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Global asymptotic stabilization for
non-minimum phase non linear systems
admitting a strict normal form

V. Andrieu*and L. Praly'
February 19, 2009

Abstract

We address the problem of global asymptotic stabilization by output feedback for non
minimum phase non linear systems which admit a strict normal form. We assume the
knowledge of an observer and, depending on its properties, we propose various approaches
to design the control law. KEach of these approaches needs a different stabilizability
assumption on the inverse dynamics. In this way, within a unified framework, we recover
and extend some already published results and we establish new ones.

1 Introduction

We address the problem of global asymptotic stabilization by output feedback for systems
whose dynamics can be written in the following strictf] normal form :

;

Z = F(Z,fl),
& o= &,

52253

én = f(Z7£17"'7£TL) —l—g(&)u,

Ly = &
with state (z,&1,...,...,&,) where z is in R™ and ¢; is in R, and where the function F is in
O™ the functions f and g are in C' and we have :
F(0,0) =0 , f£(0,0,...,0) = 0,

9(&) > 0 V& € R.
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Systems whose dynamics can be written in the form ([) have been fully characterized,
upon input scaling, by a coordinate free condition by Byrnes and Isidori in [[, Corollary 5.7].
It is trivially satisfied by any system whose dynamics can be written as :

;

v =b(y) +a(y)ye,
U = ba(y,y2) + as(y) ys ,

U1 = bo-1(Y, Y2y -+ Y1) + @n-1(Y) Yn
Yn = bn(y7 Yo, .. 7yTL) + Co(y) <1 + an(y) u

o= fily,z1) +aly, z1) 22, (2)
Zm—1 = fim—1(Y, 21, .., Zme1)
_I'Cm—l(yv Zlyenny Zm—l) Zm
Zm = f (Y, 2150y Zm)
L +em(Y, 215 2Zm) Y

where the a;’s and ¢;’s take positive values. This is one of the most general (nominal) form
for which we know how to design a globally asymptotically stabilizing output feedback and
whose study has been initiated by Kanellakopoulos, Kokotovi¢ and Morse in [I] and Marino
and Tomei in [PZ]. In these works, the problem has been solved by imposing some restriction
on the non-linearities (in [[[6, PZ the b;’s in (B) depend only of y) and by assuming that the
z dynamics, the inverse dynamics, are linear in z and with an asymptotic stability property —
the minimum phase assumption — From these original publications, many other results have
been obtained, relaxing more and more the restriction on the functions b;’s but, for most of
them, still preserving the minimum-phase assumption (see for instance [BQ, BY, [g, B1, [,
and references therein).

Until recently the only significant results concerning non-minimum phase nonlinear systems
were about semi-global stability, invoking high gain observers (see [g, for instance). But
fortunately, the minimum-phase assumption in the global stability case has been relaxed now,
in particular by Karagiannis, Jiang, Ortega and Astolfi in [[], Marino and Tomei in [21]] and
by ourselves in the preliminary version [J] of this paper. In these contributions, the authors
replace the minimum phase assumption by some specific form of state-stabilizability of the
inverse dynamics. In other words, they assume (explicitly in [[7, B] and implicitly in [2]) the
existence of a function ¢, such that the origin of the following system :

Z = F(z,0.(2)) (3)

is globally asymptotically stable. In [, it is shown that, up to a regularity assumption, the
existence of ¢, is necessary for the solvability of the output feedback stabilization problem
for the system ([). Actually, more is required in [[[7], P1, B]. Not only the origin should be
asymptotically stable for (f) but this should be in a robust way with respect to disturbances
which may act differently, depending on the context.

The unifying formalism we propose here allows us to rephrase and/or obtain output feed-
back stabilizers for the system ([l) without a minimum-phase assumption and under various
sets of assumptions. In Section B, by exploiting a result of Freeman and Kokotovi¢ [[I], we
obtain a new result by following what we call the state disturbance or direct approach. In
this case, the assumption is, in spirit, about the Input-to-State Stability (ISS) property of the



following auxiliary system :
2 = F(z,¢.(2+d,) +dy) (4)

where the disturbances d, and d, act as measurement error and input disturbance respectively.
In Section B, another result (encompassing the ones by Marino and Tomei [RI]] and Andrieu
and Praly [[J]) is obtained by following the dynamics error or indirect approach. There, the
assumption is on :

b= F(0.(2) + d

where the disturbance d acts externally. Finally, in Section ], we show how by combining
the two previous approaches and relying on an assumption on the system (fl), we can recover
the result of Karagiannis, Jiang, Ortega and Astolfi [[7] in the case with no disturbances
(or actually when they are part of the known system). Section [ is devoted to illustrating
examples and Section [j contains our conclusions.

Above, we have quoted only the references in very direct relation with our topic and
in particular with the non minimum phase case. Many other results are available, among
which the most recent ones approach the design of output feedback via domination where the
dominant model is mainly a simple chain of integrators but for which the output feedback is
designed to cope with large disturbances. For this, it incorporates dynamically updated high
gain controller and observer as in [[3, [§] for instance or terms of higher order as dictated by
weighted homogeneity as in [[, BI] for instance.

In the following proofs and examples, we focus on the ideas and concepts. Instead we do
not detail the computations in particular when they could become heavy without bringing
anymore light on our topic.

2 The State Disturbance or Direct Approach

2.1 The context

The popular “separation principle” is not true in general for global asymptotic stabilization.
Nevertheless the following separation recipe is appropriate :

If we have :

1. An observer that provides bound-
edness and asymptotic conver-
gence to zero of the state estima-
tion error, independently of the
control;

2. A state feedback that renders the
system ISS with respect to addi-
tive error in its argument;

Then we can cook up a globally asymptotically stable output feedback.

