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Abstract

Exploiting dynamic scaling and homogeneity in the bi-limit, we developp a new class of high gain observers which incorporate
a gain update law and nonlinear output error injection terms. A broader class of systems can be addressed and the observer
gain is better fitted to the incremental rate of the nonlinearities. The expected improved performance is illustrated.
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1 Introduction

We extend the standard high-gain observer (see
(Gauthier and Kupka, 2001) and references therein) in
two directions : homogeneity and gain adaptation. Our
motivation comes from considering the system :

ẋ1 = x2 , ẋ2 = f2(x1, x2, u) , y = x1 , (1)

with
f2(x1, x2, u) = g(x1)x2 + x1+p

2 + u ,

where p ≥ 0 is a real number, g is a locally Lipschitz
function and u is a known input.

When p = 0, we have :

|f2(x1, x2, u)−f2(x1, x̂2, u)| ≤ |g(x1)+1| |x2− x̂2| . (2)

The term |g(x1) + 1| is the output dependent incremen-
tal rate of the non-linearity. Systems with nonlinearities
satisfying inequalities like (2) have already been studied
in (Praly, 2003) (see also (Krishnamurthy et al., 2003))
and we know that a high gain observer can be used pro-
vided the gain is updated.

When p is in the interval (0, 1), inequality (2) becomes :

|f2(x1, x2, u) − f2(x1, x̂2, u)| ≤ (3)

(|g(x1)| + (1 + p)|x̂2|
p) |x2 − x̂2| + |x2 − x̂2|

1+p .

The term, |x2 − x̂2|
1+p is a rational power of the norm

of the error |x2 − x̂2|. To deal with this term we use
the homogeneous in the bi-limit observer introduced in
(Andrieu et al., 2008-SICON).

In the following we address the problem of state obser-
vation for systems whose dynamics admit a global ex-
plicit observability canonical form (Gauthier and Kupka,
2001, Equation (20)) in which the nonlinearities have
increments bounded as in (3). However, we restrict our
attention to estimating the state only of those solutions
which are bounded in positive time.

Our new observer uses a less conservative estimate of the
nonlinearities increments. From this we expect the possi-
bility of achieving better performance. This is confirmed
via simulations of an academic model of a bioreactor.

2 Main theoretical result

We consider systems whose dynamics are :





























ẋ1 = f1(u, y) + a1(y)x2 + δ1(t) ,
...

ẋi = fi(u, y, x2, . . . , xi) + ai(y)xi+1 + δi(t) ,
...

ẋn = fn(u, y, x2, . . . , xn) + δn(t) ,
y = x1 + δy(t) ,

(4)
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where y is the measured output in R and the functions
ai and fi are locally Lipschitz. u is a vector in R

m rep-
resenting the known inputs and a finite number of their
derivatives. The vector δ = (δ1, . . . , δn) represents the
unknown inputs and δy is a measurement noise.

To simplify notations, let :

wr = sign(w) |w|r .

so that, for instance, to recover the usual quadratic func-
tion we must write |x2| or |x|2. We let also :

S · x = (x2, . . . , xn, 0)T ,

f(u, y, x) = (f1(u, y, x), . . . , fn(u, y, x)) ,

A(y) = diag(a1(y), . . . , an(y)) ,

where an is to be selected so that (5) below holds.

Theorem 1 Suppose there exists a continuous func-
tion a satisfying, with ρ, A and A constant and for j in
{1, . . . , n},

0 < ρ ≤ a(y) , 0 < A ≤
aj(y)
a(y) ≤ A ∀y ∈ R , (5)

a real number d∞ in [0, 1
n−1 ), a positive real number c∞,

a continuous function Γ and real numbers vj in [0, 1
j−1 ),

for j = 2, . . . n, such that, for all i in {2, . . . , n} and all
(x̂, x, y, u) in R

n × R
n × R × R

m, we have :

|fi(u, y, x̂2, . . . , x̂i) − fi(u, y, x2, . . . , xi)| (6)

≤ Γ(u, y)



1 +

n
∑

j=2

|x̂j |
vj





i
∑

j=2

|x̂j − xj |

+ c∞

i
∑

j=2

|x̂j − xj |
1−d∞(n−i−1)

1−d∞(n−j) .

