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QUENCHED SCALING LIMITS OF TRAP MODELS

M. JARA, C. LANDIM, A. TEIXEIRA

Abstract. Fix a strictly positive measure W on the d-dimensional torus Td.
For an integer N ≥ 1, denote by W N

x , x = (x1, . . . , xd), 0 ≤ xi < N , the W -
measure of the cube [x/N, (x+1)/N), where 1 is the vector with all components

equal to 1. In dimension 1, we prove that the hydrodynamic behavior of a
superposition of independent random walks, in which a particle jumps from
x/N to one of its neighbors at rate (NW N

x )−1, is described in the diffusive
scaling by the linear differential equation ∂tρ = (d/dW )(d/dx)ρ. In dimension
d > 1, if W is a finite discrete measure, W =

P

i≥1
wiδxi , we prove that

the random walk which jumps from x/N uniformly to one of its neighbors at
rate (W N

x )−1 has a metastable behavior, as defined in [2], described by the
K-process introduced in [13].

1. Introduction

Scaling limits of randoms walks in random trap environments have been ex-
amined recently [11, 5, 6] as stochastic models which exhibit aging [11, 3, 7], a
phenomenon of considerable interest in physics and mathematics.

To describe the dynamics, fix an unoriented graph G = (V, E) with finite degree
and consider a sequence of i.i.d. strictly positive random variables {ξz : z ∈ V }
indexed by the vertices. Let {Xt : t ≥ 0} be a continuous time random walk on V
which waits a mean ξz exponential time at site z, at the end of which it jumps to
one of its neighbors with uniform probability.

The time spent by the random walk on a vertex z is proportional to the value of
ξz. It is thus natural to regard the environment as a landscape of valleys or traps
with depth given by the value of the random variables {ξz : z ∈ V }. As the random
walk evolves, it explores the random landscape, finding deeper and deeper traps,
and aging appears as a consequence of the longer and longer times the process
remains at the same vertex.

It is clear from the description that random walks on random trap environments
should present a very rich scaling fractal structure if one chooses appropriate graphs
and random environments. For each given time scale, only traps at a certain depth
matter. The deeper valleys are too sparse to influence the evolution and the shal-
lower wells are not deep enough to retain the process.

We are concerned in this article with the lattice case: {ξz : z ∈ Zd} is a sequence
of i.i.d. strictly positive random variables and {Xt : t ≥ 0} a continuous time
random walk on Zd which waits a mean ξz exponential time at site z, at the end
of which it jumps to one of its neighbors with probability 1/2d.

When ξ0 has finite mean, for almost all environments {ξz : z ∈ Zd}, the rescaled
random walk ǫXtǫ−2 converges in distribution to a Brownian motion. In dimension
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metastability.
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1, we can use the method of random time change to study the problem explicitly and
a simple computation establishes the result [20]. In this case, the diffusion coefficient
is equal to E[ξ0]

−1, the harmonic mean of the random rates {ξ−1
z : z ∈ Zd}.

Observing that the random walk is a martingale, in higher dimension, by examining
the evolution of the environment as seen from the position of the random walk, the
proof of the invariance principle is reduced to the proof of an ergodic theorem
for the dynamics of the environment [19]. An explicit formula for the variance is,
however, no longer available.

To investigate the case where the environment has an infinite mean, a natural
assumption is to suppose that the distribution of ξ0 belongs to the domain of
attraction of an α-stable law, 0 < α < 1. The variables {ξz : z ∈ Zd} take now
large values in certain sites, forcing the random walk to stay still for a long time
when it reaches one of them, causing a macroscopic subdiffusive behavior.

In dimension 1, Fontes, Isopi and Newman [11] proved under these hypotheses
that for almost all environments, the random walk converges, in the time scale
t1+(1/α), to a singular diffusion with a random discrete speed measure. In dimen-
sion d ≥ 2, Ben Arous and Černý [5] proved that for almost all environments the
Bouchaud trap model converges in a proper time scale, t2/α in dimension d ≥ 3
and a scale logarithmic smaller than t2/α in dimension 2, to the fractional-kinetic
process, a self-similar, non-Markovian, continuous process, obtained as the time
change of a Brownian motion by the inverse of an independent α-stable subordi-
nator. In fact, they proved, under quite general conditions on the environment,
that the clock process converges to an α-stable subordinator, for a large range of
time scales [6]. In these time scales, the random walk does not visit the deepest
traps, but exhibit an aging behavior. During the exploration of the random scenery,
the process discovers deeper and deeper traps which slow down its evolution, the
mechanism responsible for the aging phenomenon. We refer to [4, 9] for recent
reviews.

We present in this article two results. The first one establishes the hydrody-
namic behavior, almost sure with respect to the environment, of a superposition
of independent random walks evolving on the one-dimensional torus with a trap
environment of α-stable i.i.d. random variables. The hydrodynamic equation, de-
scribing the macroscopic evolution of the density, is given by the generalized second
order linear equation

d

dt
ρ(t, x) =

d

dW

d

dx
ρ(t, x) ,

where W is an α-stable subordinator deriving from the realization of the environ-
ment. The Krein–Feller operator (d/dW )(d/dx) is the generator of the singular
diffusion obtained by Fontes, Isopi and Newman [11] as scaling limit of the random
walk in the trap environment.

The striking feature of this result is that the random environment survives en-
tirely in the limit, since even the differential operator, which describes the macro-
scopic evolution of the density, depends on the specific realization of the environ-
ment. A similar phenomenon was observed in [10, 14, 22] for exclusion processes
with α-stable random conductances.

The second result describes the evolution of the random walk in the random
environment, produced by α-stable i.i.d. random variables, in dimension d ≥ 2 in
the time scale needed to visit the deepest traps. In the notation of Theorem 4.1 in
[6], this corresponds to the case γ = 0.
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In dimension 2, on the time scale N2/α log N , we prove that the random walk,
evolving on the discrete torus (Z/NZ)2, converges to the Markov K-process intro-
duced by Fontes and Mathieu [13], which in the present context can be informally
described as follows. The state space is formed by the countable and dense subset
of deepest traps. The process stays at one of these sites an exponential time, with
expectation proportional to the depth of the trap, at the end of which it jumps
to a new location, chosen with uniform probability among the deepest traps. The
scaling limit is similar in dimension d ≥ 3, but the time scale is now Nd/α. In the
terminology of [2], these results establish the metastability of the random walk in
dimension d ≥ 2.

Convergence to the K-process has been proved by Fontes and Mathieu [13] for
the trap model in the complete graph and by Fontes and Lima [12] for the trap
model in the hypercube. We believe that this is a universal behavior of random
walks on graphs with heavy tailed random trap environments in the ergodic time
scale, the scale proportional to the time needed to jump from one very deep trap
to another. At least in sufficiently high dimension.

It is in fact quite surprising that even in low dimensions the geometry of the
torus is completely wiped out in the scaling limit of the random walk in a random
trap environment, as proved below.

We conclude this introduction by specifying the random environment we consider
in this article. Though we shall work on the torus, we present the construction on
Rd. Let λ be the measure on Rd × (0,∞) given by λ = αw−(1+α)dx dw, 0 < α < 1.
Denote by {(xi, wi) ∈ Rd × (0,∞) : i ≥ 1} the marks of a Poisson point process of
intensity λ, and define the measure W on Rd by

W =
∑

i≥1

wi δxi .

For z = (z1, . . . , zd) in Zd, let [z/N, [z + 1]/N) be the d-dimensional cube
∏

1≤i≤d

[zi/N, [zi + 1]/N) and let

ξN
z = Nd/α

∑

i≥1

wi 1{xi ∈ [z/N, (z + 1)/N)} ,

where 1{A} stands for the indicator of the set A. We show in the next section
that, for each N ≥ 1, {ξN

z : z ∈ Zd} are i.i.d. random variables with a common
α-stable distribution, independent of N . Following [11, Section 3], we may refine
this construction to obtain i.i.d. random variables distributed according to any law
in the domain of attraction of an α-stable law.

Taking the array {ξN
z : z ∈ Zd}, N ≥ 1, as our environment, instead of a

sequence {ξz : z ∈ Zd} of i.i.d. random variables in the domain of attraction of an
α-stable law, as it is usually done, produces noticeable differences in the scaling
limit, the main one being the survival of the measure W .

2. Notation and Results

Fix a finite, strictly positive measure W on the d-dimensional torus Td:

W (A) > 0 for any open set A. (2.1)

Denote by Td
N the d-dimensional, discrete torus (Z/NZ)d. Let WN

x , x ∈ Td
N , be

the W -measure of the d-dimensional cube [x/N, (x + 1)/N), where 1 is the vector
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with all components equal to 1: 1 = (1, . . . , 1):

WN
x = W

{

[x/N, (x + 1)/N)
}

. (2.2)

We examine in this article the evolution of a continuous time, nearest neighbor,
symmetric random walk on Td

N which waits a mean WN
x exponential time at site

x. Its generator LN is given by:

(LNf)(x) =
1

2d

1

WN
x

∑

y∼x

[f(y) − f(x)] , (2.3)

for every f : Td
N → R, where (y1, . . . , yd) = y ∼ x = (x1, . . . , xd) if |y − x| =

∑

1≤i≤d |xi − yi| = 1.

2.1. Hydrodynamic limit in dimension 1. Consider a finite number of random
walks evolving independently on TN according to the dynamics defined by the
generator LN . Let N0 be the non-negative integers: N0 = {0, 1, . . .}. Denote by

ΩN = N
TN
0 the state space of the process and by η the configurations of ΩN so that

η(x), x ∈ TN , represents the number of particles at site x for the configuration η.
This evolution corresponds to a Markov process on ΩN whose generator LN is

given by

(LNf)(η) =
1

2

∑

x∈TN

∑

y∼x

η(x)

NWN
x

[

f(ηx,y) − f(η)
]

,

where f : ΩN → R is a bounded function and ηx,y stands for the configuration
obtained from η by moving a particle from site x to site y:

ηx,y(z) =











η(x) − 1, z = x

η(y) + 1, z = y

η(z), z 6= x, y.

Notice that we have slowed down the dynamics by a factor N . We did that
in order to have a jump rate NWN

x of order one if the measure W is absolutely
continuous with respect to the Lebesgue measure in a neighborhood of x/N . Indeed,
in this case, if we denote by w the Radon-Nikodym derivative of W , NWN

x =
N

∫

[x/N,(x+1)/N)
w(y)dy is of order one. In contrast, if W has a point mass at x/N ,

NWN
x is of order N , which means that particles wait exponential times of order N

at sites where W has point masses. Particles are thus trapped on these sites.
Denote by {ηt : t ≥ 0} the Markov process with generator LN speeded up by N2.

Let D(R+, ΩN) be the space of right continuous trajectories ξ : R+ → ΩN with left
limits, endowed with the Skorohod topology. For a measure µ on ΩN , let Pµ be
the probability measure on D(R+, ΩN) induced by the Markov process {ηt : t ≥ 0}
starting from µ.

For ρ ≥ 0, let Pρ be the Poisson probability distribution with parameter ρ in
N0: Pρ{k} = e−ρρk/k!, k ≥ 0. Denote by νN

ρ the product measure on ΩN with
marginals defined by

νN
ρ {η : η(x) = k} = PρW N

x
{k} , x ∈ TN , k ≥ 0 . (2.4)

It is not hard to see that the measures νN
ρ are invariant and reversible for the

generator LN .
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Let M(T) be the space of finite positive measures on the torus T, endowed with
the weak topology. Fix γ > 0 and denote by πN = πN (η) ∈ M(T) the measure
obtained from a configuration η by assigning mass N−γ to each particle:

πN =
1

Nγ

∑

x∈TN

η(x) δx/N , (2.5)

where δx/N stands for the Dirac’s measure at x/N . For a continuous function

H : T → R, denote by 〈πN , H〉 the integral of H with respect to πN so that

〈πN , H〉 =
1

Nγ

∑

x∈TN

H(x/N) η(x) .

Fix a continuous function u0 : T → R+ and denote by µN
u0(·) the product measure

on ΩN with marginals given by

µN
u0(·)

{η : η(x) = k} = Pu0(x/N)NγW N
x
{k} , x ∈ TN , k ≥ 0 . (2.6)

When u0 is constant function equal to ρ, we denote µN
u0(·) simply by µN

ρ = µρ. Thus,

under µN
u0(·), η(x) has a Poisson distribution with parameter u0(x/N)WN

x Nγ .

An elementary computation shows that 〈πN , H〉 converges to
∫

H(x)u0(x)W (dx)

in L2(µN
u0(·)) for every continuous function H :

lim
N→∞

EµN
u0(·)

[(

〈πN , H〉 −
∫

T

H(x)u0(x)W (dx)
)2]

= 0 .

The hydrodynamic equation. Let H1 be the Sobolev space of all functions in
L2(T) with generalized derivative in L2(T) endowed with the scalar product 〈·, ·〉1,2

defined by

〈f, g〉1,2 = 〈f, g〉 +

∫

T

(∂xf)(x) (∂xg)(x) dx ,

where 〈·, ·〉 stands for the usual scalar product of L2(T). It is well known that the
space of functions with continuous partial derivatives of all order is dense in H1.
Moreover, any function in H1 has a continuous version.

Denote by L2(dW ) the Hilbert space associated to the measure W (dx), and by
〈f, g〉W the corresponding inner product.

Definition 2.1. A bounded measurable function u : [0, T ] × T → R is a weak
solution of







d

dt
u =

1

2

d

dW

d

dx
u ,

u(0, ·) = u0(·) ;
(2.7)

if

(i) It has finite energy:
∫ T

0

〈ut, ut〉1,2 dt < ∞ ,

(ii) For any smooth function G : [0, T ]× T → R vanishing at T , GT = 0,

〈G0, u0〉W +

∫ T

0

〈∂tGt, ut〉W dt =
1

2

∫ T

0

〈∂xGt, ∂xut〉 dt .
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We prove at the end of this article that there is at most one weak solution of
(2.7). Denote by πN

t , t ≥ 0, the empirical measure associated to the state of the
process at time t:

πN
t =

1

Nγ

∑

x∈TN

ηt(x) δx/N ,

and recall that time has been speeded up by N2.

Theorem 2.2. Let W be a finite, positive measure on T satisfying (2.1). Assume
that there exists γ0 > 0 such that

lim
N→∞

1

N2+γ0

∑

x∈TN

1

WN
x

= 0 . (H1)

Fix γ ≥ γ0. Then, for every t ≥ 0, every continuous function H : T → R, and
every δ > 0,

lim
N→∞

PµN
u0(·)

[
∣

∣

∣
〈πN

t , H〉 −
∫

T

H(x)u(t, x)W (dx)
∣

∣

∣
> δ

]

= 0 ,

where u is the unique weak solution of (2.7).