This recipe, which may not have been written per se before, has already been followed by
several authors (see for instance [[, [T, B4, B1))-

The first step in following this recipe is to introduce a state observer. For this, we rewrite
the dynamics of the system ([l]) in other coordinates. Given 2(n — 1) arbitrary but sufficiently



differentiable functions (a;)1<i<n—1, Which take positive values, and (b;)1<;<n—1, there exist two
other functions a,,, which takes positive values, and b,,, and a diffeomorphism :

(2,6, ....6)" = (z,y,...,y)" (5)

such that the dynamics of the system () can be rewritten in :

(

i o= Flzy),
) = al(’zuy)y2 + bl(zvy) )
y2 - aQ(Z y7y2> Ys + b2(27y7y2) )

yn—l = an—1(27y7y27"'7yn—1) Yn
+ bn—l(y7 Y2, - .- 7yn—1) )
\ yn = an(y)u + bn(zay>y2>"'ayn) .

We insist here for having a,, to depend only on y.
With collecting z and y» to y, into a single state vector x in R"*~! the dynamics ({)

take the following form :
(= fon v B, -
y = Clry).

Our detectability assumption is expressed as follows :

Assumption SD-D (State Disturbance, Detectability] :) The coordinates for z and the
functions (a;)1<i<n_1, and (b;)1<i<n_1 can be chosen in such a way that there exist a C™!
function K : R — R™™=L of y and a positive definite symmetric matriz P satisfying :

PoAZEC (x,y) + YASEC (%, y)TP < 0 (8)
V(x,y) e R 1 xR .

This assumption is discussed in the next subsection.

Following the recipe, the second step is to find a state feedback ¢ : R — R such that
the system :

v o= A(x,y) + B(y)d(x+e.y) ,

is ISS with input e in R"*™~1  As far as we know, this problem has not been solved for
systems of the form (). However, Freeman and Kokotovié¢ have given a solution in [[LT] for the
particular case where the z-dynamics can also be written in a strict feedback form. Specifically
the appropriate assumption is :

Assumption SD-S (State Disturbance, Stabilizability) : The z dynamics have a strict
feedback form, i.e. they are :

p

4 = filz1) +a(n) 2,

Zm—1 = fm—l(Zh S Zm—l) (10>
_'_Cm—l(zlv ct Zm—l) Zm
Zm = fm(21, o zm) Fem(21, s 2m) Y

\
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where the functions c; take strictly positive values.

Designing a globally stabilizing output feedback under assumptions SD-D and SD-S is an
easy task in principle by following the procedure proposed by Freeman and Kokotovié¢ in [[L]
and by invoking the ISS formalism. Precisely, we have :

Theorem 1 (State Disturbance approach) If the assumptions SD-D and SD-S hold then
there exists a globally stabilizing dynamic output feedback of dimension m +n — 1.

Proof : With assumption SD-S, the dynamics of the system (fj) have a strict feedback form.
Thus we can apply the design given in [(1]] to get a C' function ¢ : R"™™ — R and a C',
positive definite and proper function V : R"*™ — R, such that along the solutions of the
system (f]) we get, for some function v of class K., and for all (x,y) in R"™™ and e in R**"~1

Te(x,y) [Alx,y) + Bly) o(x — e,y)] (11)
+ 50 (x,y) Cx,y) < =V(x,y) + (el -
The output feedback is then defined as u = ¢(x,y) where ¥ = (2, 9o, ..., Up) is given by the

following (reduced order) observer :

with M(y) = [} K(s)ds.
With this feedback, the dynamics of the closed loop system can be written as :
X o= A(X7y)+B(y>¢(X_evy>7
) = C
(X7 ) ) (13)

é = Alx,y) — Ax —e,y)
—K(y)Cxy) = Clx —e,y)]

where e = x — ¥. It is seen as the interconnection of the system to be controlled and the error
system. We have :

A(Xa y) - A(X - e>y)
—K(y)[C(x,y) = Clx —e,y)] (14)

YoA - KC
= [/0 T(X—l—(l—s)e,y)ds e .

So, with (§), to any compact subset C of R2"#™~1 we can associate a strictly positive real
number ¢ satisfying :

/_‘\
e'Pe < —ce'Pe YV (x,y,e) € C. (15)

Inequalities ([[J) and ([[7]) imply successively that, along the solutions of the closed loop system,
le] and V'(x,y) are bounded. Specifically, we get, for all ¢ > 0,

e(t)' Pe(t) < e(0)TPe(0)

V(x(t),y(t)) < v<x<o>,y<o>>+v(w) |

)\min(P>

bt



where Apin(P) is the smallest eigenvalue of P and the argument ¢ represents the time for the
evaluation of the argument of the functions along the solution. These inequalities imply the
global stability of the origin. Therefore, with ([[F]), for each initial condition, there exists a
strictly positive real number ¢ such that :

)\max (P)

le(t)] < exp(—ct) |e(0)] o (P)

(16)

But, with the variation of constant formula and by splitting the integration interval [0,¢] in
[0, £] U (5,t], () gives, still for any solution and for any ¢ > 0,

V(x(t),y(t)) < exp(=t) V(x(0),5(0)) +
exp(—3) sup y(le(s)]) + sup(le(s)]) -

OSSS% %Ss
With ([[@), this implies that V(x(t),y(¢)) and therefore x(¢) and y(t) converge to 0 as t goes
to infinity. This establishes the global attractivity of the origin. O

2.2 Discussion
2.2.1 On the Detectability Assumption SD-D

Guaranteeing the existence of a reduced order observer from assumption SD-D is a triviality.
We have given ourselves this derogation in writing this assumption since sufficient conditions
for it to hold are known. Specifically :

e Monotonic non linearities : Following Arcak and Kokotovié [[], consider the case
where we can find a function K leading to the following decomposition :

