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Backward SDEs with superquadratic growth

Freddy Delbaen∗, Ying Hu† and Xiaobo Bao‡

February 19, 2009

Abstract

In this paper, we discuss the solvability of backward stochastic differential equations

(BSDEs) with superquadratic generators. We first prove that given a superquadratic

generator, there exists a bounded terminal value, such that the associated BSDE

does not admit any bounded solution. On the other hand, we prove that if the

superquadratic BSDE admits a bounded solution, then there exist infinitely many

bounded solutions for this BSDE. Finally, we prove the existence of a solution for

Markovian BSDEs where the terminal value is a bounded continuous function of a

forward stochastic differential equation.

1 Introduction.

Since the pioneer works on BSDEs of Bismut [2] and Pardoux-Peng [13], lots of works

have been done in this area and the original Lipschitz assumption on the generator,

i.e., the function g in the BSDE:

Yt = ξ −
∫ T

t
g(s, Ys, Zs) ds +

∫ T

t
Zs dBs, 0 ≤ t ≤ T, (1.1)
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‡Department of Mathematics, ETH Zürich, Switzerland. E-mail: baoxb@math.ethz.ch.

1



has been weakened in many situations. Let us recall that, in the previous BSDE, we are

looking for a pair of processes (Y,Z) which is required to be predictable with respect to

the filtration generated by the Brownian motion B. One of the most important works

in this direction is that of Kobylanski [12] concerning scalar-valued quadratic BSDEs

with bounded terminal value. We should point out that quadratic BSDE means a

BSDE whose generator has at most a quadratic growth with respect to the variable

z. For these quadratic BSDEs, all the classical results, existence and uniqueness,

comparison and stability of solutions, have been stated in [12] but with the restriction

that the terminal conditions have to be bounded random variables. Recently, existence

and uniqueness of solutions of quadratic BSDEs with unbounded terminal value were

studied by Briand and Hu in [3, 4].

In this paper, we study the solvability of superquadratic BSDE (1.1) whose gener-

ator g is superquadratic, i.e.,

lim
|z|→+∞

g(z)

|z|2 = ∞.

We shall study this BSDE with bounded terminal value. And in addition, we suppose

that g is a deterministic convex (or concave) function which is independent of y with

g(0) = 0.

The first part of this paper shows the ill-posedness of these BSDEs. We first prove

that given a superquadratic generator, there always exists a bounded terminal value,

such that the associated BSDE does not admit any bounded solution. On the other

hand, we prove that if the superquadratic BSDE admits a bounded solution, then there

exist infinitely many bounded solutions for this BSDE. And finally, we show that the

monotone stability, which plays a crucial role in quadratic BSDEs (see, e.g., [12, 3]),

does not hold.

In the second part of this paper, we study BSDE (1.1) in the Markovian case, i.e.,

the terminal value

ξ = Φ(Xt,x
T ),

where the diffusion process X is the solution to the SDE:

Xs = x +

∫ s

t
b(r,Xr) dr +

∫ s

t
σ dBr, t ≤ s ≤ T. (1.2)

It is by now well-known (see, e.g., [14, 12, 4] ) that, if g is Lipschitz or quadratic,
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there exists a link between the solution of (1.1) and that of the following PDE:







ut(t, x) + 1
2trace

(

σσT uxx(t, x)
)

+ ux(t, x)b(t, x) − g(−ux(t, x)σ) = 0,

u(T, x) = Φ(x).
(1.3)

This type of PDE (called viscous Hamilton-Jacobi equation) is already well studied

when σ is the identity and g(z) = −|z|p, see, e.g., Gilding et al. [10] and Ben-Artzi et

al. [1]. In particular, in [10], they established the existence and uniqueness of classical

solution to this PDE when σ is the identity.

We prove that in the Markovian case, the BSDE (1.1) admits a solution when Φ is

bounded and continuous. Moreover, if we define

u(t, x) = Y t,x
t ,

then u is a continuous viscosity solution to PDE (1.3). We note that in our case, some

kind of degeneracy of σ is allowed, whereas in [10] and [1], they assumed that σ is the

identity.

