Communication Dans Un Congrès Année : 2006

Interpreting microarray experiments via co-expressed gene groups analysis

Résumé

Microarray technology produces vast amounts of data by measuring simultaneously the expression levels of thousands of genes under hundreds of biological conditions. Nowadays, one of the principal challenges in bioinformatics is the interpretation of huge data using different sources of information. We propose a novel data analysis method named CGGA (Co-expressed Gene Groups Analysis) that automatically finds groups of genes that are functionally enriched, i.e. have the same functional annotations, and are co- expressed. CGGA automatically integrates the information of microarrays, i.e. gene expression profiles, with the functional annotations of the genes obtained by the genome-wide information sources such as Gene Ontology (GO)1. By applying CGGA to well-known microarray experiments, we have identified the principal functionally enriched and co-expressed gene groups, and we have shown that this approach enhances and accelerates the interpretation of DNA microarray experiments.

Fichier principal
Vignette du fichier
Interpreting_microarray_experiments_via_Co-expressed_Gene_Groups_Analysis_Martinez_et_al._DS_2006.pdf (158.92 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence
Loading...

Dates et versions

hal-00362761 , version 1 (26-04-2010)

Licence

Identifiants

Citer

Ricardo Martinez, Nicolas Pasquier, Claude Pasquier, Lucero Lopez-Perez. Interpreting microarray experiments via co-expressed gene groups analysis. DS'2006 international conference on Discovery Science, Oct 2006, Barcelona, France. pp.316-320, ⟨10.1007/11893318_34⟩. ⟨hal-00362761⟩
516 Consultations
500 Téléchargements

Altmetric

Partager

  • More