Alx,y) = K(y)Clx,y) = Fx + Q(y)
+ Z?:lm_l Givi(L] x,y)
where, V(s,y) € R?,

i
—00 < a; < ai(S,y) < b < 400
S

Proposition 1 ([f]]) In this context, the inequality (§) holds if there exists a positive
n+m—1 2

definite matriz symmetric P and real numbers \; # 0 satisfying : Z

)

P
ALy + Gy
+ y G

, 4
=1
n+m—1 2
a; P
- Y YL - G
pa 4 A

+ PF + F'p < —I.

e Output dependent incremental rate : Following Krishnamurthy and Khorrami [[[9],
we consider systems admitting the representation (). To simplify our presentation, we
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introduce the functions ¢, ; and 1; as :

i 2<j<i<n

dy;

gy = {0 n+l<i<m,2<j<n (17)
Yinppl1<j<i<ntm
j—n

Y = {Ci—n n<i<n+m-—1 (18)

Proposition 2 ( [I9, Theorem 2] ) If there exists a positive real number p, such that,
for all (x,y) in R™™ we have :

p < i, 2<i<n+m-1,
p; < i, 3<i<n+m-—1,
ploijl < Vb, 3<i<n+m-—1,

3<j<1,
p|¢n+m,j| = vV wn—i-m—le—la 3 S] S n-+m 9

then there exists a continuous function K and a matriz P such that (§) is satisfied.

A

Another point about the detectability assumption SD-D is that, very often, the degree of
freedom left in the definition of the functions a;’s and b;’s is forgotten in the literature. To
illustrate it, consider the following second order system with no inverse dynamics :

51 - 52 )
& = fl6,8) + g&)u, (19)
y = & .

Then the functions aq, as, by and by are free up to satisfying the following constraints :

9(y) = ai(y)az(y) > 0,
fy,a1(y)y2 +01(y)) =
[a1(y)y2 + 01 (y)] a1 (y)y2 + b1 (y)]
+ar(y) b2(y, y2) -

It follows that (|) holds if we can find a positive C' function a; and a C' function ¢ such that

we have : of e
Se6n6) < fe) + 20 e va.g). (20)
Indeed in this case, we pick :
a(y) = 51((‘?) . bi(y) =0
ba(y ) = f(y7al(y)yz(zlzy;n(y)a’l(y)yS
and (§) holds with :
P=1, @@):jﬁ%



2.2.2 On the Stabilizability Assumption SD-S

The specific strict feedback form imposed on the z-dynamics by the stabilizability assumption
SD-S implies the existence of a function ¢, such that the origin of (B) is globally asymptotically
stable. We have mentioned in the introduction that the existence of ¢, is “almost” necessary.
So the main restriction imposed by assumption SD-S is the fact that, as proved by Freeman
and Kokotovié¢ [[T], it allows us to get a function ¢, which not only stabilizes asymptotically
the origin of the z-subsystem but also insures the ISS property of the following auxiliary
system :

2=F(z,¢.(z+d.) + dy) (21)

with input (d,,d,) (see assumption SD-S’ in section ). It would be very useful to know
whether or not, assumption SD-S can be replaced by this ISS property, i.e. whether or not the
recursive Lyapunov design of [[[T]] applies or can be modified to get V' and ¢ satisfying ([[T]).

3 The Dynamics Error or Indirect Approach

This section is a reproduction of our conference paper [].

3.1 The context

Another usual approach to design an output feedback is again to design the observer first but
then to design the state feedback for this observer and not for the system to be controlled
as done in the previous section. Specifically the state feedback is designed for the following
system with state (¥,y) given by the observer ([J) :

y = C(x,y) + AC

{ ¥ = A@,y)+ By)u+ K(y)AC (22)

where, the term AC = C(x,y) — C(&,y) is the correction term. Despite, this term is a good
term for the observer, it is considered as a disturbance in the design of the state feedback. This
approach that we call the dynamics error or indirect approach, is therefore the application of
another separation recipe :

If we have :
1. An observer providing L?-correction terms;
2. A state feedback making the system L?-1SS;

Then we can cook up a globally asymptotically stable output feedback law.

Again this recipe may not have been formalized in this way previously (see however [, B9])
but it is certainly not new. Most of the published results on output feedback stabilization,
starting from [[[@], P3|, can be reinterpreted along its lines (see for instance [B0, B§, [3, E1, B]).
To follow this recipe we propose the following set of assumptions :

Assumption DE-D2 (Dynamics Error, L?>-Detectability) :

DE-D2.1 The coordinates for z and the functions (a;)1<i<n—1 and (b;)1<i<n—1 can be chosen in
such a way that there exist a C"' function K of y and a positive definite symmetric
matriz P satisfying



A — KC A — KC
P ()

— (2,97 P 23)

V(x,y) e R xR .

DE-D2.2 The system ([}) is zero-state detectable, i.e. any solution X (x,t) of :
i = A(x,0) | C(x,0) =0 (24)

is defined on [0, +00) and converges to 0 as t tends to infinity.

Assumption DE-S2 (Dynamics Error, L?-Stabilizability) : There exists a C"™! func-
tion ¢, zero at the origin, and such that the following system is L*-1SS :

Z = F(z,0.(2)) + K.(¢2(2))d,

where K, collects all the z-components of the function K. Specifically, there exist a O™,
positive definite and proper function V. and a positive definite continuous function o, such
that we have :

G2 (2) [F(2,0:(2)) + K.(¢:(2)) d] (25)
< —ou(z) + |df .

These two assumptions are discussed in the next subsection.
Again, designing a globally stabilizing output feedback under this set of assumptions is an
easy task by relying on the observer backstepping technique. Precisely, we have :

Theorem 2 (Dynamics Error, L? case) If the assumptions DE-D2 and DE-S2 hold then
there exists a globally stabilizing dynamic output feedback of dimension m +n — 1.