Then, for all sufficiently small strictly positive real
numbers b, there exists a function K such that, for all
sufficiently small strictly positive real number ϕ1 and
sufficiently large real numbers ϕ2 and ϕ3, we can find
functions βW and βL of class KL and functions γW and
γL of class K such that the observer

˙̂x = A(y)Sx̂ + f(u, y, x̂) + L LA(y)K
(

x̂1−y
Lb

)

, (7)

L̇ = L [ϕ1(ϕ2 − L) + ϕ3 Ω(u, y, x̂)] , (8)

with :

Ω(u, y, x̂) = Γ(u, y)



1 +
n
∑

j=2

|x̂j |
vj



 , (9)

L = diag(Lb, . . . , Ln+b−1) , (10)

initialized with L(0) ≥ ϕ2, has the following property :
For each solution t 7→ x(t) of (4) right maximally defined
on [0, T ), the observer solution is defined on the same
interval and the error estimate e = x̂ − x satisfies :

|L(t)−1
e(t)| ≤ βW

(

L(0)−1
e(0), t

)

(11)

+ sup
s∈[0,t]

γW

(∣

∣

∣

∣

∣

(

δ(s)
ϕ2

a(y(s))δy(s)

)∣

∣

∣

∣

∣

)

∀t ∈ [0, T )

where L satisfies :

L(t) ≤ 4ϕ2 + βL

((

e(0)
L(0)

)

, t

)

(12)

+ sup
s∈[0,t]

γL















∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣















δ(s)
ϕ2

a(y(s))δy(s)

Γ(u(s), y(s))

x(s)















∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣















.

2.1 Discussion on the assumptions

The form (4) is a particular case of the implicit form
obtained in (Gauthier and Kupka, 2001, Equation (20)).
The functions ai and fi in (4), are not uniquely defined.
We can get other functions by changing coordinates and,
in this way, possibly satisfy conditions (6).

To understand the meaning of (6), we observe that, for
any C1 function f , there exist always two functions ℧

and ∆ such that we have :

|f(a, b + c) − f(a, b)| ≤ ℧(a, b) |c| + ∆(c) .

Hence, in essence, (6) imposes two restrictions :
– the function Ω, defined in (9), is a bound on the local

incremental rate ℧.
– a fractional power limitation, 1−d∞(n−i−1)

1−d∞(n−j) with d∞ in

[0, 1
n−1 ), on the growth of ∆ which bounds function

increments for large argument increments.

For system (1), inequality (3) is in the form (6) with
d∞ = p, Γ(u, y) = (|g(y)| + 1 + p) and v2 = p. Hence,
Theorem 1 applies when p is in the interval [0, 1). Ac-
tually, when p > 1 and u = 0, there does not exist any
observer guaranteeing convergence of the estimation er-
ror within the domain of existence of the solutions (see
(Astolfi and Praly, 2006, Proposition 1)).

2.2 Discussion on the result

With (11) and (12) but with the presence of sups |x(s)|,
Theorem 1 says that the observer (7),(8) gives, at least
for bounded solutions, an estimation error converging to
a ball centered at the origin and with radius depending
on the asymptotic L∞-norm of the disturbances δ and
δy and therefore converging to the origin if these distur-
bances are vanishing.

Although we restrict our attention to bounded solutions,
we are not back to the global Lipschitz case since the
“Lipschitz constant” is solution dependent and therefore
unavailable for observer design. It has to be learned on
line and this is what L is doing in (8). The update law for
L is very similar to the one introduced in (Praly, 2003)
(see also (Krishnamurthy et al., 2003)). The difference
is in the fact that (8) depends also on x̂ and u and not
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only on y and we need the restrictions on vj to deal with
this dependence on x̂.

If Ω were differentiable along the solutions, the update
law (8) would give :

˙︷ ︷

L −

(

ϕ2 +
ϕ3

ϕ1
Ω

)

= ϕ3

ϕ1
Ω̇ − ϕ1L

[

L −
(

ϕ2 + ϕ3

ϕ1
Ω
)]

.(13)

This says that L would track ϕ2 + ϕ3

ϕ1
Ω up to an error

proportional to the magnitude of Ω̇. We expect improved
performance from this tracking property (see Section 3).