A key idea to prove the existence in the Markovian case comes from the following

a priori estimate of Z:

|Zt| ≤ c||Φ||∞(T − t)−
1
2 ,

where c > 0 is a constant. We prove this inequality by using a stochastic argument

based on BMO martingales and Jensen’s inequality. Note that Gilding et al. [10]

proved the same type of a priori estimate for ux when σ is identity, by use of Bernstein’s

method.

The paper is organized as follows: in the next section, we give some preliminaries

about the connection between dynamic utility functions and BSDEs. Section 3 shows

the ill-posedness in the general case. The last section is devoted to the proof of the

existence of a solution in the Markovian case.

2 Dynamic Utility Functions and Backward SDEs.

Let {Bt, 0 ≤ t ≤ T} be a d-dimensional standard Brownian motion defined on a

probability space (Ω,F , P ). Let {Ft, 0 ≤ t ≤ T} be the natural filtration of {Bt, t ∈
[0, T ]}, augmented by all P -null sets of F .
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Before recalling the definition of dynamic utility functions, we need the following

notations.

L∞(FT ) := {ξ : bounded and FT -measurable random variable },
L2
F (0, T ; Rm) := {ϕ : R

m-valued, {Ft}0≤t≤T -predictable and E
[

∫ T
0 |ϕt|2 dt

]

< ∞}.

We identify random variables that are equal P a.s.

Definition 2.1. We call a dynamic utility function with the Fatou property any family

of operators, indexed by stopping times σ

Uσ : L∞(FT ) → L∞(Fσ)

and satisfying:

• (A1) Positivity: Uσ(0) = 0, Uσ(ξ) ≥ 0 for all ξ ≥ 0.

• (A2) Concavity: Uσ(tξ + (1 − t)η) ≥ tUσ(ξ) + (1 − t)Uσ(η), for all t, 0 ≤ t ≤
1 and all ξ, η ∈ L∞.

• (A3) Translability: Uσ(ξ + a) = Uσ(ξ) + a, for all a ∈ L∞(Fσ).

• (A4) Fatou property: Given a sequence (ξn)n≥1, such that sup ||ξn||∞ < ∞,

then ξn ↓ ξ a.s. implies Uσ(ξ) = limn→∞Uσ(ξn) a.s.

For a lower semi-continuous convex function f : Rd → R+∪{∞} such that f(0) = 0

and for ξ ∈ L∞(FT ), we define

Uσ(ξ) = ess.inf

{

EQ

[

ξ +

∫ T

σ
f(qu) du

∣

∣

∣
Fσ

]

∣

∣

∣

∣

Q ∼ P

}

, (2.1)

where σ ∈ [0, T ] is a stopping time and the density process EP [dQ
dP |Ft] = E(q · B)t =

exp(
∫ t
0 qu dBu−1

2

∫ t
0 |qu|2 du). It is easy to prove that U is a dynamic utility function. As

shown by Delbaen-Peng-Rosazza Gianin [7], U is time consistent and all time consistent

dynamic utility functions are of a similar form.

Set C0(Q) = EQ

[ ∫ T
0 f(qu) du

]

and P = {Q | Q ≪ P}. The utility function U0 can

be defined by P.

Lemma 2.1. For any ξ ∈ L∞(FT ),

U0(ξ) = inf

{

EQ

[

ξ +

∫ T

0
f(qu) du

]

∣

∣

∣

∣

Q ∈ P
}

. (2.2)
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Proof. For any Q ∈ P with Lt = EP

[dQ
dP

∣

∣Ft

]

= E(q · B)t, using Itô’s lemma we get

that the density process of Qλ , λQ + (1 − λ)P is E(qλ · B) with

qλ(t) =
λLtqt

λLt + (1 − λ)
1{t≤τ},

where τ = inf {t ∈ [0, T ] | Lt = 0} ∧ T is a stopping time.