Proof : Consider again the observer ([[2). We have :
|C(/)E?y) - C(va)|2

2

B ‘ Uol g_i(" +s[¥ - X],y)ds] 7 — ]

1
S /
0

So, with ([4) and (B3), we get :

Y

2
ds .

[g—i(;’( +s[x — X],y)} [* =]

- 2)TPR—2) < —|C@R,y) — Clx,y)
= —|ACP. (26)

This establishes that the observer makes the correction term AC an L? function along the
solutions of the closed loop system. So, according to the above separation recipe, it remains

9



to design a state feedback making L?-ISS the following system with input d :

(2 =F(2,y)+ K.(y)d,
'g :al(éa )g2+b1(2>y)+d7
z,

Y
Jp = a2(2,y,92) U3 + ba2(2, 9, §2) + Ka(y)d (27)

\:gn = an(y) U+ bn(év Y, Q27 s 71&”) + Kn(y)d .
Using assumption DE-S2, we have a C"*!, positive definite and proper function V. satisfying :

oV,
0z

(2)(F(2,¢:(2)) + K.(:(2))d) < —as(2) + |d|*.

By applying recursively Lemma [] given in the appendix, we can propagate this property up
to getting a O, positive definite and proper function V,, and a C!' function ¢, such that
u = ¢n(2,9,792,---,Un) gives for the system (£7) :

Vn (’27 y7 .@27 A 7@”)‘ S _an (’27 y7 g27 A 7@”) _'_ ‘d|2 (28>

where «,, is a positive definite continuous function.

So now, instead of viewing the dynamics of the closed loop system as the interconnection
of the system to be controlled and the error system, as in the state disturbance approach (see
([3)), we view them as the interconnection of the observer (£7) with input

d = AC = C(e + x,y) = C(x,y)
and the error system
¢ = Ax+ey) — Alx,y) — K(y)AC, (29)
with output AC' and input y and

A A

:Y\:(Zay2>"'agn)~

As proved above, the latter generates a function AC' which is square-integrable along the
solutions of the closed loop system and the former is L2-ISS with this function as input. From
here proving global asymptotic stability is easy. Indeed, with (@) and (P§), we get readily :

N

6TP€+VH(/%, y) S _O‘n(/%a y) .

Since «,, is a positive definite continuous function of its arguments, this establishes global
stability of the origin as well as the convergence of any solution to the largest invariant set
contained in the set {(e,x,y) : ¥ = y = 0}. In this set, we have

i = A(x,0) , C(x,0) = 0.

So, by following the same arguments as in [, p.44], we can conclude with assumption DE-
D2.2, that each solution converges to the origin, i.e., we have global attractivity. 4

10



3.2 Discussion

3.2.1 On Assumption DE-S2

Again, the main restriction imposed by assumption DE-S2 is the fact that the function ¢,
not only stabilizes asymptotically the origin of the z-subsystem but also that it provides the
L2-1ISS property of the following auxiliary system :

2 = F(z,6.(2) + d

where the disturbance d acts externally instead of internally as we had with the state distur-
bance approach (See (21)).

3.2.2 On Assumption DE-D2

Assumption DE-D2 is very similar to assumption SD-D. We have only replaced < 0 in (§) by

< —%T 9 in (29). However, even with strengthening (§) as

0A— KC 0A—KC,
- = - - < _
PSS (k) + )P <~

(v,y) eR™™ I xR,

it is a difficult task to go from this stronger version of SD-D to DE-D2.1. For this we need an
extra property on the function C'. Typically it is that %(2{, y)‘ is bounded or more specifically
that a; does not depend on z and }%(z, y)} is bounded. Without such a property, a possibility
is to redesign the observer by augmenting the gain K. This idea has been exploited already in
the literature (see [[4, B7, [ for instance). Here it can be exploited at least in the case where
C is affine in x, i.e.

Clx,y) = Coly) + Ci(y) x .
In this case (§) reads :
[P g—f(x, y) + g—f(x, y)TP]
— [P K(y) Ci(y) + Ci(y)"K(y)"P] < 0
V(x,y) eR"™ I xR

So, by augmenting K (y) with %P‘lCl (y)T, we get :

oA 04,
[Pa—X(X’y)+8—X(X7y) P:|

- [P (K(y) + %P‘lCl(y)T> Ci(y)

11



which is (). For example, for the system ([9), the assumption (B3) still holds under the
constraint (B(). For this, it is sufficient to modify ks as :
(y) | aly)
k = + :
Z(y) a (y) 2
Another possibility of relaxing assumption DE-D2 is offered when the correction term can
be decomposed as (see B9)) :

C(va) - C(%vy) = m(27y> E(Z,é,y) : (30>

In this case it is sufficient that the observer ensures that the term e(z, 2,y) is in L? along the
solutions. But then the stabilizability assumption DE-S2 is about the following system :

= F(2,0.(2) + Ka6.(2) ml2, 6(2) d. (31)

This extension is used for the system ([4) studied below.
If none of the above succeeds, we abandon the L? framework and try the following L' one.
The assumptions we need then are (see also 29, [1])-
Assumption DE-D1 (Dynamics Error, L'-Detectability) :
DE-D1.1 The coordinates for z and the functions (a;)i1<i<n—1 and (b;)1<i<n—1 can be chosen in
such a way that there exist a C"* function K and a positive semi-definite symmetric
matrix P and k vectors v; satisfying :

P + iviv? >0, (32)
i=1
e"'P UKL (x y)e (33)
Vel Pe
+ g sign(v]e) vl 04 (;XKC (x,y)e
< - ‘g—g(% ye

V(x,y,e) € R"™ 1 x R x R*™ 1

Moreover the K, component of K is bounded.
DE-D1.2 Same as assumption DE-D2.2

Assumption DE-S1 (Dynamics Error, L'-Stabilizability) : There exist a C™ func-
tion ¢., zero at the origin, and a C™*1, positive definite and proper function V. and a positive
definite continuous function o, satisfyindgj :

oV,
0z

Theorem 3 (Dynamics Error, L' case) If the assumptions DE-D1 and DE-S1 hold then
there exists a globally stabilizing dynamic output feedback of dimension m +mn — 1.