2.3 Comparison with published results

High gain observers have a long history. The prototype
result is (Gauthier and Kupka, 2001, Theorem 6.2.2). It
deals with systems admitting an observability canonical
representation more general than (4) by being implicit
in xi+1. But there the right hand side of inequality (6)

is supposed to be Γ
∑i

j=2 |x̂j − xj | with Γ constant.

The case where Γ may depend on u and y can be handled
with updating the gain as in (8). This extends what
can be found in (Praly, 2003) when the ai are constant
and in (Krishnamurthy et al., 2003) when the ai are y-
dependent.

The idea of having homogeneous (in the classical
weighted sense) correction terms has been introduced
in (Qian, 2005) for a pure chain of integrator, i.e. when
the ai’s are constant and the fi are zero.

Another observer is proposed in (Lei et al., 2005), for
systems with bounded solutions and admitting the same
form (4) with the ai’s constant and f1 = . . . = fn−1 = 0
but with no restriction on fn. However this is obtained
by having a gain which grows monotonically with time
along the solutions.

3 Discussion and illustration

To illustrate the interest for applications of our observer
and the tracking property noticed in (13), we consider
the same “academic” bioreactor as the one studied in
(Gauthier et al., 1992). Its dynamics are described, in
normalized variables and time, by the Contois model :

η̇1 =
η1η2

~η1 + η2
−uη1 , η̇2 = −

η1η2

~η1 + η2
+u(1−η2) (14)

where y = η1 is measured. The parameter ~ is a positive
real number and the control input u is in the interval
Mu = [umin, umax] ⊂ (0, 1). In (Gauthier et al., 1992),
it is observed that the following set is forward invariant :

Mη = {(η1, η2) ∈ R
2 : η1 ≥ ǫ1, η2 ≥ ǫ2, η1 + η2 ≤ 1} ,

where, ǫ1 = (1−umax)ǫ2
~umax

, and umin ≥ ǫ2
~(1−ǫ2)+ǫ2

. This

guarantees that the bioreactor state remains in a known
compact set.

Following (Gauthier et al., 1992), we change the coordi-
nates as :

(η1, η2) 7→ (x1, x2) = F (η1, η2) =

(

η1,
η1η2

~η1 + η2

)

.

with x evolving in Mx = F (Mη). In these new coordi-
nates the system is in the explicit observability canoni-
cal form :

ẋ1 = x2 − u x1 , ẋ2 = f2(x1, x2, u) , y = η1 ,

with,

f2(x1, x2, u) = m0 + m1x2 + m2x
2
2 + m3x

3
2 (15)

where :

m0 = u
~

, m1 = −u − 1
~
− 2 u

~x1
,

m2 = 2
~x1

+ u
~x2

1
, m3 = ~−1

~x2
1

.

Note that, for all (x1, x2, u) in Mx ×Mu, we have :

x2(x1) = x1
ǫ2

~x1+ǫ2
≤ x2 ≤ x1

1−x1

1−x1+~x1
= x2(x1) .

Hence, without loss of generality, to evaluate f2 in (15),
we can replace (x1, x2) by (x1s, x2s) defined as

x1s = max{ǫ1, min{1 − ǫ2, x1}} ,

x2s = max{x2(x1s), min{x2(x1s), x2}}

and therefore assume that f2 is globally Lipschitz.

For a nominal high gain observer, as in (Gauthier et
al., 1992), the nonlinearity increment is bounded as :

|f2(x1, x2, u) − f2(x1, x̂2, u)| ≤ df2max |x2 − x̂2| .

where, from the Mean Value Theorem,

df2 max = max
(u,x1,x2)∈Mu×Mx

|m1 + 2m2x2 + 3m3x
2
2| .

For an updated high gain observer, the bound is :

|f2(x1, x2, u) − f2(x1, x̂2, u)| ≤ Ω1(u, x1, x̂2) |x2 − x̂2| ,

with

Ω1(u, x1, x̂2) =

max
x2∈[x2(x1s),x2(x1s)]

|m1 + [m2 + m3x̂2](x̂2 + x2) + m3x
2
2| .

x̂2s = max {x2(x1s), min {x2(x1s), x̂2}} .

It follows that Theorem 1 applies with d∞ = c∞ = 0.