If the measure W is absolutely continuous with respect to the Lebesgue measure
and its Radon-Nikodym derivative, denoted by w(x), is strictly positive, w > 0
a.s., the previous theorem states that the empirical measure πN

t converges to the
measure π(t, dx) = u(t, x)w(x)dx, whose density u is solution of

{

∂tu = (1/2)w−1∆u
u(0, ·) = u0(·) .

The proof of the hydrodynamic behavior of the empirical measure differs sensibly
from the usual ones due to the space irregularity of the environment. The lack of
smoothness is reflected in the dynamics by an erratic time evolution. To overcome
this issue, we average not only in space but also time, investigating the asymptotic
behavior of the measure MN on [0, T ]× T, defined by

MN =

∫ T

0

1

N1+γ

∑

x∈TN

ηt(x)

WN
x

δx/N dt ,

which does not capture space and time discontinuities.

2.2. Metastable behavior of the trap model in dimension d ≥ 2. Fix a
finite, strictly positive, atomic measure W on the d-dimensional torus Td:

W =
∑

i≥1

wi δxi ,

where {xi : i ≥ 1} is a dense subset of Td and
∑

i≥1 wi < ∞.

Denote by {ŵi : i ≥ 1} the weights of W in decreasing order so that {ŵi : i ≥
1} = {wi : i ≥ 1} and ŵ1 ≥ ŵ2 ≥ · · · . In case of ties, choose the smallest site
according to some pre-established order. Let {x̂i : i ≥ 1} be the position of the
atoms of W corresponding to the weights {ŵi : i ≥ 1}:

W =
∑

i≥1

wi δxi =
∑

i≥1

ŵi δx̂i .

Recall the definition of WN
x given in (2.2). Denote by {XN

t : t ≥ 0} the ran-
dom walk on Td

N with generator LN . Let D(R+, Td
N ) be the path space of right
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continuous trajectories ω : R+ → Td
N with left limits endowed with the Skorohod

topology. Denote by PN
x , x ∈ Td

N , the probability measure on D(R+, Td
N ) induced

by the Markov process {XN
t } starting from x. Expectation with respect to PN

x is
denoted by EN

x .
Denote by νN the unique stationary state of the process {XN

t : t ≥ 0}. An
elementary computation shows that νN is in fact reversible and given by

νN (x) =
1

W (Td)
WN

x .

Enumerate Td
N according to the weights {WN

x } in decreasing order:

Td
N = {xN

1 , xN
2 , . . . , xN

Nd} , WN
xN
1

≥ WN
xN
2

≥ · · · ≥ WN
xN

Nd
.

In case of ties, choose the smallest site according to some pre-established order.
Following [5], we call the sites xN

j , j fixed, the very deep traps. These are the
relevant states of the trap random walk on the scale observed here.

Since W (Td) is finite, we may assume that for every M > 0, there exists N0 such
that x̂j ∈ [xN

j /N − (1/2N)1, xN
j /N + (1/2N)1], 1 ≤ j ≤ M , for all N ≥ N0.

To define the trace of the process {XN
t : t ≥ 0} on a subset F of Td

N , let T F
N (t),

t ≥ 0, F ⊂ Td
N , be the time the process remains in the set F in the interval [0, t]:

T F
N (t) :=

∫ t

0

1{XN
s ∈ F} ds ,

and let SF
N (t) be the generalized inverse of T F

N (t):

SF
N (t) := sup

{

s ≥ 0 : T F
N (s) ≤ t

}

.

It is well known that the process {XN,F
t : t ≥ 0} defined by

XN,F
t = XN(SF

N (t))

is a Markov process with state space F , called the trace of {XN
t } on F .

Let {Yk : k ≥ 0} be the d-dimensional, nearest-neighbor, symmetric, discrete
time random walk on Zd starting from the origin. For d ≥ 3, denote by vd the
probability that {Yk} never returns to the origin:

vd = P0

[

Yk 6= 0 for all k ≥ 1
]

.

Let AN
M = {xN

1 , . . . , xN
M}, 1 ≤ M ≤ Nd, and denote by {X̂N,M

t : t ≥ 0} the trace
of the process {XN

t : t ≥ 0} on the set AN
M . The second main result of this article

states that in dimension d ≥ 3, the trace process {X̂N,M
t } converges, as N ↑ ∞,

to the random walk on {x̂1, . . . , x̂M} which waits a mean ŵj/vd exponential time
at x̂j and then jumps to {x̂i : 1 ≤ i ≤ M} with uniform probability. Note that
we do not rule out the possibility that the process jumps back to the site where
it was. To state the result, let ΨN : Td

N → N, be defined by ΨN(xN
j ) = j and let

XN,M
t = ΨN (X̂N,M

t ). Clearly, {XN,M
t : t ≥ 0} is a Markov process on {1, . . . , M}.

Theorem 2.3. Fix T > 0 and assume that d ≥ 3. As N ↑ ∞, the law of {XN,M
t :

0 ≤ t ≤ T } converges in distribution to a random walk in {1, . . . , M} with generator
LM given by

(LMf)(i) =
vd

Mŵi

M
∑

j=1

[f(j) − f(i)] .
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Moreover,

lim
M→∞

lim sup
N→∞

max
1≤j≤M

EN
xN

j

[

T ∆N,M

N (T )
]

= 0 ,

where ∆N,M = Td
N \ AN

M .

In dimension 2 the picture is similar, but the process needs to be speeded up by
log N . Denote by {XN

t : t ≥ 0} the random walk on T2
N with generator (log N)LN ,

where LN has been introduced in (2.3). Hence, {XN
t : t ≥ 0} has the same distri-

bution as {XN
t log N : t ≥ 0}.

Denote by PN
x , x ∈ T2

N , the probability measure on D(R+, T2
N ) induced by the

Markov process {XN
t : t ≥ 0} starting from x. Expectation with respect to PN

x is

denoted by EN
x . Denote by {X̂N,M

t : t ≥ 0} the trace of the process {XN
t : t ≥ 0}

on the set AN
M and let X

N,M
t = ΨN(X̂N,M

t ).

Theorem 2.4. Fix T > 0 and assume that d = 2. As M ↑ ∞, the law of {XN,M
t :

0 ≤ t ≤ T } converges in distribution to a random walk in {1, . . . , M} with generator
L⋆

M given by

(L⋆
Mf)(i) =

π

2

1

Mŵi

M
∑

j=1

[f(j) − f(i)] .

Moreover, if we denote by T
∆N,M

N (T ) the time spent by the process XN
t in the set

∆N,M on the time interval [0, t],

lim
M→∞

lim sup
N→∞

max
1≤j≤M

EN
xN

j

[

T
∆N,M

N (T )
]

= 0 .

We prove in Proposition 6.19 that in dimension 2 the random walk {XN
t : t ≥

0} with generator LN does not leave a very deep trap, staying there indefinitely.
Therefore, on time scales of order 1 the random walk does not move, and on scales
of order log N the geometry is wiped out and the random walk jumps from a very
deep trap to another one, chosen with uniform probability.

Recall from [13, Definition 3.1] the definition of the K-process, a Markov process
on N, the one-point compactification of N, characterized by two parameters: c ≥ 0
and a sequence {γi > 0 : i ≥ 1} such that

∑

i≥1 γi < ∞. While γ−1
i represents

the rate at which the Markov process leaves i, c is related to the behavior of the
process at the extra point added in the compactification.

Denote by {ZM
t : t ≥ 0} the Markov process with generator LM . Fontes and

Mathieu [13, Lemma 3.11] proved that the process ZM
t converges, as M ↑ ∞, to

the K-process with parameters c = 0 and {ŵi/vd : i ≥ 1}. Next result follows from
this fact and from Theorem 2.3.

Theorem 2.5. Fix T > 0 and assume that d ≥ 3. There exists a sequence {ℓ∗N :
N ≥ 1}, ℓ∗N ↑ ∞, such that for any sequence {ℓN : N ≥ 1}, ℓN ≤ ℓ∗N , ℓN ↑ ∞,

the law of {XN,ℓN

t : 0 ≤ t ≤ T } converges in distribution to the K-process with
parameters {ŵi/vd : i ≥ 1} and c = 0. Moreover,

lim
N→∞

max
1≤j≤ℓN

EN
xN

j

[

T ∆N,ℓN

N (T )
]

= 0 .

Of course, a similar statement holds in dimension 2, i.e., for L⋆
M in place of LM .

In the terminology of Definition 2.1 in [2], Theorem 2.5 states that in dimension d ≥
3 the trap random walk {XN

t : t ≥ 0} is metastable with metastates {x̂1, x̂2, . . . }
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and limit given by the K-process with parameters {ŵi/vd : i ≥ 1} and c = 0.
Analogously, in dimension 2, the trap random walk {XN

t : t ≥ 0} is metastable
with metastates {x̂1, x̂2, . . . } and limit given by the K-process with parameters
{2ŵi/π : i ≥ 1} and c = 0.

2.3. Bouchaud’s trap model. In this subsection we present an example of a
random measure W which satisfies almost surely assumption (H1). Fix 0 < α < 1
and let λ be the measure on Td × (0,∞) given by λ = αw−(1+α)dx dw. Since λ is a
positive Radon measure, the Poisson point process Γ of intensity λ is well defined.
Let {(xi, wi) : i ≥ 1} be the Poisson marks and define the measure W by

W =
∑

i≥1

wi δxi .

Note that W (Td) is a.s. finite. On the one hand, the random variable Γ(Td ×
(1,∞)) has finite mean which implies that there are only a finite number of Poisson
marks on Td× [1,∞). On the other hand,

∑

i≥1 wi1{wi ≤ 1} has finite expectation.

Note also that W (A), W (B) are independent if A and B are disjoints.
Denote by |A| the Lebesgue measure of a measurable set A ⊆ Td. A simple

computation shows that the random variable W (A) has an α-stable distribution
for any A with |A| > 0. In particular, the random measure W is self-similar with
index α/d in the sense that the distributions of W (βA) and βd/αW (A) are the
same for any β ∈ (0, 1) and any measurable set A ⊆ Td.

We call the random measure W (dx) a d-dimensional subordinator of index α.
For x ∈ Td

N , define

τN
x = Nd/αWN

x .

Since W (dx) is self-similar with index α/d, {τN
x ; x ∈ Td

N} is a sequence of i.i.d.
random variables with common α-stable distribution ζ = W (Td) which does not
depend on N .

Fontes, Isopi, Newman version of the Bouchaud trap model is the symmetric,
nearest-neighbor, continuous-time random walk on Td

N with generator LN in which

WN
x is replaced by τN

x = Nd/αWN
x :

(Lτ
Nf)(x) =

1

2d

1

τN
x

∑

y∼x

[f(y) − f(x)] .

In dimension 1, the generator on ΩN corresponding to the superposition of in-
dependent random walks is given by

(Lτ
Nf)(η) =

1

2

∑

x∈TN

∑

y∼x

η(x)

τN
x

[

f(ηx,y) − f(η)
]

.

Denote by {ητ
t : t ≥ 0} the Markov process with generator Lτ

N speeded up by

N1+(1/α) and denote by πN,τ
t the empirical measure associated to the configuration

ητ
t by formula (2.5). Observe that the time scaling is subdiffusive.

We show below in (2.8) that assumption (H1) is in force almost surely. Moreover,
if the Markov process starts from µN

u0(·), for some continuous function u0 : T → R+,

by Theorem 2.2, for almost all measures W , for all t ≥ 0, the random measure πN,τ
t

converges in probability to the measure u(t, x)W (dx), where u is the unique weak
solution of (2.7). Note that the noise W survives entirely in the limit, even the
differential equation depends on W .
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We conclude this section showing that assumption (H1) is in force for γ0 >
(1/α) − 1. Indeed, with the notation introduced above, assumption (H1) can be
restated as

1

N2+γ−(1/α)

∑

x∈TN

1

τN
x

−→ 0 a.s. (2.8)

It is well known that 1/τN
x has finite moments of any order. Denote by m1 the ex-

pectation of 1/τN
x . The variance of the previous sum is equal to N−{3+2γ−(2/α)}σ2,

for some finite constant σ2. Therefore, by Chebyshev’s inequality, for every ǫ > 0,

P
[ ∣

∣

∣

1

N{2+γ−(1/α)}

∑

x∈TN

{ 1

τN
x

− m1

}

∣

∣

∣
≥ ǫ

]

≤ σ2

ǫ2N3+2γ−(2/α)
·

Taking ǫ = N−δ, for δ > 0 small enough, it follows from Borel-Cantelli that the
sum in (2.8) vanishes a.s. provided γ > (1/α) − 1.

3. Proof of the hydrodynamic limit

In this section we prove Theorem 2.2. Fix T > 0 and denote by M([0, T ] × T)
the space of finite, positive measures on [0, T ]×T, endowed with the weak topology.
For each N ≥ 1, consider the measure MN on [0, T ]× T defined by

MN =

∫ T

0

1

N1+γ

∑

x∈TN

ηt(x)

WN
x

δx/N dt .

Hence, if we denote by 〈〈MN , H 〉〉 the integral of a continuous function H : [0, T ]×
T → R with respect to MN , we have that

〈〈MN , H 〉〉 =

∫ T

0

1

N1+γ

∑

x∈TN

H(t, x/N)
ηt(x)

WN
x

dt .

Let D([0, T ],M) be the space of right continuous trajectories π : [0, T ] → M with
left limits, endowed with the Skorohod topology. Fix a continuous function u0 : T →
R+. Let QN , N ≥ 1, be the probability measure on D([0, T ],M) ×M([0, T ] × T)
induced by the initial distribution µN

u0(·) and the pair ({πN
t : 0 ≤ t ≤ T }, MN):

QN = PµN
u0(·)

◦ ({πN
t : 0 ≤ t ≤ T }, MN)−1. We prove in Lemma 3.5 below that the

sequence {QN : N ≥ 1} is tight for the uniform topology in the first variable, and, in
Subsection 3.3, that all limit points of the sequence {QN : N ≥ 1} are concentrated
on measures ({πt : 0 ≤ t ≤ T }, M) whose first coordinate is absolutely continuous
with respect to W , π(t, dx) = v(t, x)W (dx), and whose density vt is a weak solution
of the hydrodynamic equation (2.7). Since, by Theorem 5.1, there is at most one
weak solution, for each 0 ≤ t ≤ T , πN

t converges weakly to v(t, x)W (dx), where vt

is the unique weak solution of (2.7), as claimed in Theorem 2.2.