Then from the convexity of f :

C0(Qλ) = EQλ

[

∫ T

0
f(qλ(u)) du

]

≤ EQλ

[

∫ τ

0

λLt

λLt + (1 − λ)
f(q(t)) dt

]

= EP

[

∫ τ

0
λLtf(q(t)) dt

]

= EQ

[

∫ τ

0
λf(q(t)) dt

]

= λC0(Q),

where λ ∈ [0, 1], we deduce that limλ→1C0(Qλ) ≤ C0(Q).

Notice that for any λ ∈ [0, 1), Qλ is equivalent to P . Thus

inf

{

EQ

[

ξ +

∫ T

0
f(qu) du

]

∣

∣

∣

∣

Q ∈ P
}

≥ inf

{

EQ

[

ξ +

∫ T

0
f(qu) du

]

∣

∣

∣

∣

Q ∼ P

}

.

Since {Q |Q ∼ P} ⊆ {Q | Q ≪ P}, we have

U0(ξ) = inf

{

EQ

[

ξ +

∫ T

0
f(qu) du

]

∣

∣

∣

∣

Q ∈ P
}

.

Remark 2.1. The function C0 : P → R+ is lower semi-continuous (just use Fatou’s

lemma) and convex. A duality argument then shows that for Q ∈ P

C0(Q) = sup
{

EQ[−ξ]
∣

∣

∣
U0(ξ) ≥ 0

}

.

In other words C0 is the minimal penalty function as defined in Föllmer-Schied [9].

We also remark that for Q ≪ P , the previous reasoning and the lower semi-continuity

imply C0(Qλ) → C0(Q).

However, for a stopping time σ, Uσ(ξ) cannot be the essential infimum over P P

a.s. Instead, by the similar technique as that in Lemma 2.1, we have:
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Remark 2.2. For any measure Q∗ ∈ P and ξ ∈ L∞(FT ),

Uσ(ξ) = ess.inf

{

EQ

[

ξ +

∫ T

σ
f(qu) du

∣

∣

∣
Fσ

]

∣

∣

∣

∣

Q ∈ P, Q ∼ P on Fσ

}

, P a.s., (2.3)

for any stopping time σ ∈ [0, T ] and,

Uσ(ξ) = ess.inf

{

EQ

[

ξ +

∫ T

σ
f(qu) du

∣

∣

∣
Fσ

]

∣

∣

∣

∣

Q ∈ P, Q∗ ≪ Q

}

, Q∗ a.s. (2.4)

Proposition 2.1. For any ξ ∈ L∞(FT ), the dynamic utility function U defined by

(2.1) has the following properties:

1) For all Q ≪ P , we have that Ut(ξ) +
∫ τ∧t
0 f(qu) du is a Q-submartingale where

τ = inf {t ∈ [0, T ] | Lt = 0}.
2) If there is a probability measure Q ≪ P with U0(ξ) = EQ[ξ +

∫ τ
0 f(qu) du], then

Ut(ξ) +
∫ τ∧t
0 f(qu) du is a Q-martingale.

Proof. 1) For any s < t, it follows from Remark 2.2 that for any Q ≪ P ,

EQ

[

Ut(ξ) +

∫ τ∧t

τ∧s
f(qu) du

∣

∣

∣

∣

Fs

]

= EQ

[

(

ess.infQ′∼P

{

EQ
′

[

ξ +

∫ T

t
f(q′u) du

∣

∣Ft

]

}

+

∫ τ∧t

τ∧s
f(qu) du

)

∣

∣

∣

∣

Fs

]

≥ ess.inf

{

EQ′′

[

ξ +

∫ T

τ∧s
f(q′′u) du

∣

∣

∣
Fs

]

∣

∣

∣

∣

q′′u = q′u + 1{τ∧s≤u≤t}(qu − q′u)

}

≥ ess.inf

{

EQ′′

[

ξ +

∫ T

τ∧s
f(q′′u) du

∣

∣

∣
Fs

]

∣

∣

∣

∣

Q′′ ∈ P, Q ≪ Q′′

}

≥ Us(ξ), Q a.s.

Hence,

Us(ξ) +

∫ τ∧s

0
f(qu) du ≤ EQ

[

Ut(ξ) +

∫ τ∧t

0
f(qu) du

∣

∣

∣
Fs

]

, Q a.s.