Finally for our observer with both updated gain and
rational power error term, the bound is :

|f2(x1, x2, u) − f2(x1, x̂2, u)|

≤ Ω2(u, x1, x̂2) |x2 − x̂2| + c∞|x2 − x̂2|
1+p ,

with p in (0, 1) and where

Ω2(u, x1, x̂2) = max
x2∈[x2(x1s),x2(x1s)]

|m1 + x̂p
2([m2 + m3x̂2][x̂

1−p
2 + x1−p

2 ] + m3x
2−p
2 )])|

c∞ = max
(u,x1,x2,x̂2)∈Mu×Mx×[x

2
(ǫ1),x2(1−ǫ2)]

|(m2 + m3x̂2)x
1−p
2 + m3x

2−p
2 |

3
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Fig. 1. Approximations of the local incremental rates

In this case, Theorem 1 gives the following observer :




























˙̂x1 = x̂2 − u y − L1+b q1

(

ℓ1
[x̂1 − y]

Lb

)

,

˙̂x2 = f2(y, x̂2s, u)

− L2+b q2

(

ℓ2 q1

(

ℓ1
[x̂1−y]

Lb

))

,

L̇ = L [ϕ1 (ϕ2 − L) + ϕ3 Ω2(u, y, x̂2s)] ,

where q1(s) = s + s
1

1−p , q2(s) = s + s1+pand b, ϕi

and ℓi are parameters to be chosen.

Since we have, for all (x1, x2, u) in Mx ×Mu,

∂f2

∂x2
(x1, x2, u) ≤ Ω2(u, x1, x2) ≤ Ω1(u, x1, x2) ≤ df2 max

we expect the updated high gain observer to give better
performance than the one without adaptation, and the
new one proposed in this paper to give even better be-
havior in particular in presence of measurement noise.

3.1 Simulations

We illustrate the behavior of the observers with simu-
lations. But this is no more than an illustration and we
do not claim that our observer is the best one for this
particular application 1 .

The control input is selected as :

u(t) = 0.410 if t < 10 , = 0.02 if 10 ≤ t < 20 ,

= 0.6 if 20 ≤ t < 35 , = 0.1 if 35 ≤ t .

From this we have chosen umin = 0.01 and umax = 0.7
and ǫ1 and ǫ2 accordingly. Also, we have introduced two
disturbances :
– the measurement disturbance is a Gaussian white

1 A simple copy (without correction term) gives an observer
which is not sensitive to measurement noise but on the other
hand we cannot assign its speed of convergence.
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Fig. 2. Estimation error η2 − η̂2 given by each observer.

noise with standard deviation equal to 10% of the η1

domain [ǫ1, 1 − ǫ2], i.e. = 0.05.
– a 20% error in ~. The value used for the system (14)

is 1, whereas the one in the observers is 0.8

For the observers we have used the following values :

p = 0.9 , b = 0.410 ,

ϕ1 = 0.03 , ϕ2 = 1 , ϕ3 = 3 , ℓ1 = 0.01 , ℓ2 = 0.01 .

Figure 1 shows the values of the estimates of the local
incremental rate of f2 (i.e. ∂f2

∂x2
), df2max for the high-gain

observer, Ω1 for an updated high-gain observer, and Ω2

for a homogeneous updated high-gain observer. In spite
of the measurement noise, the predicted order df2 max ≥
Ω1 ≥ Ω2 ≥ ∂f2

∂x2
is observed in the mean.
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Figure 2 displays the plot of the estimation error η2− η̂2,
given by the observers with constant gain deduced from
df2max (top), with adapted gain deduced from Ω1 (mid-
dle), and with adapted gain deduced from Ω2 and homo-
geneity (bottom). In the three cases there is a bias, due
to the error in ~, which increases with the estimates of
the local incremental rate. We see also a strong correla-
tion between the standard deviation of the error η̂2 − η2

and the magnitude of these estimates respectively used,
i.e. df2 max, Ω1 and Ω2. As expected the best result is
given by the new observer based on Ω2.

4 Proof of Theorem 1

Theorem 1 is proved in Subsection 4.3. It needs some
prerequisite summarized now and which can be found in
(Andrieu et al., 2008-SICON).

4.1 Homogeneous approximation

Given a vector r = (r1, . . . , rn) in (R+/{0})n, we define
the dilation of a vector x in R

n as

λr ⋄ x = (λr1 x1, . . . , λrn xn)
T

.