3.1. Entropy estimates. Recall from [15, Section A1.8] the definition of the rela-
tive entropy H(λ|µ) of a probability measure λ with respect to another probability
measure µ defined on the same space, as well as its explicit formula presented in
[15, Theorem A1.8.3]. An elementary computation shows that there exists a finite
constant K0 such that

H(µN
u0(·)|µρ) ≤ K0N

γ (3.1)

for all N ≥ 1. In fact N−γH(µN
u0(·)|µρ) converges to

∫

{u0(x) log[u0(x)/ρ]− [u0(x)−
ρ]}W (dx) as N ↑ ∞.
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Denote by 〈·, ·〉µρ the scalar product of L2(µρ) and denote by IW
N the convex and

lower semicontinuous [15, Corollary A1.10.3] functional defined by

IW
N (f) = 〈−LN

√

f ,
√

f〉µρ ,

for all probability densities f with respect to µρ (i.e., f ≥ 0 and
∫

fdµρ = 1). An
elementary computation shows that

IW
N (f) =

∑

x∈TN

IW
x,x+1(f) , where

IW
x,x+1(f) =

1

2N

∫

η(x)

WN
x

{
√

f(ηx,x+1) −
√

f(η)
}2

dµρ .

By [15, Theorem A1.9.2], if {SN
t : t ≥ 0} stands for the semi-group associated to

the generator N2LN , for all t ≥ 0,

HN (µN
u0(·)

SN
t |µρ) + N2

∫ t

0

IW
N (fN

s ) ds ≤ HN (µN
u0(·)|µρ) , (3.2)

provided fN
s stands for the Radon-Nikodym derivative of µN

u0(·)S
N
s with respect to

µρ.

3.2. Attractiveness and coupling estimates. Let (Ω,F , P ) be a probability
space and let � be a partial order in Ω. We say that a function f : Ω → R is
increasing if f(η) ≤ f(ξ) whenever η � ξ. Let λ, µ be two probability measures
in Ω. We say that λ is stochastically dominated by µ if

∫

fdλ ≤
∫

fdµ for any
increasing bounded function f : Ω → R. An equivalent definition is the following.
We say that a probability measure Λ defined in Ω × Ω is a coupling of λ and µ if
Λ(A×Ω) = λ(A), Λ(Ω×A) = µ(A) for any A ∈ F . The measure λ is stochastically
dominated by µ if there is a coupling Λ of λ and µ such that Λ((η, ξ); η � ξ) = 1.

We say that a stochastic process ηt defined in Ω is attractive if for any two
probability measures λ1 � λ2 there is a process (η1

t , η2
t ) in Ω × Ω such that ηi

t is
distributed as the process ηt with initial distribution µi for i = 1, 2, and such that
P (η1

t � η2
t ) = 1 for any t ≥ 0. We call the process (η1

t , η2
t ) a coupling.

In ΩN , we say that η � ξ if η(x) ≤ ξ(x) for any x ∈ TN . For this partial order,
it is easy to see that ηt is attractive. Indeed, since the state space is finite, it is
enough to show the existence of a coupling for measures µi concentrated on fixed
configurations ηi, with η1 � η2. Define η1

t as the process ηt with initial configuration
η1. Then, define the process η̄t as a copy of the process ηt, independent of η1

t , and
starting from η̄, where η̄(x) = η2(x) − η1(x). Now define η2

t by taking η2
t (x) =

η1
t (x)+ η̄t(x). Since the motion of different particles is independent, it is clear that

(η1
t , η2

t ) is the desired coupling as, by construction, η1
t � η2

t for any t ≥ 0.
In terms of stochastic domination, the definition of attractiveness reads as fol-

lows. If λ1 is stochastically dominated by λ2, then λ1
t is stochastically dominated

by λ2
t for any time t ≥ 0, where λi

t denotes the distribution in ΩN of the process ηt

with initial distribution λi. In particular, we obtain the following inequality, which
we call the coupling estimate:

Proposition 3.1. Let λ1, λ2 be two probability measure on ΩN . If λ1 is stochas-
tically dominated by λ2, then

Eλ1 [F (ηt)] ≤ Eλ2 [F (ηt)]

for any t ≥ 0 and any bounded increasing function F : ΩN → R.
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Now we need a criterion to decide whether an initial distribution is stochastically
dominated by another one. In N0, consider the canonical ordering. It is easy to
show that Pρ1 is stochastically dominated by Pρ2 whenever ρ1 ≤ ρ2. Since the
measures µρ are of product form, µρ1 is stochastically dominated by µρ2 each time
ρ1 ≤ ρ2. More interesting for us, we have the following.

Proposition 3.2. Fix an initial bounded non-negative profile u0 : T → R+. Define
ρ̄ = ||u0||∞. Then, µN

u0(·) is stochastically dominated by µρ̄ for any N > 0. In

particular,

EµN
u0(·)

[F (ηt)] ≤ Eµρ̄ [F (ηt)]

for any t ≥ 0 and for any increasing bounded function F : ΩN → R.

The coupling shows that πN
t , MN converge to measures which are absolutely

continuous with respect to W , the Lebesgue measures, respectively:

Lemma 3.3. Every limit point Q∗ of the sequence QN is concentrated on measures
π(t, dx) = u(t, x)W (dx) (resp. M(dt, dx) = v(t, x)dtdx) which are absolutely con-
tinuous with respect to W (resp. the Lebesgue measure) and whose density u(t, x)
(resp. v(t, x)) is positive and bounded by ‖u0‖∞.

Proof. Fix a limit point Q∗ of the sequence QN and assume, without loss of general-
ity, that QN converges to Q∗ (in the uniform topology on the first coordinate). Fix
a continuous, positive function G : [0, T ]×T → R, ε > 0 and recall that ρ̄ = ‖u0‖∞.
By the previous proposition,

PµN
u0(·)

[

〈〈M, G 〉〉 ≥ ρ̄

∫ T

0

dt

∫

T

G(t, x)dx + ε
]

≤ Pµρ̄

[

〈〈M, G 〉〉 ≥ ρ̄

∫ T

0

dt

∫

T

G(t, x)dx + ε
]

for every N ≥ 1. We may replace the integral
∫

T
G(t, x)du by the Riemann sum

because G is continuous. Thus, for N large enough, the previous expression is
bounded above by

Pµρ̄

[

∫ T

0

1

N1+γ

∑

x∈TN

G(t, x/N)
{ηt(x)

WN
x

− ρ̄ Nγ
}

dt ≥ ε/2
]

.

By Chebyshev and by Schwarz inequalities, since µρ̄ is a stationary state given by
a product of Poisson measures, this expression is less than or equal to

4T

ε2

∫ T

0

ρ̄

N2+γ

∑

x∈TN

G(t, x/N)2
1

WN
x

dt .

In view of assumption (H1), this expression vanishes as N ↑ ∞ because G is a
continuous bounded function.

Since QN converges to Q∗, for every ε > 0,

Q∗
[

〈〈M, G 〉〉 ≥ ρ̄

∫ T

0

dt

∫

T

G(t, x) dx + ε
]

= 0 .

Letting ε ↓ 0, we conclude that Q∗ is concentrated on measures M such that

〈〈M, G 〉〉 ≤ ρ̄
∫ T

0 dt
∫

T
G(t, x) dx. Taking a set {Gk : k ≥ 1} of positive, bounded,
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continuous functions dense for the uniform topology, we conclude that Q∗ is concen-
trated on absolutely continuous measures M(dt, dx) = v(t, x)dt dx, whose density
v(t, x) is bounded by ρ̄.

A similar coupling argument shows that for every 0 ≤ t ≤ T and every continu-
ous, positive function H : T → R,

lim
N→∞

PµN
u0(·)

[

〈πN
t , H〉 ≥ ρ̄

∫

T

H(x)W (dx) + ε
]

= 0 .

Since we assumed compactness in the uniform topology, we deduce from this formula
that

Q∗
[

〈πt, H〉 ≥ ρ̄

∫

T

H(x)W (dx) + ε
]

= 0 .

It remains to recall the arguments presented for M to conclude the proof. �

3.3. Hydrodynamic limit. We prove in this subsection Theorem 2.2.

Theorem 3.4. The sequence of probability measures {QN : N ≥ 1} converges to the
measure Q∗ concentrated on the absolutely continuous pair ({πt : 0 ≤ t ≤ T }, M),
πt = v(t, x)W (dx), M = v(t, x) dt dx, whose density v(t, x) is the weak solution of
the equation (2.7).

Proof. By Lemma 3.5 below, the sequence {QN : N ≥ 1} is tight. Fix a limit point
Q∗ and assume, without loss of generality, that QN converges to Q∗.

Fix a smooth function H : [0, T ] × T → R such that H(T, ·) = 0. Consider the
martingale MH

N (t) defined by

MH
N (t) = 〈πN

t , Ht〉 − 〈πN
0 , H0〉 −

∫ t

0

〈πN
s , ∂sHs〉 ds − N2

∫ t

0

LN 〈πN
s , H〉 ds .

(3.3)
The variance of this martingale is equal to

N

2N2γ

∑

x∈TN

∑

y:|y−x|=1

∫ t

0

ηs(x)

WN
x

{H(s, y/N) − H(s, x/N)}2 ds .

The coupling estimate shows that the expectation of this expression with respect
to PµN

u0(·)
is bounded by C0N

−γ for some finite constant C0 which depends on H

and ρ̄. On the other hand, an elementary computation shows that

N2

∫ T

0

LN〈πN
s , H〉 ds =

1

2
〈〈MN , ∆NH 〉〉 ,

where ∆N stands for the discrete Laplacian. In particular, in view of (3.3) and
since H(T, ·) vanishes, for every δ > 0,

lim
N→∞

PµN
u0(·)

[ ∣

∣

∣
〈πN

0 , H0〉 +

∫ T

0

〈πN
s , ∂sHs〉 ds + (1/2)〈〈MN , ∆NH 〉〉

∣

∣

∣
> δ

]

= 0 .

The first term of this sum converges to
∫

T
H0(x)u0(x)W (dx) in PµN

u0(·)
-probabil-

ity, as N ↑ ∞. The last expression can be written, up to smaller order terms, as
(1/2)〈〈MN , ∆H 〉〉. Hence, since QN converges to Q∗, for every δ > 0, and every
smooth function H ,

Q∗
[ ∣

∣

∣

∫

T

H0(x)u0(x)W (dx) +

∫ T

0

〈πs, ∂sHs〉 ds + (1/2)〈〈M, ∆H 〉〉
∣

∣

∣
> δ

]

= 0 .



14 M. JARA, C. LANDIM, A. TEIXEIRA

Letting δ ↓ 0, by Lemma 3.3, Q∗ almost surely,
∫

T

H0(x)u0(x)W (dx) +

∫ T

0

ds

∫

T

(∂sH)(s, x)u(s, x)W (dx)

+ (1/2)

∫ T

0

ds

∫

T

(∆H)(s, x) v(s, x) dx = 0 .

According to Lemma 4.6, we may replace u by v in the second term. By Proposition
4.3, we may integrate by parts the last term to obtain that

〈H0, u0〉W +

∫ T

0

〈∂sHs, us〉W ds − (1/2)

∫ T

0

〈∂xHs, ∂xvs〉 ds = 0 .

This proves that Q∗ is concentrated on weak solutions of (2.7). By Proposition
4.3, ∂xv belongs to L2([0, T ] × T) and by Lemma 3.3 v is positive and bounded.
Since the previous identity holds for all smooth functions H , v is a weak solution
of (2.7). �

Theorem 2.2 follows from this result and the tightness in the uniform topology
of the sequence {QN : N ≥ 1} proved in Lemma 3.5 below.

Lemma 3.5. The sequence {QN : N ≥ 1} is tight in the uniform topology in the
first coordinate.

Proof. To prove tightness of the sequence {QN : N ≥ 1} we need to examine the
two coordinates separately.

Clearly, the sequence of random measures MN is tight if and only if the sequence
of random variables 〈〈MN , G 〉〉 is tight for every continuous function G : [0, T ]×T →
R. Tightness of the sequence 〈〈MN , G 〉〉 follows from a coupling argument similar
to the one used in the proof of Lemma 3.3.

To prove tightness of the sequence of processes {πN
t : 0 ≤ t ≤ T } in the uni-

form topology, it is enough to examine the process 〈πN
t , H〉 for some fixed smooth

function H . Recall the definition of the martingale MH
N (t) introduced in (3.3).

Tightness of 〈πN
t , H〉 follows from tightness of the martingale MH

N (t) and tightness

of the additive functional
∫ t

0 N2LN〈πN
s , H〉 ds.

The martingale is tight in the uniform topology because, by Doob inequality and
by the explicit computation of the quadratic variation of MH

N (t), for every δ > 0

lim
N→∞

PµN
u0(·)

[

sup
0≤t≤T

∣

∣MH
N (t)

∣

∣ > δ
]

= 0 .

On the other hand, computing N2LN 〈πN
r , H〉, by Chebyshev and Schwarz inequal-

ities, for every δ > 0,

PµN
u0(·)

[

sup
0≤|t−s|≤ǫ

∣

∣

∣

∫ t

s

N2LN 〈πN
r , H〉 dr

∣

∣

∣
> δ

]

≤ ǫ C0

δ2
EµN

u0(·)

[

∫ T

0

{ 1

N1+γ

∑

x∈TN

ηs(x)

WN
x

}2

ds
]

for some finite constant C0 which depends only on H . By the coupling estimate,
we may replace the measure µN

u0(·)
by the stationary measure µN

ρ̄ , estimating the

expectation by

C(ρ̄)T
{

1 +
1

N2+γ

∑

x∈TN

1

WN
x

}

.
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By assumption (H1), this expression is bounded uniformly in N , which concludes
the proof of tightness. �

4. Entropy estimates

We prove in this section the main estimates needed in the proof of hydrodynamic
limit. For ℓ ≥ 1, let Λℓ be a cube of length ℓ: Λℓ = {1, . . . , ℓ} and let Λx,ℓ = x+Λℓ.
Denote by M ℓ(x) the number of particles on Λx,ℓ and by WN (x, ℓ) the W -measure
of the cube Λx,ℓ rescaled by N :

M ℓ(x) =
∑

y∈Λℓ

η(x + y) , WN (x, ℓ) =
∑

y∈Λℓ

WN
x+y .

Note that WN (x, ǫN) ∼ Wǫ(x).