(2) [F(2,0:(2)) +d] < —az(z) + |d] .

2 This is equivalent to writing that V. has a bounded gradient.

12



Proof : For a locally Lipschitz function W and a system é = f(e, x), we denote by DTW,
the Dini derivative of W along the solutions of this system, i.e.

D*W(e) = limsup W)W
N0 ¢

With this notation, the proof follows exactly the same lines as the one of Theorem .
Since we have :

[Clx+ey) = Clry)| =

e
/0 8—X(X + se, y)eds

/1 oC
<
0

—(x + se,y)e
with ([@) and (B3) and e satisfying (£9), we getf] :

ds,

ox

k
D* (VeTPe—I—Zde) < —|AC| .
i=1

This establishes that the observer makes the correction term AC an L' function along the
solutions of the closed loop system. Moreover, the function K, being bounded, the same
integrability property holds for K,AC.

Then we follow exactly the same lines as the ones after (Rf)), except that, to propagate the
L'-1SS property, we apply recursively Lemma [ given in the appendix. In this way, we get a C,
positive definite and proper function V,, and a C* function ¢, such that u = ¢, (2, v, 92, - - -, Jn)
gives for the system (7)) :

Vn('%ym@%"'vyn)\ S _an(27y7g27"'7gn> + ‘AC‘ )

where «,, is a positive definite continuous function.
This yields the following for the closed loop system :

k
D+ <V€TP€+Z|'U?€| +Vn(23y7g2>agn)>
=1

S _an(évyvg%"'?gn) .

With (B) and [BZ, Theorems I1.6.2 and VII.3.2], we conclude that we have global stability
of the origin and convergence of any solution to the largest invariant set contained in the set
{(e,®,y) : ¥ =y = 0}. From this point, the proof is completed as the one of Theorem B
O

We end this section by mentioning that the very specific structure of the system studied
by Marino and Tomei in [PT] is such that the assumptions invoked in that work imply that,
for all p > 1, both LP-detectability and LP-stabilizability are satisfied and so in particular
assumptions DE-D1, DE-D2, DE-S1 and DE-S2 (see [, Example 4.2.3]).

3 The use of polyhedral Lyapunov functions has a long history in control theory (see [@] and the references
therein, for instance).
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4 Combined approach

4.1 The context

In this section, we rephrase part of the result obtained by Karagiannis, Jiang, Ortega and
Astolfi in [[[7] by viewing its proof as a combination of the state disturbance and the dynamics
error approaches.

In this context, the stabilizability assumption is given as the following :

Assumption SD-S’ : There exists a C" function ¢. zero at the origin, and such that the
following system is 1SS :

2 = F(z,0.(2+d.) +dy) .
Specifically, there exist a C" ', positive definite and proper function V. and two continuous
non negative functions v, and o which are zero at zero and such that we have :
oV,
0z

(2) [F(z,¢:(z + d.) + dy)] < (34)
—Va(2) + n(ld.]) + 12(dul) -

Theorem 4 (Combined approach) If the assumptions DE-D2 and SD-S’ hold then there
exists a globally stabilizing dynamic output feedback of dimension m +n — 1.

Proof : From (B4) we get readily :
oV,
(2)F(zy) < (35)

0z
—Va(2) + n(lz = 2]) + %2(ly — 0:(2)]) .

This establishes that the z-subsystem is ISS with respect to z— 2 and y — ¢,(2). The observer
takes care of making the disturbance z — 2z “small”. It remains to design a state feedback
taking care of the other disturbance y — ¢.(2). To do so, we consider the coordinate :

and write its dynamics as :

. (36)
U= an(y)u + bu(2, ... 0n) + Kn(y)d ,

where, Z is considered as a measured exogenous input for which we know its time derivative
satisfies :

2= Fu+¢.(2) + K.(n+¢:(2)d. (37)

Here d is a seen as a disturbance but is actually the correction term associated to the observer :

d = Cx,y) — C(r,y) . (38)

14



We start the design by observing that the function ¢, defined as :

o) = — [—m—(%ﬁ%z)&(y)ﬁ

al(zvy)

where y = u+ ¢,(2), gives, for the u-subsystem,

~ 2 2 L . .
po < —pt 4+ 21d| V(2,1 02) Yo = d1(p, 2) .

This establishes an L2-ISS property for this p-subsystem. Then, by applying recursively
Lemma [l] of the appendix, we can propagate this L2-ISS property to get a C! function ¢,, and
a C, positive definite and proper function V;, such that u = ¢, (2, i, 92, . . ., 4n) gives, for the

(]

system (Bd),

Vn(ﬂ,ﬂz,---,ﬁn)\ S (39)
_an(Vn(Mag%--w'gn)) + |d|2 )

where, «,, is a positive definite continuous function.

Note that here the recursive procedure starts with p (equivalent to y) instead of Z as in
the dynamics error approach (see (B7)).