Definition 1

• A continuous function φ : R
n → R is said homo-

geneous in the 0-limit (respectively ∞-limit) with
associated triple (r0, d0, φ0) (resp. (r∞, d∞, φ∞)),
where r0 (resp. r∞) in (R+/{0})n is the weight, d0

(resp. d∞) in R+ the degree and φ0 : R
n → R (resp.

φ∞ : R
n → R) the approximating function, if φ0

(resp. φ∞) is continuous and not identically zero and,
for each compact set C in R

n and each ε > 0, there
exists λ∗ such that we have :

max
x∈C

∣

∣

∣

∣

φ(λr0 ⋄ x)

λd0
− φ0(x)

∣

∣

∣

∣

≤ ε ∀λ ∈ (0, λ∗].

(respectively

max
x∈C

∣

∣

∣

∣

φ(λr∞ ⋄ x)

λd∞

− φ∞(x)

∣

∣

∣

∣

≤ ε ∀λ ∈ [λ∗, +∞) . )

• A vector field f =
∑n

i=1 fi
∂

∂xi
is said homoge-

neous in the 0-limit (resp. ∞-limit) with associ-
ated triple (r0, d0, f0) (resp. (r∞, d∞, f∞)), where
f0 =

∑n
i=1 f0,i

∂
∂xi

(resp. f∞ =
∑n

i=1 f∞,i
∂

∂xi
), if, for

each i in {1, . . . , n}, the function fi is homogeneous
in the 0-limit (resp. ∞-limit) with associated triple
(r0, d0 + r0,i, f0,i)

2 .

Definition 2 A continuous function φ : R
n → R (or a

vector field f) is said homogeneous in the bi-limit if it is
homogeneous in the 0-limit and in the ∞-limit.

2 In the case of a vector field the degree d0 can be negative
as long as d0 + r0,i ≥ 0 (resp. (r∞, d∞ + r∞,i, f∞,i)), for all
1 ≤ i ≤ n.

4.2 Homogeneous in the bi-limit observer

Consider the following chain of integrators on R
n :

Ẋ = A(t)S X , (16)

where A(t) = diag(A1(t), . . . , An(t)), is a known time
varying matrix with the Ai satisfying, with A and A con-
stant,

0 < A ≤ Ai(t) ≤ A ∀t . (17)

With d0 = 0 and d∞ arbitrary in
[

0, 1
n−1

)

, the sys-

tem (16) is homogeneous in the bi-limit with the weights
r0 = (r0,1, . . . , r0,n) and r∞ = (r∞,1, . . . , r∞,n) as :

r0,i = 1 , r∞,i = 1 − d∞ (n − i) . (18)

In (Andrieu et al., 2008-SICON), a new observer was
proposed for system (16) for the particular case where
Ai(t) = 1. Its design is done recursively together with
the one of an appropriate error Lyapunov function W
which is homogeneous in the bi-limit.

To combine this tool with gain updating we need an extra
property on W which is a counterpart of (Praly, 2003,
equation (16)) or (Krishnamurthy et al., 2003, Lemma
A1). We have :

Theorem 2 Let d∞ be in [0, 1
n−1 ), dW in [2 + d∞,∞)

and B = diag(b1, . . . , bn) with bj > 0. If (17) holds, there
exist a vector field K : R → R

n which is homogeneous
in the bi-limit with associated weights r0 and r∞, and
a positive definite, proper and C1 function W : R

n →
R+, homogeneous in the bi-limit with associated triples
(r0, dW , W0) and (r∞, dW , W∞), such that

(1) The functions W0 and W∞ are positive definite and
proper and, for each j in {1, . . . , n}, the function ∂W

∂ej

is homogeneous in the bi-limit with approximating
functions ∂W0

∂ej
and ∂W∞

∂ej
.

(2) There exist two positive real numbers c1 and c2 such
that we have, for all (t, E) in R × R

n,

∂W

∂E
(E)A(t) (S E + K(e1)) (19)

≤ −c1

(

W (E) + W (E)
dW +d∞

dW

)

,

∂W

∂E
(E)BE ≥ c2 W (E) . (20)

For proving this result, the only difference compared
with what is done in (Andrieu et al., 2008-SICON) is to
multiply Wi by a sufficiently small positive real number
σi before using it in the definition of Wi−1. The proof
is omitted due to space limitation. It can be found in
(Andrieu et al., 2008-HAL).