4.1. Two blocks estimate. We prove in this subsection the so called two blocks
estimate.

Lemma 4.1. Fix a bounded function G : [0, T ]× T → R.

lim
ǫ→0

lim sup
N→∞

EµN
u0(·)

[ ∣

∣

∣

∫ T

0

1

N1+γ

∑

x∈TN

G(s, x/N)
{ηs(x)

WN
x

− M ǫN
s (x)

WN (x, ǫN)

}

ds
∣

∣

∣

]

= 0 .

Proof. Fix a bounded function G : [0, T ] × T → R, δ > 0 and a positive constant
C1 = C1(δ) to be specified later. Let

V 0
ǫ (s, η) =

1

N1+γ

∑

x∈TN

G(s, x/N)
{η(x)

WN
x

− M ǫN(x)

WN (x, ǫN)

}

,

Rǫ(s, η) =
C1ǫ

N2+γ

∑

x∈TN

G(s, x/N)2
ǫN
∑

y=0

η(x + y)

WN
x+y

·

By the coupling estimate,

EµN
u0(·)

[

∫ T

0

Rǫ(s, ηs)ds
]

≤ C0ǫ
2 T (4.1)

for some finite constant C0 depending only on C1, G, ρ. It is therefore enough to
prove that

lim
ǫ→0

lim sup
N→∞

EµN
u0(·)

[ ∣

∣

∣

∫ T

0

V 0
ǫ (s, ηs) ds

∣

∣

∣
−

∫ T

0

Rǫ(s, ηs) ds
]

= 0 .

By the entropy inequality, Jensen inequality and the entropy estimate (3.1), the
previous expectation is bounded above by

K0

A
+

1

ANγ
log Eµρ

[

exp ANγ
{∣

∣

∣

∫ T

0

V 0
ǫ (s, ηs) ds

∣

∣

∣
−

∫ T

0

Rǫ(s, ηs) ds
}]

for every positive A > 0.
Let A = K0δ

−1. Since e|x| ≤ ex + e−x and since lim supn→∞ N−γ log
{

a1
N +a2

N

}

= maxi=1,2 lim supn→∞ N−γ log ai
N , to prove the lemma it is enough to show that

for every δ > 0,

lim
ǫ→0

lim sup
n→∞

1

ANγ
log Eµρ

[

exp
{

ANγ

∫ T

0

Vǫ(s, ηs) ds
} ]

≤ 0 ,

where Vǫ = V 0
ǫ − Rǫ.
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By classical arguments, relying on Feynman-Kac’s formula (cf. [15, p. 267]), the
previous expectation is bounded above by

∫ T

0

sup
f

{

∫

Vǫ(s, η)f(η)µρ(dη) − N2

ANγ
IW
N (f)

}

ds ,

where the supremum is carried over all densities f with respect to µρ. Hence, to
conclude the proof of the lemma, it is enough to show that

∫

V 0
ǫ (s, η)f(η)µρ(dη) ≤

∫

Rǫ(s, η)f(η)µρ(dη) +
δN2

K0Nγ
IW
N (f) (4.2)

for every density function f and every δ > 0.
Recall the definition of WN (x, ǫN) to rewrite V 0

ǫ (s, η) as

1

N1+γ

∑

x∈TN

G(s, x/N)

ǫN
∑

y=1

WN
x+y

WN (x, ǫN)

{η(x)

WN
x

− η(x + y)

WN
x+y

}

.

Fix a density f with respect to µρ. Performing a simple change of variables, we see
that
∫

{η(x)

WN
x

− η(x + y)

WN
x+y

}

f dµρ =

y−1
∑

z=0

∫

{η(x + z)

WN
x+z

− η(x + z + 1)

WN
x+z+1

}

f dµρ

=

y−1
∑

z=0

∫

η(x + z)

WN
x+z

{

f(η) − f(σx+z,x+z+1η)
}

dµρ .

Since (a−b) = (
√

a−
√

b)(
√

a+
√

b), by Schwarz inequality, the previous expression
is less than or equal to

N

β

y−1
∑

z=0

IW
x+z,x+z+1(f) +

β

2

y−1
∑

z=0

∫

η(x + z)

WN
x+z

{

√

f(σx+z,x+z+1η) +
√

f(η)
}2

dµρ

for all β > 0. The same change of variables permit to estimate the second term as

β

y−1
∑

z=0

∫

{η(x + z)

WN
x+z

+
η(x + z + 1)

WN
x+z+1

}

f(η) dµρ .

It follows from the previous estimates that for any density f with respect to µρ,
and all β > 0,

∫

V 0
ǫ (s, η)f(η)µρ(dη) ≤ 1

βNγ

∑

x∈TN

ǫN
∑

y=1

WN
x+y

WN (x, ǫN)

y−1
∑

z=0

IW
x+z,x+z+1(f) (4.3)

+
2β

N1+γ

∑

x∈TN

G(s, x/N)2
ǫN
∑

y=1

WN
x+y

WN (x, ǫN)

y
∑

z=0

∫

η(x + z)

WN
x+z

f(η) dµρ .

We examine each term on the right hand side separately. Set β = 2ǫN−1A.
Changing the order of summation, we obtain that the second term is less than or
equal to

4ǫA

N2+γ

∑

x∈TN

G(s, x/N)2
∫ ǫN

∑

y=0

η(x + y)

WN
x+y

f(η) dµρ .
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This expression is bounded by the expectation of Rǫ with respect to f(η) dµρ pro-
vide we choose C1 ≥ 4A = 4K0δ

−1. By similar reasons, the first term on the right
hand side of (4.3) is bounded above by

N(ǫN + 1)

2AǫNγ

∑

z∈TN

IW
z,z+1(f) .

Hence, (4.2) holds and the lemma is proved. �

Consider a sequence {GN,ǫ : N ≥ 1, ǫ > 0} of functions GN,ǫ : [0, T ]× TN → R.
In the proof of the two blocks estimate, the boundedness assumption on G was used
only at (4.1). In particular, the proof presented above shows that

lim
ǫ→0

lim sup
N→∞

EµN
u0(·)

[ ∣

∣

∣

∫ T

0

1

N1+γ

∑

x∈TN

GN,ǫ(s, x)
{ M ǫN

s (x)

WN (x, ǫN)
− ηs(x)

WN
x

}

ds
∣

∣

∣

]

= 0 .
(4.4)

provided

lim
ǫ→0

lim sup
N→∞

∫ T

0

ǫ2

N

∑

x∈TN

GN,ǫ(s, x)2 ds = 0 .

Recall that Wǫ : T → R is defined by Wǫ(x) = W ([x, x + ǫ]).

Corollary 4.2. Let J : [0, T ]× T → R be a continuous function. Then,

lim
ǫ→0

lim sup
N→∞

EµN
u0(·)

[ ∣

∣

∣

∫ T

0

〈πN
s , Js〉 ds − 〈〈MN , J ǫ−1 Wǫ 〉〉

∣

∣

∣

]

= 0 .

Proof. Since J is a continuous function,

〈πN
s , Js〉 − 1

Nγ

∑

x∈TN

ηs(x)
1

(ǫN)

∑

−y∈Λ−x,ǫN

J(s, y/N)

is absolutely bounded by C(ǫ)N−γ
∑

x∈TN
η(x) for some finite constant C(ǫ) which

vanishes as ǫ ↓ 0. In particular, by the usual coupling estimate and changing the
order of summation, we get that

lim
ǫ→0

sup
N≥1

EµN
u0(·)

[ ∣

∣

∣

∫ T

0

〈πN
s , Js〉 ds −

∫ T

0

ǫ−1

N1+γ

∑

x∈TN

J(s, x/N)M ǫN
s (x) ds

∣

∣

∣

]

= 0 .

The second term inside the absolute value can be rewritten as

1

N1+γ

∑

x∈TN

J(s, x/N)ǫ−1WN (x, ǫN)
M ǫN

s (x)

WN (x, ǫN)
·

Let GN,ǫ(s, x/N) = J(s, x/N)ǫ−1WN (x, ǫN). Since J is a bounded function, by
definition of WN (x, ǫN),

∫ T

0

ǫ2

N

∑

x∈TN

GN,ǫ(s, x)2 ds ≤ C0T

N

∑

x∈TN

W2ǫ(x/N)2
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for some finite constant C0 which depends only on J . As N ↑ ∞ this expression
converges to

C0T

∫

T

W2ǫ(x)2 dx .

For Lebesgue almost all x, W2ǫ(x) vanishes as ǫ ↓ 0. Therefore, by (4.4),

lim
ǫ→0

lim sup
N→∞

EµN
u0(·)

[ ∣

∣

∣

∫ T

0

ǫ−1

N1+γ

∑

x∈TN

J(s, x/N)WN (x, ǫN)
{ M ǫN

s (x)

WN (x, ǫN)
− ηs(x)

WN
x

}

ds
∣

∣

∣

]

= 0 .

Finally, since
1

Nd

∑

x∈TN

∣

∣

∣
WN (x, ǫN) − Wǫ(x/N)

∣

∣

∣

vanishes as N ↑ ∞, we may replace WN (x, ǫN) by Wǫ(x/N) to conclude the proof
of the corollary. �

4.2. Energy estimate. We proved in Lemma 3.3 that any limit point Q∗ of the
sequence {QN : N ≥ 1} is concentrated on measures M which are absolutely
continuous with respect to the Lebesgue measures: M = v(t, x)dt dx. We show in
this section that the density v has a generalized space derivative in L2([0, T ]× T).

Proposition 4.3. Any limit point Q∗ of the sequence {QN : N ≥ 1} is concentrated
on measures M = v(t, x)dt dx with the property that there exists a function F in
L2([0, T ] × T) such that

∫ T

0

ds

∫

T

(∂xH)(s, x)v(s, x) dx = −
∫ T

0

ds

∫

T

H(s, x)F (s, x) dx

for all smooth functions H. We denote the generalized derivative F of v by ∂xv.

The proof of this proposition relies on the following estimate.

Lemma 4.4. Fix a set of smooth functions Hi : [0, T ]× T → R, 1 ≤ i ≤ ℓ. Let

Vi(s, η) =
1

Nγ

∑

x∈TN

Hi(s, x/N)
{η(x)

WN
x

− η(x + 1)

WN
x+1

}

.

Then, for any β > 0,

lim sup
N→∞

EµN
u0(·)

[

max
1≤i≤l

∫ T

0

{

Vi(s, η) − 2β

N1+γ

∑

x∈TN

Hi(s, x/N)2
ηs(x)

WN
x

}

ds
]

≤ K0

β
,

where K0 is the constant given by (3.1).

Proof. Fix β > 0 and let

Xi(s, η) = Vi(s, η) − β

N1+γ

∑

x∈TN

Hi(s, x/N)2
{η(x)

WN
x

+
η(x + 1)

WN
x+1

}

·

A summation by parts and a coupling estimate similar to the one used in the proof
of Lemma 3.3 shows that it is enough to prove that

lim sup
N→∞

EµN
u0(·)

[

max
1≤i≤l

∫ T

0

Xi(s, η) ds
]

≤ K0

β
.
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By the entropy inequality, Jensen inequality and the entropy estimate (3.1),

EµN
u0(·)

[

max
1≤i≤ℓ

∫ T

0

Xi(s, ηs) ds
]

≤ K0

β
+

1

βNγ
log Eµρ

[

exp
{

max
1≤i≤ℓ

βNγ

∫ T

0

Xi(s, ηs) ds
}]

for every β > 0.
Since, on the one hand, exp{max1≤i≤ℓ ai

N} ≤ ∑

1≤i≤ℓ exp{ai
N} and, on the other

hand, lim supn→∞ N−γ log
{

∑

1≤i≤ℓ bi
N

}

= max1≤i≤ℓ lim supn→∞ N−γ log bi
N , to

prove the lemma it is enough to show that

lim sup
n→∞

1

βNγ
log Eµρ

[

exp
{

βNγ

∫ T

0

Xi(s, ηs) ds
} ]

≤ 0 (4.5)

for 1 ≤ i ≤ ℓ and any β > 0.
By classical arguments, relying on Feynman-Kac’s formula (cf. [15, p. 267]), the

previous expectation is bounded above by
∫ T

0

sup
f

{

∫

Xi(s, η)f(η)µρ(dη) − N2

βNγ
IW
N (f)

}

ds ,

where the supremum is carried over all densities f with respect to µρ.
Therefore, to conclude the proof of the lemma, it is enough to show that
∫

Vi(s, η)f(η)µρ(dη)

≤
∫

β

N1+γ

∑

x∈TN

Hi(s, x/N)2
{η(x)

WN
x

+
η(x + 1)

WN
x+1

}

f(η)µρ(dη) +
N2

βNγ
IW
N (f)

for all density f and β > 0.
Recall the definition of Vi. Performing a simple change of variables, we see that

∫

{η(x)

WN
x

− η(x + 1)

WN
x+1

}

f dµρ =

∫

η(x)

WN
x

{

f(η) − f(σx,x+1η)
}

dµρ .

Since (a−b) = (
√

a−
√

b)(
√

a+
√

b), by Schwarz inequality, the previous expression
is less than or equal to

N

A
IW
x,x+1(f) +

A

2

∫

η(x)

WN
x

{

√

f(σx,x+1η) +
√

f(η)
}2

dµρ

for all A > 0. The same change of variables permit to estimate the second term as

A

∫

{η(x)

WN
x

+
η(x + 1)

WN
x+1

}

f(η) dµρ .

Choosing A = βN−1|H(s, x/N)|, we obtain that for any density f with respect
to µρ,

∫

Vi(s, η)(s, η)f(η)µρ(dη) ≤ N2

βNγ

∑

x∈TN

IW
x,x+1(f)

+
β

N1+γ

∑

x∈TN

Hi(s, x/N)2
∫

{η(x)

WN
x

+
η(x + 1)

WN
x+1

}

f(η) dµρ ,

which proves the lemma. �
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Recall that, by Lemma 3.3, Q∗ is concentrated on absolutely continuous measures
M = v(t, x)dt dx.

Corollary 4.5. Any limit point Q∗ of the sequence {QN : N ≥ 1} is concentrated
on measures M = v(t, x)dt dx such that

EQ∗

[

sup
H

{

∫ T

0

ds

∫

T

(∂xH)(s, x)v(s, x) dx

− 2

∫ T

0

ds

∫

T

H(s, x)2v(s, x) dx
}]

≤ K0 .

In this formula the supremum is taken over all functions H in C0,1([0, T ] × T).

Proof. Fix a limit point Q∗ of the sequence QN and assume, without loss of gen-
erality, that QN converges to Q∗. Consider a sequence {Hj : j ≥ 1} of functions in
C0,1([0, T ]×T) dense for the uniform topology. It follows from Lemma 4.4 with β =
1, a summation by parts and a coupling estimate, similar to the one used in the proof
of Lemma 3.3, to replace the discrete derivative N{H(s, (x + 1)/N) − H(s, x/N)}
by the continuous one (∂xH)(s, x/N), that

EQ∗

[

max
1≤i≤ℓ

{

∫ T

0

ds

∫

T

(∂xHi)(s, x) v(s, x) dx

− 2

∫ T

0

ds

∫

T

Hi(s, x)2 v(s, x) dx
}]

≤ K0 .