Therefore, we have Ut(ξ) +
∫ τ∧t
0 f(qu) du is a Q-submartingale.

2) As Q is absolutely continuous with respect to P , it follows from the result we just

proved, that

U0(ξ) ≤ EQ

[

Ut(ξ) +

∫ τ∧t

0
f(qu) du

]

. (2.5)

Combining U0(ξ) = EQ[ξ +
∫ τ
0 f(qu) du] with the inequality (2.5), we have

EQ

[

ξ +

∫ τ

τ∧t
f(qu) du

]

≤ EQ[Ut(ξ)].

This implies that

Ut(ξ) = EQ

[

ξ +

∫ τ

τ∧t
f(qu) du

∣

∣

∣
Ft

]

, Q a.s. (2.6)

Thus Ut(ξ) +
∫ τ∧t
0 f(qu) du = EQ[ξ +

∫ τ
0 f(qu) du|Ft] is a Q- martingale.
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Remark 2.3. In the above proposition, τ can be replaced by T since Q[τ = T ] = 1.

Remark 2.4. In particular, we have that the process {Ut(ξ), t ∈ [0, T ]} is a P -

submartingale. Thus there exists a càdlàg version.

For any ξ ∈ L∞(FT ), |Ut(ξ)| ≤‖ ξ ‖∞. So applying the Doob-Meyer decomposition

theorem, there exists a unique nondecreasing predictable process {At}0≤t≤T with A0 =

0 and a continuous martingale {Mt}0≤t≤T with M0 = 0, such that

Ut(ξ) = U0(ξ) + At − Mt. (2.7)

Lemma 2.2. For all ξ ∈ L∞(FT ), the martingale part {Mt}0≤t≤T of U(ξ) induced by

the Doob-Meyer decomposition theorem is a BMO-martingale.

Proof. For a given ξ ∈ L∞(FT ), |Ut(ξ)| ≤‖ ξ ‖∞. Then applying Itô’s formula to

(Ut(ξ)+ ‖ ξ ‖∞)2, we get

(Ut(ξ)+ ‖ ξ ‖∞)2 +

∫ T

t
d〈M,M〉s

= (ξ+ ‖ ξ ‖∞)2 − 2

∫ T

t
(Us−(ξ)+ ‖ ξ ‖∞) dAs −

∫ T

t
dKs

+2

∫ T

t
(Us−(ξ)+ ‖ ξ ‖∞) dMs,

where

Ks :=
∑

r≤s

{

(Ur(ξ)+ ‖ ξ ‖∞)2 − (Ur−(ξ)+ ‖ ξ ‖∞)2

−2(Ur−(ξ)+ ‖ ξ ‖∞)(Ur(ξ) − Ur−(ξ))
}

=
∑

r≤s

(

Ur(ξ) − Ur−(ξ)
)2

is an increasing process. Hence,

(Ut(ξ)+ ‖ ξ ‖∞)2 +

∫ T

t
d〈M,M〉s ≤ (ξ+ ‖ ξ ‖∞)2 + 2

∫ T

t
(Us−(ξ)+ ‖ ξ ‖∞) dMs

from which we deduce, for any stopping time 0 ≤ σ ≤ T ,

E

[
∫ T

σ
d〈M,M〉t

∣

∣

∣
Fσ

]

≤ 4 ‖ ξ ‖2
∞ .

Therefore, ‖ M ‖BMO2≤ 2 ‖ ξ ‖∞ which completes the proof.
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The predictable representation theorem implies that there exists a predictable pro-

cess Z ∈ L2
F (0, T ; Rd) such that

Mt =

∫ t

0
Zs dBs. (2.8)

So we get

Ut(ξ) = U0(ξ) + At −
∫ t

0
Zs dBs. (2.9)

If g : Rd → R+ ∪ {∞} is the Fenchel-Legendre transform of f :

g(z) = sup
x∈Rd

(zx − f(x)),

then g is also convex and g(0) = 0.

We make the standard assumption such that both f and g are finite. We do not

treat the case where f or g can take the value +∞. This case is similar and only

requires cosmetic changes. To make the paper simpler, we dropped this more general

case.