4.3 Proof of Theorem 1

Let A and B in Theorem 2 be (see (Praly, 2003)) :
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A(t) =
A(y(t))

a(y(t))
, B = diag(b, 1+b, . . . , n−1+b)T ,

where y(t) is the evaluation of y along a solution and b is
a positive real number satisfying, for all 1 ≤ j ≤ i ≤ n,

1 − d∞(n − i − 1)

1 − d∞(n − j)
<

i + b

j − 1 + b
<

i

j − 1
, (21)

and 0 < b <
1 − vj(j − 1)

vj

, (22)

with d∞ and vj as given in the statement of Theorem 1.

From Theorem 2, we obtain a homogeneous in the bi-
limit vector field K and a homogeneous in the bi-limit
Lyapunov function W satisfying (19) and (20). This al-
lows us to write the observer as in (7)-(8). Note that if
L(0) ≥ ϕ2 then L(t) ≥ ϕ2 for all t ≥ 0 in the domain of
definition.

Properties of the estimation error. With L given in
(10), let E = (e1, . . . , en) and τ be defined as :

E = L
−1 (x̂ − x) = L

−1
e , dτ = L dt . (23)

Since we have :
˙︷ ︷

L−1 = −L−1 L̇BL−1 ,
we get :

dE

dτ
= A(y)

[

SE + K

(

e1 −
δy

Lb

)]

− L−1L−1δ (24)

+ D(L) − L−1 dL

dτ
BE ,

with D(L) defined as

D(L) =
(

. . . , fi(u,y,x̂)−fi(u,y,x)
Li+b , . . .

)

.

Along the solutions of the system (24) we have :

dW (E)

dτ
=

∂W

∂E
(E) a(y)A(t) [SE + K(e1)] (25)

+ Tδ + Ty + TGU + TNL ,

with the notations

Tδ =−∂W
∂E

(E)L−1L−1 δ ,

Ty = ∂W
∂E

(E) a(y)A(t)
[

K
(

e1 −
δy

Lb

)

− K(e1)
]

,

TGU =−L−2 L̇ ∂W
∂E

(E)BE ,

TNL = ∂W
∂E

(E) D(L) ,

and, with (19), we have :

∂W

∂E
(E) a(y)A(t) (SE + K(e1)) (26)

≤ −c1 a(y)

(

W (E) + W (E)
dW +d∞

dW

)

.

Bounding Tδ. With weights 1 and r∞,i + d∞ for δi

Li ,

the function (E, δi

Li ) 7→ ∂W
∂ei

(E) δi

Li is homogeneous in
the bi-limit with degrees dW and dW + d∞. Also W , W0

and W∞ are positive definite. Hence (see (Andrieu et

al., 2008-SICON, Corollary 2.15)) there exists a positive
real number c3 satisfying, for any E, i and L ≥ ϕ2,

∂W

∂ei

(E)
δi

Li+b
≤

c3

nϕb
2

[

W (E) + W (E)
dW +d∞

dW

]

+
c3

nLb
Hi

(

δi

Li

)

.

where Hi : R+ → R+ is the strictly increasing, homo-
geneous in bi-limit function defined as

Hi(s) =

(

1 + |s|
dW +d∞

r
∞,i+d∞

)

|s|dW

1 + |s|dW
.

This gives :

Tδ ≤
c3

ϕb
2

[

W (E) + W (E)
dW +d∞

dW

]

+
c3

nLb

n
∑

i=1

Hi

(

δi

Li

)

.

Bounding Ty. Let ki be the ith component of K and µ
and η be the functions :

µ(δ̄) = |δ̄|dW + |δ̄|
dW +d∞

r
∞,1 ,

η(E, δ̄) =
c1

4nA

[W (E) + W (E)
dW +d∞

dW ]

−
∂W

∂ei

(E)[ki(e1 + δ̄) − ki(e1)]

From the properties of K, with the weights 1 and r∞,1

for δ̄, the functions δ̄ 7→ µ(δ̄) and (E, δ̄) 7→ η(E, δ̄) are
homogeneous in the bi-limit with degree 1 and dW +d∞
and approximating functions, respectively,

|δ̄|dW , c1

4nA
W0(E) − ∂W0

∂ei
(E)[ki,0(e1 + δ̄) − ki,0(e1)]

and

|δ̄|
dW +d∞

dW , c1

4nA
W∞(E)

dW +d∞

dW

−∂W∞

∂ei
(E)[ki,∞(e1 + δ̄) − ki,∞(e1)] .