Letting ℓ ↑ ∞, we conclude the proof of the lemma applying the monotone conver-
gence theorem. �

Proof of Proposition 4.3. The proof is similar to the one of [15, Theorem 5.7.1] and
left to the reader. Note that we have in fact

∫ T

0

ds

∫

T

(∂xv)(s, x)2

v(s, x)
dx < ∞ .

�

4.3. Mt = πt, W almost surely. We prove in this section that Mt = πt, W
almost surely.

Lemma 4.6. Every limit point Q∗ of the sequence QN is concentrated on measures
M(dt, dx) = v(t, x)dt dx and π(t, dx) = u(t, x)W (dx) such that u = v (dt×W (dx))
almost surely on [0, T ]× T.

Proof. Fix a limit point Q∗ of the sequence QN and assume, without loss of gener-
ality, that QN converges to Q∗. Fix a continuous function J : [0, T ] × T → R. By
Corollary 4.2 and by Lemma 3.3,

lim
ǫ→0

EQ∗

[ ∣

∣

∣

∫ T

0

ds

∫

T

J(s, x)u(s, x)W (dx)

−
∫ T

0

ds

∫

T

J(s, x)ǫ−1 Wǫ(x) v(s, x) dx
∣

∣

∣

]

= 0 .

It follows from the energy estimate stated in Proposition 4.3 that

lim
ǫ→0

∫ T

0

ds

∫

T

dxJ(s, x)
1

ǫ

∫

[x,x+ǫ)

{v(s, x) − v(s, y)}W (dy) = 0
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Q∗ almost surely. Changing the order of summation, it follows from the continuity
of J that

lim
ǫ→0

∫ T

0

ds

∫

T

dxJ(s, x)
1

ǫ

∫

[x,x+ǫ)

v(s, y)W (dy)

=

∫ T

0

ds

∫

T

J(s, x) v(s, x)W (dx) .

Hence, for all continuous function J , Q∗ almost surely
∫ T

0

ds

∫

T

J(s, x) {u(s, x) − v(s, x)}W (dx) = 0 ,

which proves the lemma. �

5. Uniqueness of weak solutions

Theorem 5.1. There exists at most one weak solution of (2.7).

Proof. We use a method due to Oleinik (cf. pg. 90 in [22]). Due to the linearity
of problem (2.7), it is enough to show that the constant function equal to 0 is the
unique weak solution of equation (2.7) with initial condition u0 ≡ 0.

Fix such solution u. By condition (i), u belongs to L2([0, T ];H1). Since u(t, ·) is
continuous for almost all t, it is not difficult to show that there exists a sequence
of smooth functions uǫ : [0, T ]× T → R, ǫ > 0, such that ‖uǫ‖∞ ≤ ‖u‖∞ and

lim
ǫ→0

∫ T

0

dt
{

‖uǫ(t, ·) − u(t, ·)‖2
2,W + ‖(∂xuǫ)(t, ·) − (∂xu)(t, ·)‖2

2

}

= 0 .

Consider the test function Gǫ : [0, T ]× T → R defined by

Gǫ(t, x) = −
∫ T

t

uǫ(s, x) ds .

Since ∂tGǫ = uǫ, and since uǫ(t, ·) converges to u(t, ·) in L2(dW ) for almost all t,
by the dominated convergence theorem,

lim
ǫ→0

∫ T

0

〈∂tGǫ(t, ·), u(t, ·)〉W dt =

∫ T

0

〈ut, ut〉W dt .

On the other hand, since
∫ T

0

〈(∂xGǫ)(t, ·), (∂xu)(t, ·)〉 dt = −
∫ T

0

dt

∫ T

t

〈(∂xuǫ)(s, ·), (∂xu)(t, ·)〉 ds ,

and since ∂xuǫ converges to ∂xu in L2([0, T ] × T),

lim
ǫ→0

∫ T

0

〈(∂xGǫ)(t, ·), (∂xu)(t, ·)〉 dt = − 1

2

∫

T

(

∫ T

0

(∂xu)(t, x) dt
)2

dx .

Hence, by condition (ii), since u0 = 0,
∫ T

0

〈ut, ut〉W dt = − 1

4

∫

T

(

∫ T

0

(∂xu)(t, x) dt
)2

dx .

This show that ut ≡ 0 for almost every t, and uniqueness follows. �

6. Atomic trap models in dimension d ≥ 2

We prove in this section Theorems 2.3, 2.4 and 2.5.
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6.1. Capacity and trace process. To help the reader to follow the arguments
of this section, we summarize below known results on capacity and trace processes
used later. Consider a reversible, ergodic Markov chain {Xt : t ≥ 0} on a countable
set E. Fix a non-empty subset F of E and denote by {XF

t : t ≥ 0} the trace process
of {Xt : t ≥ 0} on F , as defined in Subsection 2.2.

Denote by ν the unique invariant probability measure of {Xt : t ≥ 0} and by νF

the invariant probability measure of the trace process {XF
t : t ≥ 0}. By Lemma

5.3 of [2], νF coincides with the measure ν conditioned to F , and νF is reversible.
For x ∈ E (resp. x ∈ F ), let Px (resp. PF

x ) be the distribution on the path
space D(R+, E) (resp. D(R+, F )) induced by the process {Xt : t ≥ 0} (resp.
{XF

t : t ≥ 0}) starting from x.
For a subset B of E (or F ), denote by H(B) the entry time in B, defined as

H(B) = inf{t ≥ 0 : Zt ∈ B},
where Zt stands either for Xt or for XF

t . The context will always clarify to which
process we are referring to. Denote by τ(B) the time of first return of {Xt : t ≥ 0}
to B:

τ(B) = inf{t > T1 : Xt ∈ B},
where T1 stands for the time of the first jump of {Xt : t ≥ 0}. When the set B is
a singleton {x}, we denote H({x}), τ({x}) by H(x), τ(x), respectively.

Denote by λ : E → R+ the holding times of the Markov process {Xt : t ≥ 0}.
By Lemma 5.4 in [2], the rate rF (x, y) at which the trace process {XF

t : t ≥ 0}
jumps from a site x ∈ F to a site y ∈ F , y 6= x, is given by

rF (x, y) = λ(x) Px

[

H(y) < τ(F \ {y})
]

. (6.1)

The expectation of an entry time has a simple expression in terms of the ca-
pacities associated to the process {Xt : t ≥ 0}. Denote by L the generator of the
process {Xt : t ≥ 0}. Let A, B ⊆ E be two disjoint sets. Define

B(A, B) = {f : E → R : f(x) = 1 for x ∈ A and f(x) = 0 for x ∈ B}.
Let D be the Dirichlet form associated to {Xt : t ≥ 0}: D(f) = −

∫

fLfdν for
any f : E → R. The capacity cap(A, B) between A and B is defined as

cap(A, B) = inf{D(f) : f ∈ B(A, B)} . (6.2)

Notice that cap(A, B) = cap(B, A); it is enough to consider f̃ = 1 − f . An
elementary computation shows that cap(A, B) = D(fA,B), where fA,B is the unique
solution of







(Lf)(x) = 0 if x ∈ E \ (A ∪ B)
f(x) = 1 if x ∈ A
f(x) = 0 if x ∈ B.

It is easy to see, by the strong Markov property, that

fA,B(x) = Px[H(A) < H(B)]. (6.3)

Let A, B be two disjoint subsets of F . Define capF (A, B) as the capacity between
A and B, with respect to the trace process {XF

t : t ≥ 0}. By Lemma 5.4 (d) in [2],

capF (A, B) =
cap(A, B)

ν(F )
· (6.4)

The first result of this section establishes the relation between capacity and
expectation of hitting times.
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Lemma 6.1. For any subset A of F and any y in F \ A,

EF
y

[

H(A)
]

=
1

cap(y, A)

∑

z∈F

ν(z) Pz

[

H(y) < H(A)
]

.

Proof. Fix A ⊂ F and y in F \ A. By equation (4.12) in [2],

EF
y

[

H(A)
]

=
1

capF (y, A)

∑

z∈F

νF (z) PF
z

[

H(y) < H(A)
]

.

To prove the lemma, it remains to recall that νF is the measure ν conditioned to
F , (6.4) and Lemma 5.4 (a) in [2]. �

Note that Pz[H(y) < H(A)] vanishes for z in A. In particular,

EF
y

[

H(A)
]

≤ ν(F \ A)

cap(y, A)
· (6.5)

Capacities are also related to return times. Next result follows from equation
(6.10) in [2].

Lemma 6.2. Let A be a finite subset of E, and let y ∈ E \ A. Then,

Py[H(A) < τ(y)] =
cap(A, {y})
λ(y)ν(y)

·

When the Markov chain {Xt : t ≥ 0} is not ergodic, the definition of the capacity
can be generalized in a natural way. Assume that there exists a positive measure
ν, reversible and invariant for {Xt : t ≥ 0}. In this case, of course, ν(E) = +∞.

To define the capacity between a finite set A and infinity, consider an increasing
sequence of finite sets Bn ⊆ E such that ∪nBn = E. Since A is finite, cap(A, Bc

n),
given by the variational formula (6.2), is well defined for n large enough. The
sequence of functions fA,Bc

n
, introduced in (6.3), is increasing and bounded. There-

fore, we can define fA(x) = limn fA,Bc
n
(x). It is not difficult to check that

fA(x) = Px[H(A) < ∞] , D(fA) = inf{D(f) : f ∈ B(A)} ,

where B(A) is the set of finitely supported functions f : E → R such that f(x) = 1
for x ∈ A. Let cap(A) := D(fA) be the capacity of A with respect to infinity.

By the dominated convergence theorem and Lemma 6.2, the following result
holds.

Lemma 6.3. For any y in E,

Py[τ(y) = +∞] =
cap(y)

λ(y) ν(y)
·

We conclude this subsection with two estimates for the simple symmetric random
walk on the torus Td

N or on the lattice Zd. Taking adavantage of the commuting
time identity, which relates expectation of hitting times with capacities, Proposition
10.13 of [17] establishes the following bounds for the hitting times of the simple
symmetric random walk on Td

N :

Lemma 6.4. Let x, y two points at distance k on the torus Td
N . There exist

constants 0 < cd < Cd < +∞ such that in dimension d ≥ 3,

cdN
d ≤ Ex[H(y)] ≤ CdN

d uniformly in k
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and in dimension 2,

c2N
2 log k ≤ Ex[H(y)] ≤ C2N

2 log(k + 1) .

For N > 0, let us denote by Λ∗
N the cube of length 2N +1 centered at the origin:

Λ∗
N = {−N, . . . , N}d. Denote by δΛN its inner boundary: δΛN = {x ∈ Λ∗

N : ∃y /∈
Λ∗

N with |y − x| = 1}. The following lemma is Proposition 2.2.2 of [16]:

Lemma 6.5. Let X(t) be the simple symmetric random walk in Zd, d ≥ 3. Then,
there exist constants 0 < cd < Cd < +∞ such that for any set A ⊆ Λ∗

N and any
x ∈ ∂Λ∗

2N we have

cd N2−d cap(A) ≤ Px[HA < +∞] ≤ Cd N2−d cap(A) .

Note that cap(A) is finite because the random walk is transient.

6.2. Random walks in Td
N , d ≥ 3. In this subsection we prove some properties

of the simple random walk on Td
N which will be used to establish its metastable

behavior. Denote by {Y N
k : k ≥ 0} the discrete time, nearest-neighbor, symmetric

random walk on Td
N and let QN

x , x ∈ Td
N , be the measure on D(Z+, Td

N ) induced by
the random walk Y N starting from x. Expectation with respect to QN

x is denoted
by the same symbol.

For a subset B of Td
N , denote by H(B) the entry time in B, defined as

H(B) = inf{k ≥ 0 : Y N
k ∈ B} .

In Lemma 6.6 below we prove that whenever the simple random walk starts
from a point isolated from the very deep traps, asymptotically, the next very deep
trap to be visited is uniformly chosen. In Corollary 6.7 we obtain the limiting
distribution of the next very deep trap to be visited starting from another very
deep trap. Corollary 6.8 presents the limit of the capacity between two points of
Td

N far apart.
Let d(x, y) be the distance induced by the graph Td

N . For a subset Γ of Td and
r > 0, denote by B(Γ, r) the set of sites in Td

N at distance less than or equal to r
from Γ: B(Γ, r) = {x ∈ Td

N : d(x, Γ) ≤ r}; and denote by ∂G the sites not in Γ
which are at distance one from Γ: ∂Γ = {x 6∈ Γ : d(x, Γ) = 1}. In these definitions
we identified Γ with its immersion in Td

N : Γ = Γ ∩ Td
N .

Lemma 6.6. Suppose lN ↑ ∞ and AN
M = {xN

1 , . . . , xN
M} ⊂ Td

N are such that, if
i 6= j, d(xN

i , xN
j ) ≥ lN . Then, defining AN

M,i to be AN
M \ {xN

i }, we have

lim
N→∞

sup
y∈B(AN

M ,lN )c

∣

∣

∣

∣

QN
y

[

H(xN
1 ) < H(AN

M,1)
]

− 1

M

∣

∣

∣

∣

= 0 .

Proof. The proof is based on the fact that a site is reached on the scale Nd and
equilibrium is reached on the scale N2. Hence, in an intermediate scale, the process
has not reached AN

M and is in equilibrium. In particular, it has a probability 1/M
to attain xN

1 before the set AN
M,1.

First, we prove that the process does not reach a site in the scale N5/2:

lim
N→∞

sup
y;d(y,0)≥lN

QN
y

[

H(0) < N5/2
]

= 0 . (6.6)
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By the strong Markov property,

QN
y [H(0) < N5/2] ≤ QN

y [H(0) < H(∂B(0, N/8))]

+ sup
z∈∂B(0,N/8)

QN
z [H(0) < N5/2] .

Since d(y, 0) ≥ lN , by Lemma 6.5, the first term in the sum above is bounded by

C0/ld−2
N for some finite constant C0 independent of N . We can therefore suppose

in (6.6) that lN = N/8.
Denote by {Rk : k ≥ 1} and {Dk : k ≥ 1} the successive return and departure

times between B1 = B(0, N/8) and B2 = B(0, N/4):

R1 = HB1 D1 = R1 + HBc
2
◦ θR1

Rn = Dn−1 + HB1 ◦ θDn−1 Dn = Rn + HBc
2
◦ θRn , n ≥ 2 .