With all these preliminaries, we can write the dynamics of the closed loop system as :

Iu _al(Z y)yg + bl( 7y>
— %= (2)[F(2,y) + K.(y)d]

(40)

gn = an(y) ¢n(’27 M, g?u cee 7@”)
+bn(27 Y, :&27 s 71&”) + Kn(y) d )

¢ =Ax+ey) - ARy - K(y)d,

with BY), 2 =2 —e€,,y =p+ ¢.(2) and :
xX=(2702 -, Un) e=x — X
K(y) = (K.(y), Ka(y), ..., Kn(y)) -

It is seen as the interconnection of the error system and a system which combines the z-part
of the system to be controlled and the (i, U2, . . ., Jn)-part of the observer.
With (@) (B9), (B4), (B4 and (B7) we get along the solutions of this system ([() :

ZeTPe+V(u Gy lin) < (41)

(Vi o)) — JdI?
T < —Va(2) + p2e™Pe+ Vil o) (12)
T0) < ~Va(2) + 2llil) + ¥, 2) |d (13)
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where p is any class K, function and £ is the continuous function satisfying :

o(s) > 2 maX{% ('%P \/5) |

max 2 ’
(15251138 )V (11,52, gn)gs%( |M|)}
: v, ..

Inequalities ([]) and (f2) imply successively that, along the solutions of the closed loop system,
2¢" Pe+ V, (i, 2, . . ., Jn) and V.(z) are bounded. Specifically, we get, for all ¢ > 0,

2e(t)" Pe(t) + Va(u(t), 92(t), - dn(t)) <
2¢(0)"Pe(0) + Vi (1(0),32(0), - -, 5 (0)) ,
Va(2(t)) < V:(0)
+p(2e(0)" Pe(0) + Vi (1(0), 52(0), - -, #u(0))

where the argument t represents the times for the evaluation of the argument of the functions
along the solution. These inequalities imply the global stability of the origin.

~
A

Actually since V,, is positive definite and 2¢7 Pe + Vi (pt, Yo, - - -, ) is strictly negative if

Vo(tt, Yo, - - ., Yn) and d are not zero, we have also :
1' d AZ' - .
Jim sup | |u(s)] + |d(s)] + D ls)l| =0

=2

Also, as we have done from ([[I), inequality () gives, for any bounded solution, a real number
¢, such that we have for all ¢ > 0 :

V.(5(t)) < exp(—t) Vi(2(0))
+ exp(—£) sup [v2(lp(s)]) + Eld(s)|]

+ sups<, [v2(lu(s)]) + Eld(s)]] -

We conclude that, for any closed loop solution, there exists a real number ¢ such that the
corresponding w-limit set is contained in the set {(x,%,y) : el Pe = ¢, |¥| =y = 0}. But,
with Assumption DE-D2.2, we know that any solution in this set converges to the origin.
So, by following the same arguments as in [[J, p.44], we can conclude that we have global
attractivity. O

4.2 Discussion

Compared to the result in [[7], in Theorem [, we are less restrictive in allowing the terms b;
to depend also on (ys,...,y;). But we are more restrictive in not dealing with the (unknown)
disturbance terms. In doing so, we can work with a less demanding detectability assumption
with replacing an ISS property by a simpler stability property. If we were to cope also with
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these disturbances, as in [[7, in the detectability assumption, we would come back to an
ISS property and, in the output feedback design, we would replace the propagation of the
L2-ISS property by the propagation of the ISS property with a gain assignment, a technique
introduced in [BJ].

Also if we compare Theorems [ and [], we see that, for the former, the stabilizability
assumption SD-S is more restrictive (strict feedback form) but the detectability assumption
SD-D is weaker. However, if we succeed in proving that the procedure of Freeman and Koko-
tovi¢ proposed in [[[T] extends to the case of SD-S’, then Theorem [] would give a less restrictive
result. Nevertheless, even in this case, Theorem [] will remain very interesting since the design
part of the state feedback is much simpler compared with what can be expected to be obtained

from [[LT].

5 Examples
Example 1 : Consider the system in R? :
2 = —z+ Y22,
{020 (44)
We have :
1. With the following reduced order observer :
3 3
ézw—% , w:—w—i—yg—i—yzu,
we obtain :
1 1 K
S =2+ (2 - o) (45)

= —(2-2)?2 - (2 - 2)"*.
To follow the dynamics error approach, we have to write the dynamics of Z and y in such
a way that the corresponding correction term is an L? function along the solutions. To
do this here we decompose Z and g as :

;o

z o= —Z+ Y+

\ £(2,2)

According to the discussion following (B), the correction term is identified as being e.
With ([), we see it is an L? function along the solutions. This proves that the (modified)
detectability assumption DE-S2 of the dynamics error approach is satisfied.



2. For any function ¢., any z > 2, and d,, we have, for all d, > 1,

1
b= —z 4 (¢.(2+d)) 22+ dy 2% > §z2 .
Hence the stabilizability assumptions SD-S and SD-S’ are not satisfied. Hence only the

dynamics error approach can be considered.

3. With y = ¢.(2) =0, and V,(2) = 3 22

v, , . . . ~ [d
5 () |2+ Y22+t (1 22) (d;)}

%2 , we have :

= —2V.(2)  V(2,di,dy) .

So the (modified) stabilizability assumptions DE-S2 of the dynamics error approach is
satisfied.

From the above and by applying Lemma [I], we can conclude that the output feedback :

3

w = —w+y—+y2u.
33
z = w—y—
u = —y+22—yi— (y—l—y322) (1+422) ,

is globally asymptotically stabilizing.

Example 2 : Consider the system (see [, Example 2]) :

= 3z 4+ 22 + vy,

(46)
y = 2+ 22+ u.
We have :
1. From the inequality :
gn(e.) (- [32422%) 40 [z + 2]
sign(e.) | ——[32+22 Tt ) e
< |+ led

we conclude that the inequalities (§) and (B3) are satisfied with P = 1, v = 0 and
K = 4. Hence the detectability assumptions SD-D of the state disturbance approach and

the detectability assumption DE-D1 of the dynamics error approach in the L'-case are
satisfied.