Hence (see (Andrieu et al., 2008-SICON, Lemma 2.13))
there exists a positive real number c4 satisfying

∂W

∂ei

(E)[ki(e1 + δ̄) − ki(e1)] ≤

c1

4nA

[

W (E) + W (E)
dW +d∞

dW

]

+
c4

n

[

|δ̄|dW + |δ̄|
dW +d∞

r
∞,1

]

By letting δ̄ = −
δy

Lb , this yields :

Ty ≤
c1

4
a(y)

[

W (E) + W (E)
dW +d∞

dW

]

+ c4A a(y)





∣

∣

∣

∣

δy

Lb

∣

∣

∣

∣

dW

+

∣

∣

∣

∣

δy

Lb

∣

∣

∣

∣

dW +d∞

r
∞,1



 .

Bounding TGU . The function E 7→ ∂W
∂E

(E)BE is ho-
mogeneous in the bi-limit with associated weights r0

and r∞ and degrees dW,0 = dW,∞ = dW . Hence (see
(Andrieu et al., 2008-SICON, Corollary 2.15)) there ex-
ists a positive real number c5 satisfying :
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∂W

∂E
(E)BE ≤ c5 W (E) .

With (20) and the definition of L̇ in (8), this yields :

TGU ≤ −c2 ϕ3
Ω(u, y, x̂)

L
W (E) + c5 ϕ1 W (E) . (27)

Bounding TNL. With (6), (23) and (18) give :

|Di(L)| ≤ Ω(u, y, x̂)

i
∑

j=2

Lj−1−i|ej| (28)

+ c∞ L−i−b

i
∑

j=2

|Lb+j−1ej|
r
∞,i+d∞

r
∞,j .

With the inequalities (21) and (18), we know there exists
a strictly positive real number ǫ1 satisfying :

ϕ−ǫ1
2 ≥ L−ǫ1 ≥ L

(b+j−1)
r
∞,i+d∞

r
∞,j

−i−b
∀L ≥ ϕ2 ≥ 1 .

Consequently, for all L ≥ ϕ2 ≥ 1, we have :

|Di(L)| ≤
Ω(u, y, x̂)

L

i
∑

j=2

|ej|+ c∞ ϕ−ǫ1
2

i
∑

j=2

|ej |
r
∞,i+d∞

r
∞,j .

On another hand, since (18) and 0 = d0 ≤ d∞ imply

r∞,i + d∞
r∞,i

≥ 1 i ∈ {1 . . . n} , (29)

the functions E 7→

∣

∣

∣

∣

∂W

∂ei

(E)

∣

∣

∣

∣

|ej | and

E 7→

∣

∣

∣

∣

∂W

∂ei

(E)

∣

∣

∣

∣

i
∑

j=2

|ej| + |ej|
r
∞,i+d∞

r
∞,j

are homogeneous in the bi-limit with weights r∞ and
r0 and degrees dW and dW + (j − i)d∞ (≤ dW ) and
dW and d∞ + dW respectively. Hence (see (Andrieu et
al., 2008-SICON, Corollary 2.15)) there exists positive
real numbers c6 and c7 satisfying, for all E in R

n and i
in {1, . . . , n},

∣

∣

∣

∣

∂W

∂ei

(E)

∣

∣

∣

∣

|ej | ≤
c6

n2
W (E) ∀j ∈ {1, . . . , i}

∣

∣

∣

∣

∂W

∂ei

(E)

∣

∣

∣

∣





i
∑

j=2

|ej | + |ej|
r
∞,i+d∞

r
∞,j





≤ c7

n

(

W (E) + W (E)
d∞+dW

dW

)

.

This gives

|TNL| ≤ c6
Ω(u, y, x̂)

L
W (E) (30)

+ c∞ c7 ϕ−ǫ1
2

(

W (E) + W (E)
d∞+dW

dW

)

.