Here θs : D(Z+, Td
N ) → D(Z+, Td

N ) is the shift map given by Yt ◦ θs = Ys+t.
For y such that d(y, 0) ≥ N/8, by the strong Markov property,

QN
y [H(0) < N5/2] ≤ QN

y [RNd−9/4 ≤ N5/2] + QN
y [H(0) < RNd−9/4 ]

≤ sup
z;d(z,0)≥N/8

QN
z [RNd−9/4 ≤ N5/2]

+ Nd−9/4 sup
z∈∂B(0,N/8)

QN
z [H(0) < H(∂B(0, N/4))] .

(6.7)

The right hand side does not depend on the choice of y and tends to zero as N ↑ ∞,
by [8], Proposition 1.1 with u = N−1/2, and Lemma 6.5. This proves (6.6).

In the time scale N5/2 the process reaches equilibrium. More precisely, denote
by πN the uniform probability measure on Td

N and by ‖µ − ν‖ the total variation
distance between two measures µ, ν on Td

N . By Corollary 5.3 and equation (5.9)
in [17], for an arbitrary sequence yN ∈ B(AN

M , lN)c,

lim
N→∞

∥

∥

∥
QN

yN [YN5/2 = ·] − πN (·)
∥

∥

∥
= 0 . (6.8)

In particular, for 1 ≤ i ≤ M and for an arbitrary sequence yN in B(AN
M , lN )c,

lim
N→∞

1

Nd

∣

∣

∣
QN

yN [H(xN
i )] − QN

πN [H(xN
i )]

∣

∣

∣
= 0 . (6.9)

To prove this claim, fix 1 ≤ i ≤ M and introduce the indicators of the sets H(xN
i ) <

N5/2, H(xN
i ) ≥ N5/2, to obtain that

QN
yN [H(xN

i )] = QN
yN

[

QN
Y

N5/2
[H(xN

i )]
]

+ RN ,

where the remainder RN is absolutely bounded by

N5/2 + sup
z∈Td

N

QN
z [H(xN

i )] QN
yN [H(xN

i ) < N5/2] .

Hence,

QN
yN [H(xN

i )] − QN
πN [H(xN

i )] = QN
yN

[

QN
Y

N5/2
[H(xN

i )] − QN
πN [H(xN

i )]
]

+ RN

is absolutely bounded by

N5/2 + sup
z∈Td

N

QN
z [H(xN

i )]
{

QN
yN [H(xN

i ) < N5/2] +
∥

∥

∥
QN

yN [YN5/2 = ·] − πN (·)
∥

∥

∥

}

.
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By (6.6), (6.8) and Lemma 6.4, this expression divided by Nd vanishes as N ↑ ∞.
This proves (6.9).

Recall that vd stands for the probability that a symmetric, nearest-neighbor
random walk on Zd never returns to its starting point. By the estimate on the
expected hitting time (3.2) of [23], it follows from (6.9) that

lim
N→∞

1

Nd
QN

yN [H(xN
i )] =

1

vd
, and, analogously, for j 6= 1, (6.10)

lim
N→∞

1

Nd
QN

xN
j

[H(xN
1 )] =

1

vd
and lim

N→∞

1

Nd
QN

xN
1

[H(AN
M,1)] =

1

vd(M − 1)
,

because, by Lemma 6.3, the escape probability vd equals the capacity between the
origin and infinity in Zd. Note that λ(0) = 1 and that the capacity is computed
with respect to the counting measure.

Define S to be the stopping time given by the first visit to yN after the first visit
to xN

1 , after visiting AN
M,1. By the strong Markov property, QN

yN [S] is equal to

QN
yN [H(AN

M,1)] +
∑

j 6=1

QN
yN [YH(AN

M,1) = xN
j ] QN

xN
j

[H(xN
1 )] + QN

xN
1

[H(yN )] .

Hence, by (6.10),

lim
N→∞

1

Nd
QN

yN [S] =
1

vd

( 1

M − 1
+ 2

)

. (6.11)

We are now in a position to prove the lemma. Fix an arbitrary sequence yN in
B(AN

M , lN )c. Since QN
yN [#{visits to xN

1 before H(AN
M,1)}] = QN

yN [#{visits to xN
1

before H(AN
M,1)} 1{H(xN

1 ) < H(AN
M,1)}], by the strong Markov property,

QN
yN [H(xN

1 ) < H(AN
M,1)] =

QN
yN [#{visits to xN

1 before H(AN
M,1)}]

QN
xN
1

[#{visits to xN
1 before H(AN

M,1)}]
· (6.12)

To estimate the numerator, observe that, by [1], Chapter 2, Proposition 3 and
Lemma 7,

1

Nd
QN

yN [S] = QN
yN

[

#{visits to xN
1 before S}

]

= QN
yN

[

#{vis. to xN
1 bef. H(AN

M,1)}
]

+ QN
xN
1

[

#{vis. to xN
1 bef. H(yN)}

]

= QN
yN

[

#{vis. to xN
1 bef. H(AN

M,1)}
]

+
1

Nd

{

QN
xN
1

[H(yN )] + QN
yN [H(xN

1 )]
}

.

Hence, the right hand side of (6.12) can be written as

N−d
(

QN
yN [S] − QN

xN
1

[H(yN )] − QN
yN [H(xN

1 )]
)

QN
xN
1

[#{visits to xN
1 before H(xN

1 ) ◦ θH(AN
M,1) + H(AN

M,1)}]
·

Let S′ be the stopping time H(AN
M,1)+H(xN

1 )◦ θH(AN
M,1). By Lemma 7, Chapter 2

in [1], the denominator is equal to N−dQN
xN
1

[S′]. Hence, by the strong Markov

property on H(AN
M,1), the previous ratio is equal to

N−d
(

QN
yN [S] − QN

xN
1

[H(yN )] − QN
yN [H(xN

1 )]
)

N−d
(

QN
xN
1

[H(AN
M,1)] +

∑

j 6=1

QN
xN
1

[YH(AN
M,1) = xN

j ] QN
xN

j

[H(xN
1 )]

) ·
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By (6.10), (6.11), this expression converges to M−1 as N ↑ ∞. Since the sequence
yN ∈ B(AN , lN )c is arbitrary, we are done. �

For a subset F of Td
N , let τ̂ (F ) be the return time to F for the discrete time

random walk {Y N
k : k ≥ 0}:

τ̂ (F ) = inf{k ≥ 1 : Y N
k ∈ F} .

For subsets A, B of Td
N such that A ∩ B = φ, let capY N (A, B) be the capacity

between A and B induced by the process Y N :

capY N (A, B) = inf
f

1

4d

∑

x∈Td
N

∑

y∼x

[f(y) − f(x)]2 ,

where the infimum is carried over all functions f : Td
N → R such that f(x) = 1 for

all x in A, f(x) = 0 for all x in B.

Corollary 6.7. Under the same conditions of Lemma 6.6, for j 6= 1,

lim
N→∞

QN
xN

j
[H(xN

1 ) < τ̂ (AN
M,1)] =

vd

M
·

Proof. Since

lim
N→∞

QN
xN

j
[H(∂B(xN

j , lN )) < τ̂ (xN
j )] = vd ,

the result follows from the strong Markov property and Lemma 6.6. �

Corollary 6.8. If lN ↑ ∞ and xN , yN ∈ Td
N , are such that d(xN , yN) ≥ lN ,

lim
N→∞

capY N (xN , yN) =
vd

2
· (6.13)

Proof. The corollary is a direct application of Lemma 6.2 and Corollary 6.7. �

6.3. Random walk on Td
N for d > 2. We present similar results to the ones stated

in the previous subsection, but which also hold in dimension 2. Here, however, we
need to impose that the distances lN , between the very deep traps and the starting
point of the walk, grow close to linearly.

Although Lemma 6.9 below also holds for d > 3 and could be used in place of
Lemma 6.6, we keep both results since they are based on different arguments. Let
lN be an increasing sequence such that lN/N → 0 and lN/Nα → ∞ for every α < 1.
In this way,

lim
N→∞

lN
N

= 0 , lim
N→∞

log lN
log N

= 1 . (6.14)

In this subsection it will be more convenient to work with the distance d2(x, y)
in Td

N given by N times the Euclidean distance between x and y in Td.

Lemma 6.9. Consider a sequence of sets AN
M = {xN

1 , . . . , xN
M} ⊂ Td

N such that
d2(xi, xj) > lN (0 6 i < j 6 M) for some sequence {lN : N ≥ 1} satisfying (6.14).
Then,

lim
N→∞

sup
y∈B(AN

M ,lN )c

∣

∣

∣

∣

QN
y

[

H(xN
1 ) < H(AN

M,1)
]

− 1

M

∣

∣

∣

∣

= 0 .
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Since the result only concerns the first point in AN
M to be visited, we can suppose

that the process {Yk : k ≥ 0} is a lazy random walk in Td
N , i.e. with probability

one half Y does not move, otherwise it jumps uniformly to one of its neighbors.
Before going into the proof of Lemma 6.9, we collect some properties of the hitting
and mixing times of Y .

Recall that || · || denotes the total variation distance between two probability
measures. The following bound on the mixing time on the torus follows, for instance,
from Corollary 5.3 and equation (5.9) in [17].

lim
β→∞

lim sup
N→∞

∥

∥QN
y [YβN2 = ·] − πN (·)

∥

∥ = 0 . (6.15)

Of course, the same result holds for any sequence {tN : N ≥ 1} which increases to
∞ faster than N2.

We claim that for every β > 0 and xN , yN ∈ Td
N such that d2(x

N , yN ) > lN

lim
N→∞

QN
yN [H(xN ) 6 βN2] = 0 . (6.16)

Since for d > 3 this statement follows from (6.6), we concentrate in the case d = 2.
Recall that Y stands for the simple random walk on Z2 (with law P), and denote
by φN : Z2 → T2

N the canonical projection. In view of the invariance principle in
Z2, it is enough to prove that for every R > 0,

lim
N→∞

PȳN

[

φN (Y) visits xN before Y exits B(ȳN , RN)
]

= 0 ,

where ȳN ∈ Z2 is such that φN (ȳN ) = yN ∈ T2
N . This follows, for instance, from

[7], (225) since for every point x̄N ∈ B(ȳN , RN) such that φ(x̄N ) = xN , we have
|ȳN − x̄N | > lN and, moreover, the number of possible choices for x̄N is bounded
uniformly on N > 1. This establishes (6.16) for d = 2.

A straightforward consequence of (6.16) is that

lim
N→∞

QN
πN [H(xN ) 6 βN2] = 0 (6.17)

for any sequence {xN : N ≥ 1} in Td
N .

Now we can state the hitting time estimate we will use during the proof. Consider
the scales

hd
N =

{

N2 log N if d = 2,

Nd if d > 3 .

We claim that for every d > 2,

lim
γ→0

lim sup
N→∞

sup
x,y;d2(x,y)>lN

QN
y [H(x) < γhd

N ] = 0 . (6.18)

Indeed, fix δ > 0. By (6.16), for any β > 0, for N sufficiently large, and for any
x, y such that d2(x, y) > lN ,

QN
y [H(x) < γhd

N ] ≤ δ + QN
y

[

H(x) ≥ βN2 , H(x) < γhd
N

]

.

On the set H(x) ≥ βN2, H(x) = βN2 + H(x) ◦ θβN2 . Therefore, by the Markov
property at βN2, the second term is less than or equal to

EQN
y

[

QN
YβN2

[

H(x) < γhd
N

]

]

.

By (6.15), for β large enough, this expression is bounded by

δ + QN
πN

[

H(x) < γhd
N

]

.
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The result follows now from Theorem 2.1 of [23] and Lemma 6.4.
Finally, we claim that for every positive γ, the probability to hit a very deep

trap before γhd
N is bounded away from zero in N . More precisely, for every γ > 0,

lim sup
N→∞

QN
πN

[

H(x) ≥ γhd
N

]

< 1. (6.19)

The claim above also follows from Theorem 2.1 of [23] and Lemma 6.4.

Proof of Lemma 6.9. Our strategy is to consider several consecutive attempts to
hit one of the points in AN

M . For γ > 0 and a positive integer L, define the times

ai = i (LN2 + γ hd
N ) , bi = i (LN2 + γ hd

N ) + LN2

for i ≥ 0. Intuitively, for each i, we use the intervals [ai, bi] to approach equilibrium
measure πN and the intervals [bi, ai+1] to attempt to hit the set AN

M .
Let

RL,N := max
y∈Td

N

∥

∥ QN
y [Y N

LN2 = ·] − πN (·)
∥

∥ ,

SL,N := sup
y∈B(AN

M ,lN )c

QN
y [H(AN

M ) ≤ LN2] ,

TL,N := QN
πN [H(AN

M ) ≤ LN2] .

By symmetry, the maximum is irrelevant in the definition of RL,N , and, by (6.15),
RL,N vanishes as N ↑ ∞ and then L ↑ ∞. By (6.16), (6.17), SL,N an TL,N vanish
as N ↑ ∞ for every L ≥ 1.

For 0 ≤ s < t, define the random variable Js,t, which takes the value 0 if the
set AN

M = {xN
1 , . . . , xN

M} is not visited between the times s and t and otherwise
Js,t = 1, . . . , M according to the index of the first point in AN

M visited in this
interval.

The proof of the lemma is divided in two parts. We first claim that for every
γ > 0,

lim sup
N→∞

sup
y∈B(AN

M ,lN )c

∣

∣

∣

∣

∣

QN
y

[

H(xN
1 ) < H(AN

M,1)
]

− QN
πN

[

Jb0,a1 = 1
]

QN
πN

[

Jb0,a1 6= 0
]

∣

∣

∣

∣

∣

= 0 . (6.20)

Note that this expression does not depend on L, but only on γ and N . Then, we
prove that

lim
γ→0

lim sup
N→∞

∣

∣

∣

∣

∣

QN
πN

[

Jb0,a1 = 1
]

QN
πN

[

Jb0,a1 6= 0
] − 1

M

∣

∣

∣

∣

∣

= 0 . (6.21)

Clearly, Lemma 6.9 follows from (6.20) and (6.21).
The proof of (6.20) relies on three estimates. Consider the event DF = [Jai,bi 6=

0 for some i = 0, . . . , F − 1], F ≥ 1. This event indicates that some very deep trap
is visited in one of the “mixing” intervals [aj , bj]. We claim that

sup
y∈B(AN

M ,lN )c

QN
y [DF ] ≤ F TL,N + SL,N + RL,N . (6.22)

Fix a site y in B(AN
M , lN)c and decompose the event DF according to whether

the set AN
M has been attained before time LN2 or not to get that

QN
y [DF ] 6 QN

y [H(AN
M ) ≤ LN2] + QN

y [DF , H(AN
M ) > LN2] .
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The first term is bounded by SL,N . On the set H(AN
M ) > LN2, the event DF is

equal to ∪1≤i≤F−1{Jai,bi 6= 0}. Hence, by the Markov property at time b0, the
second term on the right hand side of the previous inequality is bounded by

EQN
y

[

QN
Y N

b0

[

F−1
⋃

i=1

{Jai−b0,bi−b0 6= 0}
] ]

≤ RL,N + QN
πN

[

F−2
⋃

i=0

{Jai,bi 6= 0}
]

.

