link and Cannot-Link constraints can have an important im-
pact: by discarding subspace clusters that do not satisfy these
constraints, this approach provides subspace clusteringsthat
do not cover the whole set of objects. In our experiments,
we considered varying numbers of constraints in order to
validate the robustness of our approach. In real situation,
however, an expert would have provided a lower number of
constraints.

In summary, we can conclude that IL constraints im-
plemented in both a density-based and a distance-based sub-
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Figure 7: SC-CLIQUE: number of candidates and resulting subspace clusters as the number of instance-level constraints
increases.
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Figure 8: SC-NCLUSTER: number of candidates and resulting subspace clusters as the number of instance-level constraints
increases.

space clustering methods can improve the relevance of the
resulting subspace clustering.

5.2 Gene Expression DatasetIn this section, we aim at
answering the two last questions posed at the beginning
of Section 5. To this end, we ran experiments over a
real high dimensional gene expression data, called PLAS-
MODIUM [11], which measures the transcriptome of the in-
traerythrocytic developmental cycle of the Plasmodium Fal-
ciparum, a parasite that causes the human malaria. For our
experiments, we consider 46 biological samples (46 objects).
Each sample corresponds to the expression profiles of 476
genes2 of a population of such parasites, which were eval-
uated in a specific time point of the developmental cycle.
After the invasion of the red blood cells, the developmental
cycle is divided into three phases: the Ring (until the17th

time point), Trophozoite (until the29th time point) and Sch-
izont phases, as shown on Figure 11. These three phases
determine the class of each of the samples.

5.2.1 Scalability To evaluate the scalability of our pro-
posed algorithm, we ran SC-CLIQUE and SC-NCLUSTER

over the PLASMODIUM dataset using different numbers of
IL constraints. Again, the thresholds were set so as to no-

2The selected genes are known to play an important role in the develop-
mental cycle of the Plasmodium.

Figure 11: Major developmental phases of Plasmodium
Falciparum parasites (drawing from [11]). The three curves
represent the percentage of parasites (y-axis) that are at the
Ring, Trophozoite, or Schizont phase, at every time point.

tice the behavior of the subspace clustering methods when
different numbers of IL constraints are considered.

As shown in Figure 12, for both methods, the number
of final subspace clusters decreases in inverse proportion
to the number of IL constraints. As a consequence, the
total execution time also decreases, which indicates the
improvement in efficiency offered by the methods with the
use of the new constraints.

Considering the quality of the final clustering, SC-
CLIQUE was able to extract subspace clusters with higher
quality and higher coverage than those extracted by SC-
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Figure 9: SC-CLIQUE: quality (%) and coverage (%) as the number of instance-level constraints increases.
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Figure 10: SC-NCLUSTER: quality (%) and coverage (%) as the number of instance-level constraints increases.

NCLUSTER. This can be justified by the fact that, for this
experiment, SC-NCLUSTER generates a high number of
overlapping bins, which contributes to the low quality and
coverage of the final clustering. Yet, for both methods, the
quality of the resulting clustering increases along with the
number of constraints.

In order to also evaluate how efficient SC-CLIQUE (the
best implementation for the experiments done in this section)
was in comparison to CLIQUE, we ran both algorithms with
the same parameters (number of bins set to 4 and minimum
densityσ set to 26%), providing 50 randomly generated con-
straints for SC-CLIQUE. Not surprisingly, CLIQUE was
not able to finish the computation, running out of memory
while generating candidates of size5. This is mainly due to
the fact that CLIQUE does not prune as many candidates as
SC-CLIQUE, as SC-CLIQUE takes advantage of IL con-
straints and uses a more efficient enumeration strategy, that
is, it enumerates objects as well as bins.

5.2.2 Evaluation of Computed Subspace ClustersThis
section evaluates the meaningfulness of some computed
clusters extracted from the PLASMODIUM data. For this
dataset, relevant subspace clusters should be of the form
(O,D), whereO is a set of samples belonging to the same
class (the same developmental phase) andD a set of genes
that are known to be related to the developmental phase
represented byO.

For this evaluation, we selected, from the result of SC-
CLIQUE in the last experiment reported in the previous sec-

tion, the subspace clusters that contained at least 35 dimen-
sions, that is, 35 genes. We obtained 26 different such sub-
space clusters having a quality of 77.18% and a coverage of
91.30%. Each subspace cluster contained consecutive sam-
ples. Seven of these subspace clusters concerned samples
corresponding to the Ring phase, two corresponding to the
Trophozoite phase, eight were pure Schizont subspace clus-
ters and finally nine were Schizont samples plus the two ini-
tial samples.

Table 3 presents the average number of genes (according
to their corresponding functional group) present in each of
the selected subspace clusters (grouped by the correspond-
ing developmental phase they concern). The values that
match the biological knowledge, illustrated in Figure 13, are
in bold. We can observe that the subspace clusters gath-
ered genes whose functions are known to be important in
the corresponding developmental phase. For instance, the
cytoplasmic translation and the transcription machinery are
known to be active in the Ring and early Trophozoite phases.
The proteasome functions play an important role during the
Trophozoite phase. Analogously, the plastid genome, mito-
chondrial, deoxynucleotide synthesis and dna replicationare
functions that characterize the Schizont phase.

From this experiment, we can conclude that our pro-
posed algorithm is capable to compute meaningful subspace
clusters over a real high-dimensional gene expression data.
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Figure 12: SC-CLIQUE and SC-NCLUSTER over a real high-dimensional gene expression data.

Functional Group Ring Trophozoite Schizont Schizont+beginning

cytoplasmic translation 15,000 10,500 9,375 13,045
transcription machinery 4,143 3,500 1,875 2,331
proteasome 2,286 3,500 2,0 2,981
ribonucleotide synthesis 1,143 1,5 0,625 1,513
actin myosin motility 0,143 1,000 0,875 1,195
mitochondrial 0,143 1,5 0,625 1,968
deoxynucleotide synthesis 0,000 0,000 1,250 0,000
dna replication 2,143 2,000 5,00 4,558
plastid genome 1,286 1,0 1,75 0,481
glycolytic pathway 0,000 0,500 2,000 1,955
merozoite invasion 10,714 5,000 7,625 3,792

Table 3: Average number of genes of a given functional group in the selected subspace clusters. The subspace clusters are
identified by the developmental phase they concern.

6 Conclusion

In this paper, we proposed to extend the common frame-
work of bottom-up subspace clustering techniques to also
consider instance-level constraints during the enumeration
process. This type of constraints enables the end-user to
guide the unsupervised subspace clustering task by adding
some expert knowledge. The new framework was applied
to both density and distance-based bottom-up subspace clus-
tering techniques. Experimental results provided evidence
that the proposed framework can increase not only the effi-
ciency of the techniques but also the quality of the resulting
subspace clustering.

We believe that our proposed exhaustive constraint-
based subspace clustering algorithm can be successfully in-
tegrated in an inductive database framework [8] as it allows
to give an exact answer to a large range of user-defined
queries when dealing with high-dimensional data. To give
even more flexibility to the user, all the constraints men-
tioned in the introduction of this paper should be imple-
mented as parameters to our constraint-based subspace clus-
tering algorithm. Furthermore, the constraint generation
used in this article makes our algorithm sensitive to possi-
ble noise in the data. Constraints directly given by a user
will reduce this sensitivity. In the presence of noise, the use
of soft constraints [4] could also improve our performance.
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