Bound on
dW (E)

dτ
. Using inequality (26), and the

bounds on Tδ, Ty, TGU and TNL, we obtain :

dW (E)

dτ
≤ (c6 − c2 ϕ3)

Ω(u, y, x̂)

L
W (E)

+
(

c3

ϕb
2

+ c∞ c7

ϕ
ǫ1
2

+ c5 ϕ1 −
3 c1

4 a(y)
)

×

(

W (E) + W (E)
dW +d∞

dW

)

+
c3

nLb

n
∑

i=1

Hi

(

δi

Li

)

+
c4A

Lb
a(y)

[

|δy|
dW + |δy|

dW +d∞

r
∞,1

]

.

Therefore, with (5) and L > ϕ2, by choosing ϕ2 and ϕ3

sufficiently large and ϕ1 sufficiently small, we get :

dW (E)
dt

≤ −κ L W (E) + L U ,

where κ = c1ρ
2 and

U(t) = c3

n ϕb
2

∑n
i=1 Hi

(

δi(t)
L(t)i

)

+ c4Aρ

ϕb
2

[

∣

∣

∣

a(y(t))δy(t)
ρ

∣

∣

∣

dW

+
∣

∣

∣

a(y(t))δy(t)
ρ

∣

∣

∣

dW +d∞

r
∞,1

]

.

Integrating this inequality, it yields on the time of exis-
tence of the solutions :

W (E(t)) ≤ exp
(

−κ
∫ t

s
L(s)

)

W (E(s))+

∫ t

s
exp

(

−κ
∫ t

r
L(u)du

)

L(r)U(r)dr .

And since L > ϕ2 ≥ 1, this implies

W (E(t)) ≤ exp(−κ(t− s))W (E(s))+ 1
κ

supr∈[s,t] U(r) .

The function W being proper, it yields an ISS property
between the inputs δi

Li ’s and a(y)δy and the state E.
Hence, inequality (11) follows on the time domain of
existence of the solutions from the definition (23) of ei.

Behavior of L. We can rewrite (9) in 3 :

Ω(u, y, x̂)

≤ Γ(u, y)



1 +

n
∑

j=2

|xj |
vj + Lvj(b+j−1)|ej|

vj



 .

Then, with (22) and L ≥ 1, we get ǫ2 > 0 satisfying :

Ω(u, y, x̂) ≤ Γ(u, y)



1 +

n
∑

j=2

|xj |
vj + L1−ǫ2|ej |

vj



 .

Consequently (8) gives

L̇ ≤ L
(

ϕ1ϕ2 − ϕ1L + ϕ3 Γ(u, y)

+ϕ3Γ(u, y)

n
∑

j=2

|xj |
vj + L1−ǫ2|ej |

vj

)

.

≤ −
ϕ1

2
L2

−L





ϕ1

4
L − ϕ1ϕ2 − ϕ3 Γ(u, y) − ϕ3Γ(u, y)

n
∑

j=2

|xj |
vj

−

(

4nϕ3

ϕ1

) 1
ǫ2

Γ(u, y)
2

ǫ2 −

(

4nϕ3

ϕ1

) 1
ǫ2

n
∑

j=2

|ej |
2vj

ǫ2



 .

3 Since vj is smaller than 1, we have, for all (a, b) ∈ R
2
+∗

,
a

(a
vj +b

vj )

1
vj

≤
a

vj

a
vj +b

vj ≤ 1 and (a + b)vj ≤ avj + bvj . (31)
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This implies the existence of a class KL function β1 and
a class K function γ1 such that, along any solution, we
have on its domain of existence

max{L(t) − 4ϕ2, 0} ≤ β1(L(0), t)

+ sup
s≤t

γ1 (|(Γ(u(s), y(s)), x(s), E(s))|) .

Hence having a cascade of two ISS systems, (12) and
(11) holds on [0, T ).

5 Conclusion

We have presented a modification of the classical high
gain observer with the introduction of a gain updating
and of a homogeneous in the bi-limit correction term.
We have shown that this extends the domain of applica-
bility and proved convergence for bounded solutions. We
have also shown by means of an example, that the mod-
ification may improve performance by allowing a better
fit of the incremental rate of the nonlinearities.

This work has been performed while the first author was
a member of the CAP Group of Imperial College London.
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