2. The z dynamics are in strict feedback form, thus the stabilizability assumption SD-S of
the state disturbance approach is satisfied. Also with :

6.(2)= 4222 , V() = VIt 21,

we get :

18



V't s .
E(Z) [32 +22° + ¢.(2) + d]

22

<
V1422

+ |d| .

This proves that the stabilizability assumption DE-S1 of the dynamics error approach is

satisfied also.

From the above and by applying Lemma P for instance, we can conclude that the output

feedback :
w=—3 — 233
Z=w + 4y,
u= —3— 3 —

(4+62%) (32422° +y)
+r(y, 2) (-42 —28 —y —24|1 + 2|

A~

z

VI+22)

where r(y,2) = 1 + %(y + 4z + 223)2 is globally asymptotically stabilizing.

Example 3 : Consider the system (see [R9)) :

3l
To
T3

Y

T2 + U,
flx) + 23 — u,
_f($1)7

€y,

where f is a C® function such that f(0) = 0 and f/(0) # 0.
This system ([[7]) is of the form studied by Marino and Tomei in R1)]. But it is proved in
[B] that the assumptions of [R1]] are not satisfied if f possesses another zero not at the origin.
To be within the framework of this paper, we rewrite the dynamics of ([[7) as :

Z
Z9
Y
We have
1. From the inequalities :

sign(2e., —3e.,) (2 —3)

sign(e,, —2e,,) (1 —2)

1 = Y,

Z1 — 2 — Y + u .
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|€Z1 _622| < |26Z1 _3622| + |2622 _621| )

we conclude that the inequality (BJ) is satisfied with P = 0, v; = < _§ ), Vg = < _; )
6

and K = 9 ) Hence the detectability assumption DFE-D1 of the dynamics error
approach in the L'-case is satisfied.

. Let a, 0 and ¢ be the real number and functions defined as :
1

a = 5

2 (2 max|<s \f”(S)Dz

o(z1) = fﬂ&f\f”@zlﬂ%)\ ,

6(z1,8) = V2a|f(221) + f'(221)s — f(221 + 5)] .

Let also k be a C?, positive definite and proper functions whose derivative is non de-
creasing and satisfies :

K (z21)] > max{\/%\zl\a(zl), f\(/Q%)} . (48)

Since f is C?, we have V|s| <1 :

6(21’ S) S \/50'2(21)52 S Zlk‘;(21)

V1 S |Zl| 9 (49)

Now, inspired by a forwarding technique (see [B]), we consider V;., the C?, positive
definite and proper function defined as :

Voo(21,2) = k(z1) + 2(,/1+g<§_1)

G = <22— . f(28)ds) ‘

0 S

where :

With (f9) and :
Yy = ¢.(21,22) = 221 + 5

where s in (—1,1) is
s = Zarctan (k’(zl)
__ ag _ f(2z1)
\/@( f(2zl)+ 21 )) )
we get :

—2 K (z) — 8% + 8(z1,5),
_ak(z) +5°

V()z(Zl, 22)

IN

IN
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Also, with ([§), we have :

’%‘:0; (21’22)‘ < V2a ,  Y(z,2)

}%Lff(zl’@)‘ < |K'(z1)] + m}M
< 2|k ()] , V(z1,29) : 1< |z
<b, V(z1,20) 0 |2 <1

where b = max),, <1 {|k’(z1)| + \/2a%fl)}. Let £ : R, — R, be a C? and proper
function which is zero at zero, has a strictly positive derivative and satisfies :

Uk(z1)) = |z1] Vzr:1< 7).
So finally we define a function V, as :
Vo(z1,22) = £(Vou(21, 22)) -

It is C?, positive definite and proper with a bounded gradient. For instance, ¢ being
non increasing on [k(1),4+00), we have :

v < 20(Vopo (21, 22) ) K (1)

071 (Z1722)
< 20(k(2)K (1) < 2 V(z1,22) : 1 <|z]
< DU (Vorlers22)) < b maxis e € k(1))

V(Zl,Zg) : |Zl| S 1.

Hence, with V, and ¢, defined above, the stabilizability assumption DE-S1 of the dynam-
ics error approach is satisfied.

With Theorem B, we conclude that there exists a globally asymptotically stabilizing output
feedback.

Example 4 : Consider the system :

P = 2 4y,
gy o=y + 2, (50)
Yo = u + 225 + 22 + 2z

We have :

1. Suppose there exists a reduced order observer which satisfies the detectability assump-

tion DE-D2 of the dynamics error approach in the L?-case. Then we have 3 real numbers
(p,q,r) and two functions K, and K, such that, for each (e.,es, z,y), we get :

(1)
(550 0)- (e ) (o 1))
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When e; = 0, this gives :
9z* + ¢ (622 + 22 + 2 — 3Ky(y)2?)
+p (22 -3K.(y)2*) <0 V(zy).

For any given y, the left hand side of this inequality goes to +0o0 when z goes to in-
finity, which is impossible. This proves that the detectability assumption DE-D2 of the
dynamics error approach in the L*-case cannot be satisfied.

2. From the following inequalities :

sign(e.) (1 0)
(oo nen o) (5) 02 1)
(%)

—(322 =2z +1)|e,| + sign(e.) (e. —e2)
—(322 =2z + Ve, + le. —es,

(52 5n0)-(5) 032 1)
(%)

1 1 1
3 [32%, + €] < 3 (322 + 1)|e.| + 3 le, — eal

IA

= _2|€z_62 )

< (322 =2z +1)|e.| + |es —eaf ,

we conclude that the inequality (BJ) is satisfied with P =0, v; = ( (1) ), vy = ( _} )

1
3
approach in the L'-case is satisfied.

and K = < Hence the detectability assumption DFE-D1 of the dynamics error

3. With V,(2) = V1 + 22 — 1 and ¢,(2) = —2% — 2 we get :

V.t A —32
<
P (2) [z + ¢.(2) + d} S e
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It follows that the stabilizability assumption DE-S1 of the dynamics error approach in
the L'-case is satisfied.