Since πN is the stationary state, the second term is smaller than or equal to (F −1)
QN

πN [H(AN
N ) ≤ LN2]. In conclusion, we proved that

QN
y [DF ] 6 SL,N + F QN

πN [H(AN
M ) ≤ LN2] + RL,N ,

which is exactly (6.22).
Let EF , F ≥ 1, be the event that no site in AN

M has been visited in the “hitting”
intervals [bi, ai+1], 0 ≤ i ≤ F − 1: EF = [Jbi,ai+1 = 0 for all i = 0, . . . , F − 1]. We
claim that

sup
y∈B(AN

M ,lN )c

∣

∣

∣
QN

y [EF ] − QN
πN

[

Jb0,a1 = 0
]F

∣

∣

∣
≤ FRL,N . (6.23)

Fix a site y in B(AN
M , lN )c. By the Markov property,

QN
y [EF ] = QN

y

[

F−2
⋂

i=0

{Jbi,ai+1 = 0} QN
Y N

aF−1

[

Jb0,a1 = 0
]

]

.

Applying the Markov property at time b0 = LN2, this expression can be written as

QN
y

[

F−2
⋂

i=0

{Jbi,ai+1 = 0}
]

QN
πN

[

J0,a1−b0 = 0
]

+ RN

where the remainder RN is absolutely bounded by RL,N . Since πN is the stationary
state, QN

πN [J0,a1−b0 = 0] = QN
πN [Jb0,a1 = 0]. We proceed by induction to derive

(6.23).
Let HF , F ≥ 1, be the event {H(x1) < H(AN

M,1)} ∩ Dc
F ∩ Ec

F . We claim that

sup
y∈B(AN

M ,lN )c

∣

∣

∣

∣

QN
y

[

HF

]

− QN
πN

[

Jb0,a1 = 1
]

QN
πN

[

Jb0,a1 6= 0
]

∣

∣

∣

∣

≤ F 2RL,N + QN
πN

[

Jb0,a1 = 0
]F

+ QN
y [DF ] .

(6.24)

Clearly,

HF = Dc
F ∩

F−1
⋃

j=0

{

j−1
⋂

k=0

{Jbk,ak+1
= 0} ∩ {Jbj,aj+1 = 1}

}

.

Repeating the arguments which leaded to (6.23), we get that for each 0 ≤ j ≤ F −1
and any site y in B(AN

M , lN )c,

QN
y

[

j−1
⋂

k=0

{Jbk,ak+1
= 0} ∩ {Jbj ,aj+1 = 1}

]

= QN
πN

[

Jb0,a1 = 0
]j

QN
πN

[

Jb0,a1 = 1
]

+ RN ,
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where the remainder RN is absolutely bounded by (j + 1)RL,N . The value of the
remainder RN may change from line to line below. Summing over j, we get that

QN
y

[

HF

]

= QN
πN

[

Jb0,a1 = 1
]

F−1
∑

j=0

QN
πN

[

Jb0,a1 = 0
]j

+ RN ,

where the remainder RN is now absolutely bounded by F 2RL,N + QN
y [DF ]. This

expression can be written as

QN
πN

[

Jb0,a1 = 1
]

1 − QN
πN

[

Jb0,a1 = 0
] + RN

for a remainder RN absolutely bounded by F 2RL,N +QN
πN

[

Jb0,a1 = 0
]F

+QN
y [DF ],

which is precisely (6.24).
By the estimates (6.22), (6.23), (6.24), the supremum in (6.20) is bounded by

2F TL,N + 2SL,N + 4F 2RL,N + 2 QN
πN

[

Jb0,a1 = 0
]F

for every F ≥ 1, L ≥ 1, γ > 0. By (6.19), QN
πN [Jb0,a1 = 0], which does not depend

on L, is bounded above by a constant strictly smaller than one. Hence, as N ↑ ∞,
and then L ↑ ∞, RL,N , SL,N and TL,N vanish. It remains to let F ↑ ∞ to conclude
the proof of (6.20).

It remains to prove (6.21). Decompose the event {Jb0,a1 = 1} according to the
event that at least two sites in AN

M have been visited in the time interval [b0, a1] to
get that

∣

∣QN
πN [Jb0,a1 = 1] − QN

πN [Y[b0,a1] ∩ AN
M = {x1}]

∣

∣ ≤ QN
πN

[

#(Y[b0,a1] ∩ AN
M ) > 1

]

.

In this formula, Y[b0,a1] stands for the sites visited by the random walk in the interval
[b0, a1], Y[b0,a1] = {Yt : b0 ≤ t ≤ a1}, and #A for the cardinality of A. By similar
reasons,
∣

∣QN
πN [Y[b0,a1] ∩ AN

M = {x1}] − QN
πN [x1 ∈ Y[b0,a1]]

∣

∣ ≤ QN
πN

[

#(Y[b0,a1] ∩ AN
M ) > 1

]

.

Therefore,
∣

∣QN
πN [Jb0,a1 = 1] − QN

πN [x1 ∈ Y[b0,a1]]
∣

∣ ≤ 2QN
πN

[

#(Y[b0,a1] ∩ AN
M ) > 1

]

.

Note that the probability QN
πN [y ∈ Y[b0,a1]] does not depend on y by symmetry. In

particular, it also follows from the previous arguments that
∣

∣QN
πN [Jb0,a1 6= 0] − MQN

πN [x1 ∈ Y[b0,a1]]
∣

∣ ≤ (M + 1)QN
πN

[

#(Y[b0,a1] ∩ AN
M ) > 1

]

so that
∣

∣QN
πN [Jb0,a1 = 1] − (1/M)QN

πN [Jb0,a1 6= 0]
∣

∣ ≤ 4QN
πN

[

#(Y[b0,a1] ∩ AN
M ) > 1

]

.

Equivalently,
∣

∣

∣

∣

QN
πN

[

Jb0,a1 = 1
]

QN
πN

[

Jb0,a1 6= 0
] − 1

M

∣

∣

∣

∣

≤ 4 QN
πN

[

#(Y[b0,a1] ∩ AN
M ) > 1

]

QN
πN

[

Jb0,a1 6= 0
] ·

By the strong Markov property, the right hand side is bounded above by

max
1≤i≤M

QN
xi

[H(AN
M,i) < γhd

N ] .

By (6.18), this expression vanishes as N ↑ ∞ and then γ ↓ 0. This concludes the
proof of the lemma. �
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We also need to estimate in dimension 2 the probability that the random walk
escapes from a deep trap. More precisely,

Lemma 6.10. Assume that d = 2 and let {lN : N ≥ 1} be a sequence satisfying
(6.14). Then, for any sequence {yN ∈ T2

N : N ≥ 1},

lim
N→∞

log N QN
yN

[

H(B(yN , lN )c) < τ̂(yN )
]

=
π

2
·

Proof. The number of visits that the random walk performs to yN before exit-
ing B(yN , lN ) is a geometric random variable, with failure probability given by
QN

yN [H(B(yN , lN)c) < τ̂ (yN )]. The inverse of this probability is equal to the ex-

pected number of visits to yN before exiting B(yN , lN ). By [16], Theorem 1.6.6,
the expected number of visits, denoted by GB(yN ,lN )(y

N , yN) in the notation of
Green’s functions, is given by

GB(yN ,lN )(y
N , yN ) =

2

π
log N + K + O(N−1) ,

for some constant K in R. The result follows from this estimate. �

Corollary 6.11. Assume that d = 2. Under the hypotheses of Lemma 6.9, for
j 6= 1,

lim
N→∞

log N QN
xN

j

[

H(xN
1 ) < τ̂(AN

M,1)
]

=
π

2M
·

Proof. This result follows from the strong Markov property and Lemmas 6.9 and
6.10. �

Corollary 6.12. Assume that d = 2 and let {RN : N ≥ 1} be a sequence such that
RN ↑ ∞. Let xN , yN ∈ T2

N , such that d(xN , yN) ≥ RN . Then,

lim
N→∞

log N capY N (xN , yN ) =
π

4
· (6.25)

Proof. The corollary is a direct application of Lemma 6.2 and Corollary 6.11. �

6.4. Metastability of the trap model in dimension d ≥ 3. Recall that we
denoted by vd the probability that a nearest-neighbor, symmetric random walk on
Zd never returns to its starting point. As in the previous subsections, we denote
by Y N

k the discrete time random walk on the torus Td
N , inducing the law QN

x on
D(Z+, Td

N ). The proof of Theorem 2.3 is divided in two parts. In Proposition 6.13
below we show that the trace process converges and in Corollary 6.15 that the time
spent outside AN

M is negligible.

Proposition 6.13. Fix M > 1 and T > 0. As N ↑ ∞, the process {XN,M
t :

0 ≤ t ≤ T } converges in distribution to the Markov process on {1, . . . , M} with
generator LM given by

(LMf)(i) =
vd

Mŵi

M
∑

j=1

[f(j) − f(i)] .

Proof. Fix M ≥ 1 and denote by rN,M : {1, . . . , M} × {1, . . . , M} → R+ the jump

rates of the trace process {XN,M
t : 0 ≤ t}. By (6.1), for j 6= i,

rN,M (i, j) =
1

WN
xN

i

PN
xN

i

[

H(xN
j ) < τ(AN

M,j)
]

,
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where again AN
M,j = {xN

1 , . . . , xN
j−1, x

N
j+1, x

N
M}, 1 ≤ j ≤ M ≤ Nd. To compute this

probability, we need only to examine the discrete skeleton Markov chain:

PN
xN

i

[

H(xN
j ) < τ(AN

M,j)
]

= QN
xN

i

[

H(xN
j ) < τ̂(AN

M,j)
]

.

Since xN
j converges, as N ↑ ∞, to x̂j , 1 ≤ j ≤ M , and since min1≤i6=j≤M ‖x̂i−x̂j‖ >

0, by Corollary 6.7,

lim
N→∞

QN
xN

i

[

H(xN
j ) < τ̂ (AN

M,j)
]

=
vd

M
·

Hence, for j 6= i, rN,M (i, j) converges, as N ↑ ∞, to (vd/Mŵi), because WN
xN

i

converges to ŵi. This concludes the proof of the proposition. �

To examine the time spent by the random walk {XN
t : 0 ≤ t ≤ T } on Td

N \AN
M ,

denote by capN the capacity associated to the process XN . Of course, for any two
disjoint subsets A, B of Td

N ,

capN(A, B) =
1

W (Td)
capY N (A, B) . (6.26)

For x 6= y, in Td
N , denote by PN,x

y the probability measure on the path space

D(R+, Td
N \ {x}) induced by the trace of {XN

t : t ≥ 0} on Td
N \ {x} starting from

y. Expectation with respect to PN,x
y is denoted by EN,x

y .

Lemma 6.14. We have that

lim
M→∞

lim sup
N→∞

max
1≤j≤M

max
y:|y−xN

j |=1
M E

N,xN
j

y

[

H(AN
M,j)

]

= 0 .

Proof. Fix 1 ≤ j ≤ M and y ∼ xN
j . By Lemma 6.1, the expectation appearing in

the statement of the lemma is equal to

1

capN (y, AN
M,j)

∑

z 6=xN
j

νN (z) PN
z

[

H(y) < H(AN
M,j)

]

. (6.27)

By (6.26), the denominator is equal to

1

W (Td)
capY N (y, AN

M,j) ≥ 1

W (Td)
capY N (y, xN

1 ) .

In view of Corollary 6.8, this latter expression is bounded below, uniformly in N ,
by a strictly positive constant.

To estimate the numerator in (6.27), we need only to examine the discrete skele-
ton Markov chain because PN

z [H(y) < H(AN
M,j)] = QN

z [H(y) < H(AN
M,j)]. Fix a se-

quence {ℓN : N ≥ 1} such that 1 << ℓN << N and let BN = {z ∈ Td
N : d(z, AN

M ) ≤
ℓN} \ AN

M , CN = {z ∈ Td
N : d(z, AN

M ) > ℓN}. Since QN
z [H(y) < H(AN

M,j)] vanishes

on the set AN
M,j,

∑

z 6=xN
j

νN (z) QN
z

[

H(y) < H(AN
M,j)

]

=
∑

z∈BN

νN (z) QN
z

[

H(y) < H(AN
M,j)

]

+
∑

z∈CN

νN (z) QN
z

[

H(y) < H(AN
M,j)

]

.

The first term on the right hand side is bounded by νN (BN ), which vanishes as
N ↑ ∞ because ℓN << N . Since ℓN >> 1, by Lemma 6.6, as N ↑ ∞, the second
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term converges to M−1[1 − W (Td)−1
∑

1≤j≤M ŵj ]. The expression inside brackets

vanishes as M ↑ ∞ by definition of the sequence {ŵi}. This proves the lemma. �

Recall that ∆N,M = Td
N \ AN

M .

Corollary 6.15. For every t ≥ 0,

lim
M→∞

lim sup
N→∞

max
1≤j≤M

EN
xN

j

[

T ∆N,M

t

]

= 0 .

Proof. Fix M ≥ 1 and 1 ≤ j ≤ M . Consider the stochastic process ẐN,M
t with

state space AN
M defined as

ẐN,M
t = XN(σ(t)) ,

where σ(t) := sup{s ≤ t : XN
s ∈ AN

M}. Hence, during an excursion in ∆N,M by

XN , the process ẐN,M
t stays at the last visited site in AN

M .
For a path ω ∈ D(R+, Td

N ) performing infinitely many jumps, denote by τn(ω),
n ≥ 0, the jumping times of ω: τ0(ω) = 0 and

τn(ω) := inf{t > τn−1(ω) : ω(t) 6= ω(τn−1(ω))} .

Let
Tn(ω) := τn(ω) − τn−1(ω) , n ≥ 1 ,

and let Nt be the number of jumps up to time t:

Nt(ω) := sup{j ≥ 0 : τj(ω) ≤ t} .