Theorem 2.1. Let U be the dynamic utility function defined by (2.1) and let U0(ξ)+

At −
∫ t
0 ZudBu be its decomposition.

1) We have

dAt ≥ g(Zt) dt, P a.s. (2.10)

2) Suppose that for some ξ ∈ L∞(FT ) there is a probability measure Q∗ ∼ P with

U0(ξ) = EQ∗ [ξ +
∫ T
0 f(q∗u) du], then dAt = g(Zt) dt and

Ut(ξ) = U0(ξ) +

∫ t

0
g(Zu) du −

∫ t

0
ZudBu. (2.11)

Proof. 1) For ξ ∈ L∞(FT ) and any Q ∼ P , it follows from the decomposition that

dUt(ξ) + f(qt) dt = dAt − ZtdBt + f(qt) dt (2.12)

= dAt − Ztqtdt + f(qt) dt − ZtdBQ
t , (2.13)

where BQ is a Q−Brownian motion. This implies that dAt −Ztqtdt+f(qt) dt defines a

non-negative measure since Ut(ξ) +
∫ τ∧t
0 f(qu) du is a Q-submartingale for any Q ∼ P .

Hence

dAt ≥ Ztqtdt − f(qt) dt.
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By taking qn = g′(Z)1{|Z|≤n} in the above inequality and by letting n tend to infinity,

we get dAt ≥ g(Zt) dt.

2) If for ξ, there is a measure Q∗ ∼ P with U0(ξ) = EQ∗ [ξ+
∫ T
0 f(q∗u) du], then it follows

from Proposition 2.1 that Ut(ξ)+
∫ t
0 f(q∗u) du is a Q∗-martingale. Thus applying (2.13)

with Q∗, we get

dAt = (Ztq
∗
t − f(q∗t )) dt Q∗ a.s.

Since Q∗ ∼ P , we have

dAt = (Ztq
∗
t − f(q∗t )) dt P a.s. (2.14)

Finally combining (2.10) and (2.14) with the definition of g, it follows that

g(Zt) dt ≥ (Ztq
∗
t − f(q∗t )) dt = dAt ≥ g(Zt) dt P a.s.

In general we can decompose A further and get:

Corollary 2.1. For any ξ ∈ L∞(FT ), there exists an increasing predictable process

{Ct}0≤t≤T with C0 = 0 such that

Ut(ξ) = U0(ξ) +

∫ t

0
g(Zu) du −

∫ t

0
ZudBu + Ct. (2.15)

Our main result is the following.

Theorem 2.2. Let U be the dynamic utility function defined by (2.1). Then the

following are equivalent:

1. lim|x|→∞
f(x)
|x|2

> 0;

2. lim|z|→∞
g(z)
|z|2

< ∞;

3. For all k > 0, the set {Q |C0(Q) ≤ k} is weakly compact;

4. For all ξ ∈ L∞(FT ), there exists a measure Q ≪ P such that U0(ξ) = EQ

[

ξ +
∫ T
0 f(qu) du

]

;

5. For all ξ ∈ L∞(FT ), there exists a measure Q ∼ P such that U0(ξ) = EQ

[

ξ +
∫ T
0 f(qu) du

]

;

6. For all ξ ∈ L∞(FT ), the BSDE dYt = g(Zt) dt − ZtdBt has a unique bounded

solution with YT = ξ.
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7. U0 is strictly monotone.

Proof. 1 ⇔ 2: Point 1 implies that there exist positive constants a, b ∈ R+ such

that f(x) ≥ a|x|2 − b. We then get

g(z) = sup
x∈Rd

(zx − f(x)) ≤ sup
x∈Rd

(zx − a|x|2 + b) ≤ 1

4a
|z|2 + b

which shows that limz→∞
g(z)
|z|2

< ∞. The proof of the implication 2 ⇒ 1 is similar.

1 ⇒ 3: It suffices to verify that for any k > 0,
{

dQ
dP

∣

∣

∣
C0(Q) = EQ

[

∫ T
0 f(qu) du

]

≤ k
}

is uniformly integrable. The Dunford-Pettis theorem then shows that the set is weakly

compact.