With Theorem [, we conclude that there exists a globally asymptotically stabilizing output
feedback.

6 Conclusion

We have investigated the problem of global asymptotic stabilization by output feedback for
systems whose dynamics admit a strict normal form. By rephrasing and formalizing already
known approaches we have been able to introduce several sets of assumptions that allow us to
design an output feedback. As in the results given by Karagiannis, Jiang, Ortega and Astolfi
in [[7], and Marino and Tomei in [P]] no minimum-phase assumptions are required but instead
we ask for stabilizability by a state control of the inverse dynamics with various robustness
properties depending on what can be achieved with a reduced order observer.

Appendix :
Propagation of the LP-ISS property through a chain of
integrators

We consider a system in the form :

{fl = f(z1,22) + Ky (21, 22) dy

. 51
Ty = a(wy, x2) u + b(x1, 22) + Ko(1,22) dy . (51)

where 71 is in R™, 25 is in R, w is in R, d; is in R™ | dy in R, a(zy, x2) is strictly positive and
the functions f, Ky, a, b and K5 are as many times differentiable as needed below.

Lemma 1 (L?-ISS propagation) Suppose there exist a C9, positive definite and proper
function Vi : R — Ry, a C9 function ¢ : R™ — R, and a positive definite continuous
function oy : R™ — Ry such that, along the solutions of (P1), we have :

——

Vi(z1) < —aq(z1) + |di]?
v($1,1'2,0l1) T = ¢1($1) .

Then, there exists a C?, positive definite and proper function Vy : R+ — R, a CY function
¢ : R — R | and a positive definite continuous function ay : R+ — R, such that, along
the solutions of (1), we get :

—_—

Va(wy,29) < —an(x1,m2) + [di]* + |da|?
\V/(l’l,l'g,dl,dg,u) LU= ¢2(1’1,l’2) .

This result is well known. See [T, BQ, [ for a proof.
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Lemma 2 (L'-ISS propagation ) Suppose the function K, does not depend on x4 and there
exist a continuous function M : R™ — R, a C?, positive definite and proper function
Vit R" — R, a C function ¢ : R™ — R, and a positive definite continuous function
ap : R™ — Ry satisfying :

[ Ko (21, 02)| < M(z1) (1 + |z2f) - (52)

and, along the solutions of (1),

—

Vi(z1) < —aa(zy) + |dy|
V(Il,l’g,dl) LTy = ¢1(I1) .

Then, there exist a C9, positive definite and proper function Vo : R+ — R, a C? function
¢ : R R | and a positive definite continuous function cs : R+ — R such that, along
the solutions of (1), we get :

—

Vo(zy, 22) < —an(xy,x0) + |di| + |do
V(Ilaﬂl’z,dl,dmu) LU= ¢2(I1,$2)

Proof : We follow here a suggestion of Frederic Mazenc who used a very similar argument in
his dissertation [24, (2.412)].

As the function V; is proper, we can find a C? and increasing function £ : R, — R,
satisfying for all x; in R™ :

K(V(w) = max {1, |52 ()] 1K ()] (53)

LM (@) (3 + [or(en)])} -
Let W :R™ x R — R, be the (' positive definite and proper function defined as :
Wz, 22) = k(Vi(z1))

+ log (1 + (z2 — ¢(x1))?) ,

where k is the C9*! and proper function defined as :
k(s) = / K(u)du , Vs e R, . (54)
0
By differentiating W along the solutions of (B)), we get :

Wlorms) < —k(Viar)) on(a) (55)

+my (21, 2) [di] + ma(x1, 22) |dy

+ (@2 = 61(@1)) | plar,a) + qlar o) u

where m; : R™ x R and my : R™ x R are continuous functions, and p : R™ x R is a ("¢
function defined as :
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my(zy,29) = k' (Vi(r1))+ (56)

[w2—¢1(@1)] |52 (@1)] K (2)]

1+5 (22— 61 (21))?

_ lza—di(@1)| [ Ka(z1,22)|
T g (ra—¢a(21))? (57)

m2(x1,x2)

B b(z1,72) — %(xl)f(m,xz)
p(ry, m2) = 1+ 2 (z2—1(21))?

K (Vi(21) gt (1)

YO (g, 6y (21) + s(w — di(a1))) ds

q(11,22) = H%éﬁ% ’

where ¢ is non zero from the same assumption on a. So let ¢ be the following C? function :

Go(x1,22) = #(%(331) — xy — pr1,22) )

Q($1> IQ)

When u = ¢9(21, x2), we obtain, along the solutions of (B]]),

Wz, 22) < =K' (Vi(21)) an(z1) — (22 — ¢1(351))2
+m1(l’1,1'2) |d1| + mg(l’l,llfg) |d2| .

Furthermore, from (F3), (pA) and (p7), and from the fact that £’ is an increasing function, we
get :

my (1, x9) < 2K (Vi(xy)) < 2K (K~ (W (21, 22)))

ma(x1, ) < % M (z)

(1 + |22 — 1(x1)] + [P1(z1)])
< M(x1) (3 + |pi(x1)]) < 2K (Vi(21))
< 2K (=Y (W (21, 12))) .

Thus, we have :

Wiz, 22) < =K' (Vi(21)) ar(z1) — (22 — ¢1(351))2
+ 2K (k1 (W (21, 22))) (|da| + |da]) -

By taking, Va(zi,20) = (W (x1,22)) where ¢ is the C9 and proper function defined as
((s) = $k~'(s), we obtain finally :
/—.\

Va(z1,22) < —0/(W (21, 22))

(K (@) ma() + (2 — da()]
+|d1| + |d2| .
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