The process X̂N,M
t , defined on the path space D(R+, AN

M ), can be thought as

a process on D(R+, Td
N ). Couple the processes X̂N,M

t , ẐN,M
t forcing them to visit

the same sequence of sites. By Lemma 6.14 and the proof of Lemma 4.4 in [2], for
every K ≥ 1,

lim
M→∞

lim sup
N→∞

max
1≤j≤M

EN
xN

j
[ τKM (ẐN,M ) − τKM (X̂N,M ) ] = 0 . (6.28)

Set N̂t := Nt(Ẑ
N,M), T̂n := Tn(ẐN,M ) and Tn := Tn(X̂N,M). Fix 1 ≤ j ≤ M .

Under PN
xN

j
,

T ∆N,M

t ≤ t ∧
N̂t+1
∑

n=1

(T̂n − Tn) ≤ 1{N̂t ≥ KM} t +
KM
∑

n=1

(T̂n − Tn)

for any positive integer K. Therefore,

EN
xN

j
[T ∆N,M

t ] ≤ t PN
xN

j
[ N̂t ≥ KM ] + EN

xN
j

[

τKM (ẐN,M) − τKM (X̂N,M)
]

.

By (6.28), the second term vanishes as N ↑ ∞ and then M ↑ ∞. It remains to
prove that

lim
K→∞

lim sup
M→∞

lim sup
N→∞

max
1≤j≤M

PN
xN

j
[ Nt(Ẑ

N,M) ≥ KM ] = 0 . (6.29)

Since Nt(Ẑ
N,M ) ≤ Nt(X̂

N,M), PN
xN

j
- a.s.,

PN
xN

j
[ Nt(Ẑ

N,M) ≥ KM ] ≤ PN
xN

j
[ Nt(X̂

N,M) ≥ KM ] .

Fix M ≥ 1 and 1 ≤ j ≤ M such that

lim sup
N→∞

max
1≤k≤M

PN
xN

k
[ Nt(X̂

N,M) ≥ KM ] = lim sup
N→∞

PN
xN

j
[ Nt(X̂

N,M ) ≥ KM ] .
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Since [Nt ≥ KM ] is a closed set for the Skorohod topology on D(R+, AN
M ), since

Nt(X̂
N,M) has the same distribution as Nt(X

N,M) and since, by Proposition 6.13,
XN,M converges in distribution to ZM ,

lim sup
N→∞

PN
xN

j
[Nt(X̂

N,M ) ≥ KM ] ≤ max
1≤k≤M

Pk[Nt(Z
M ) ≥ KM ] ,

where Pk is the distribution of the process ZM starting from k.
To estimate the right hand side, we compare Nt(Z

M ) with a counting process Ct

in which we replace the holding times Tn by 0 if ZM (τn−1) 6= 1. In other words, let
G0 := C0 be the number of times the process ZM jumped before hitting 1 for the
first time. Since ZM jumps from any site uniformly to all others, G0 is a random
variables with geometric distribution: P [G0 = n] = (1/M)[(M − 1)/M ]n−1, n ≥ 1.
When hitting 1, as ZM , the process Ct stays there for a mean ŵ1/vd exponential
time. At the end of this exponential time, Ct jumps from G0 to G0 + G1, where
G1 stands for the number of jumps performed by ZM before hitting 1 again.

By construction, Nt(Z
M ) ≤ Ct for all t ≥ 0 and Ct =

∑

0≤j≤N̂t
Gj , where

{Gj : j ≥ 0} are i.i.d. random variables with geometric distribution: P [G1 =

n] = (1/M)[(M − 1)/M ]n−1, n ≥ 1; and N̂t is a Poisson process with rate vd/ŵ1,
independent of the sequence {Gi}. In particular, EPk

[Nt(Z
M )] ≤ M [1 + (tŵ1/vd)].

This proves (6.29) and the corollary. �

Proof of Theorem 2.3. Theorem 2.3 follows from Proposition 6.13 and Corollary
6.15. �

Proof of Theorem 2.5. Denote by {Zt : t ≥ 0} the K-process with parameters
{ŵi/vd : i ≥ 1} and c = 0. Using independent exponential and Poisson random

variables, we may define in the same probability space (Ω,F , P ) processes {X
N,M
t :

t ≥ 0}, {ZM
t : t ≥ 0} and {Zt : t ≥ 0} which have the same distribution as

{XN,M
t : t ≥ 0}, {ZM

t : t ≥ 0} and {Zt : t ≥ 0}, respectively. Fix a common
starting point j for all processes and T > 0. By [13, Lemma 3.11], {ZM

t : 0 ≤ t ≤ T }
converges a.s., as M ↑ ∞, to {Zt : t ≥ 0} in the Skorohod metric. On the other
hand, by Proposition 6.13, if dS stands for the Skorohod metric on D([0, T ], N), for
every M ≥ 1 and ǫ > 0,

lim
N→∞

P
[

dS(XN,M , ZM ) > ǫ
]

= 0 .

In particular, there exists a strictly increasing sequence {N∗
M : M ≥ 1}, such that

P
[

dS(XN,M , ZM ) > M−1
]

≤ 1

M

for all N ≥ N∗
M . Hence, by the triangular inequality, for any sequence {NM : M ≥

1} such that NM ≥ N∗
M ,

lim
M→∞

P
[

dS(XNM ,M , Z) > ǫ
]

= 0 .

for any ǫ > 0. The sequence {ℓ∗N : N ≥ 1}, defined as the inverse of {N∗
M : M ≥ 1},

fulfills the requirements of the first part of Theorem 2.5.
To prove the second statement of Theorem 2.5, fix M ≥ 2 and observe that

T ∆N,ℓN
t ≤ H(AN

M ) + T ∆N,M

t ◦ θ(H(AN
M )) provided ℓN ≥ M . In this formula,
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θ(s) : D(R+, Td
N ) → D(R+, Td

N ), s ≥ 0, stands for the time shift by s of a path ω:
(θ(s)ω)(t) = ω(s + t), t ≥ 0. Therefore,

max
1≤j≤ℓN

EN
xN

j

[

T ∆N,ℓN
t

]

≤ max
1≤j≤ℓN

EN
xN

j

[

H(AN
M )

]

+ max
1≤j≤M

EN
xN

j

[

T ∆N,M

t

]

provided M ≤ ℓN . By Corollary 6.15, the second expression converges to 0 as
N ↑ ∞, M ↑ ∞. By definition of H(AN

M ), the first expectation on the right hand
side vanishes for 1 ≤ j ≤ M . For M < j ≤ ℓN , by (6.5) with F = E = Td

N ,

EN
xN

j

[

H(AN
M )

]

≤ νN (∆N,M )

cap(xN
j , AN

M )
·

The denominator is bounded below by minz∈Td
N

max1≤k≤M cap(z, xN
k ). Since ‖x̂1−

x̂2‖ > 0, by Corollary 6.8, this expression is bounded below by a positive constant,
uniformly in M and N . This proves the second statement of Theorem 2.5 because
νN (∆N,M ) vanishes as N ↑ ∞, M ↑ ∞. �

6.5. Metastability for d = 2. In this subsection, we adapt to dimension 2 the
results presented in the previous subsection. Most of the proofs are similar to the
case d > 3.

The main difference with respect to dimension 3 is that the process is speeded
up by log N . Recall from Section 2 that we denote by {XN

t : t ≥ 0} the random
walk with generator LN , defined in (2.3), speeded up by log N . Moreover, PN

x , PN
x ,

x ∈ T2
N , stand for the probability measure on D(R+, T2

N ) induced by the processes
{XN

t : t ≥ 0}, {XN
t : t ≥ 0} starting from x.

Proposition 6.16. For a fixed M > 1, and T > 0, the process {XN,M
t : 0 6 t 6 T }

converges in distribution, as N ↑ ∞, to the Markov process in {1, . . . , M} given by
the following generator

(L⋆
Mf)(i) =

π

2

1

Mŵi

M
∑

j=1

[f(j) − f(i)] .

Proof. As in the proof of Proposition 6.13, we use (6.1) to write the jump rates of

X
N,M
t in terms of the excursion probabilities between the very deep traps:

rN,M (i, j) =
log N

WN
xN

i

QN
xN

i

[

H(xN
j ) < τ̂ (AN

M,j)
]

.

Note the factor log N which appears because the generator LM is multiplied by this
constant.

Consider a sequence {lN : N ≥ 1} satisfying (6.14). Use the strong Markov
property on H(B(xN

i , lN )c) to obtain

QN
xN

i

[

H(xN
j ) < τ̂(AN

M,j)
]

= QN
xN

i

[

1
{

H(B(xN
i , lN)c) < τ̂ (xN

i )
}

QN
Y (H(B(xN

i ,lN )c))

[

H(xN
j ) < H(AN

M,j)
]

]

.
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Therefore,
∣

∣

∣
log N QN

xN
i

[

H(xN
j ) < τ̂ (AN

M,j)
]

− π

2M

∣

∣

∣

≤
∣

∣

∣
log N QN

xN
i

[

H(B(xN
i , lN)c) < τ̂(xN

i )
]

− π

2

∣

∣

∣

+
π

2
sup

z∈∂B(xN
i ,lN )

∣

∣

∣
QN

z

[

H(xN
j ) < H(AN

M,j)
]

− 1

M

∣

∣

∣
.

By Lemmas 6.9 and 6.10, these expressions vanish as N ↑ ∞. Since WN
xN

i
converges

towards ŵi, 1 ≤ i ≤ M , we are done. �

Recall the definition of the measures PN,x
y , x 6= y ∈ T2

N , introduced in the

previous subsection. It corresponds to the trace on T2
N \ {x} of the process {XN

t :
t ≥ 0}, which has not been speeded up.

Lemma 6.17. In dimension 2,

lim
M→∞

lim sup
N→∞

max
1≤j≤M

max
y:|y−xN

j |=1

M

log N
E

N,xN
j

y

[

H(AN
M,j)

]

= 0 .

Proof. The proof of this result follows the same argument as in Lemma 6.14. One
only notes that the denominator of (6.27) is now multiplied by log N which allows
us to use Corollary 6.12 in place of Corollary 6.8. The argument to bound the
numerator is also the same. However, one should choose a sequence {ℓN : N ≥ 1}
satisfying (6.14) in order to apply Lemma 6.9. �

For x 6= y, in T2
N , denote by PN,x

y the probability measure on the path space

D(R+, Td
N \ {x}) induced by the trace of {XN

t : t ≥ 0} on Td
N \ {x} starting from

y. Expectation with respect to PN,x
y is denoted by EN,x

y . The difference between

PN,x
y and PN,x

y is that the first probability measure is associated to the random

walk speeded up by log N . Therefore, for every subset A of T2
N \ {xN

j },

E
N,xN

j
y

[

H(A)
]

=
1

log N
E

N,xN
j

y

[

H(A)
]

.

In particular, it follows from the previous lemma that

lim
M→∞

lim sup
N→∞

max
1≤j≤M

max
y:|y−xN

j |=1
M E

N,xN
j

y

[

H(AN
M,j)

]

= 0 . (6.30)

Corollary 6.18. In dimension 2, for every t ≥ 0,

lim
M→∞

lim sup
N→∞

max
1≤j≤M

EN
xN

j

[

T ∆N,M

t

]

= 0 .

Proof. The argument is identical to the one in d > 3 presented in Corollary 6.15.
We just use (6.30) and Proposition 6.16 instead of Lemma 6.14 and Proposition
6.13. At the end of the proof, the rate of the process Nt(Z

M ) is replaced by π/(2ŵ1),
but its exact value is superfluous. �

Proof of Theorem 2.4. The proof is a direct consequence of Proposition 6.16 and
Corollary 6.18. �
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6.6. Dimension 2 with no acceleration. We prove in this subsection that in
dimension 2 the trap model with generator (2.3) starting from a very deep trap
does not move. Hence, on the order 1 scale, the random walk does not move and
on the scale log N it converges to the K-process in which all the geometry is wiped
out.

Proposition 6.19. For every j ≥ 1, every t > 0 and every sequence {ℓN : N ≥ 1}
such that ℓN ↑ ∞,

lim
N→∞

PN
xN

j

[ ∣

∣XN(t) − xN
j

∣

∣ ≥ ℓN

]

= 0 .

Proof. Fix j ≥ 1 and a sequence {ℓN : N ≥ 1} such that ℓN ↑ ∞. Following [5],
denote by SN : Z+ → R the clock process: SN (0) = 0,

SN(k) =

k−1
∑

i=0

ei WN (Y N (i)) , k ≥ 1 ,

where {Y N (i) : i ≥ 0} is a nearest-neighbor, symmetric, discrete time random
walk on T2

N starting from xN
j ; {ei : i ≥ 0} is a sequence of i.i.d. mean one,

exponential random variables, independent from the Markov chain {Y N(i)}; and
WN (x) = WN

x , x ∈ T2
N . Denote by TN : R+ → R+ the inverse of SN :

TN(t) = sup
{

k : SN (k) ≤ t
}

.

Clearly {XN(t) : t ≥ 0} has the same distribution as {Y N (TN (t)) : t ≥ 0}.
Hence,

PN
xN

j

[ ∣

∣XN (t) − xN
j

∣

∣ ≥ ℓN

]

= PN
[ ∣

∣Y N (TN (t)) − xN
j

∣

∣ ≥ ℓN

]

≤ PN
[

max
0≤k≤rN

∣

∣Y N (k) − xN
j

∣

∣ ≥ ℓN

]

+ PN
[

TN(t) ≥ rN

]

,
(6.31)

for a sequence rN such that 1 << rN << ℓ2
N .

We estimate separately the expressions on the right hand side of (6.31). Since
TN is the inverse of SN , {TN(t) ≥ rN} = {SN (rN ) ≤ t}. In particular,

PN
[

TN(t) ≥ rN

]

≤ PN
[

ŵj

rN−1
∑

i=0

ei 1{Y N (i) = xN
j } ≤ t

]

,

because SN (k) ≥ WN
xN

j

∑

0≤i≤k−1 ei 1{Y N (i) = xN
j }, WN

xN
j

≥ ŵj . Since {Y N (k) :

k ≥ 0} starts from xN
j and the two-dimensional random walk is recurrent, the

previous probability vanishes as N ↑ ∞ because rN ↑ ∞.
On the other hand, since Y N (k)− xN

j is a bi-dimensional martingale, by Doob’s
inequality,

PN
[

max
0≤k≤rN

∣

∣Y N (k) − xN
j

∣

∣ ≥ ℓN

]

≤ 4rN

ℓ2
N

,

which vanishes as N ↑ ∞. This concludes the proof of the proposition. �
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