Since f(x) ≥ a|x|2 − b, we get

k ≥ EQ

[
∫ T

0
f(qu) du

]

≥ aEQ

[
∫ T

0
|qu|2 du

]

− b.

Therefore,
1

2
EQ

[
∫ T

0
|qu|2 du

]

≤ α,

where α = k+b
2a is a positive constant independent of Q. It follows from

1

2
EQ

[
∫ T

0
|qu|2 du

]

= EQ

[
∫ T

0
qudBQ

u +
1

2

∫ T

0
|qu|2 du

]

= EQ

[
∫ T

0
qudBu − 1

2

∫ T

0
|qu|2 du

]

= EQ

[

log
dQ

dP

]

that for any k > 0,

{

dQ

dP

∣

∣

∣

∣

EQ

[
∫ T

0
f(qu) du

]

≤ k

}

⊆
{

dQ

dP

∣

∣

∣

∣

EP

[

dQ

dP
log

dQ

dP

]

≤ α

}

. (2.16)

From the de la Vallée Poussin theorem, we conclude that

{

dQ

dP

∣

∣

∣

∣

EQ

[
∫ T

0
f(qu) du

]

≤ k

}

is uniformly integrable.

3 ⇒ 1 We prove it by the contradiction. Suppose lim|x|→∞
f(x)
|x|2 = 0, then there

exists a sequence {xn}∞n=0 such that limn→∞ |xn| = ∞ and limn→∞
f(xn)
|xn|2

= 0. Put

qn = xn1[0,δn∧T ] where δn = 1
/(√

f(xn)
|xn|2

|xn|2
)

. It follows from

C0(Qn) = EQn

[
∫ T

0
f(qn(u)) du

]

≤
√

f(xn)

|xn|2
→ 0, (2.17)
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that for all k > 0, there exists N > 0 such that the sequence {dQn

dP }∞n=N ⊆ {dQ
dP |C0(Q) ≤

k}. Furthermore, we have

∫ T

0
|qn|2(u) du =

(

1

/

√

f(xn)

|xn|2

)

∧
(

x2
nT
)

→ ∞, (2.18)

which shows that dQn

dP = E(qn · B)T → 0, a.s. as n → ∞. Thus {dQn

dP }∞n=N is not

uniformly integrable.

3 ⇔ 4: It is a conclusion induced by the James’ theorem as shown in Jouini-

Schachermayer-Touzi’s work [11].

4 ⇔ 5: It is obvious that point 5 implies point 4. For the proof of the inverse

implication, we use the fact that condition 4 is equivalent to condition 2. In this case,

by convexity, there exists a positive constant c such that |g′(z)| ≤ c(|z| + 1). For

any ξ ∈ L∞(FT ), there is a measure Q ≪ P such that U0(ξ) = EQ[ξ +
∫ T
0 f(qu) du],

then, by Proposition 2.1, Ut(ξ) +
∫ τ∧t
0 f(qu) du is a Q-martingale where τ = inf {t ∈

[0, T ] | E(q · B)t = 0} ∧ T . It follows from (2.13) that

dAt = (Ztqt − f(qt)) dt m ⊗ Q a.s. on [0, τ ],

where m is the Lebesgue measure on [0, T ]. Since dAt ≥ g(Zt) dt, m ⊗ Q a.s., we get

g(Zt) = Ztqt − f(qt) m ⊗ Q a.s.,

which implies qt = g′(Zt) on [0, τ ]. We then have

∫ τ

0
|qu|2 du =

∫ τ

0
(g′(Zu))2 du

≤ c2

∫ τ

0
(1 + |Zu|)2 du < ∞,

which means P
{

dQ
dP = 0

}

= P
{

∫ τ
0 |qu|2 du = ∞

}

= 0. Hence Q ∼ P .

5 ⇒ 6: For a given ξ ∈ L∞(FT ), if there exists a measure Q ∼ P such that U0(ξ) =

EQ

[

ξ +
∫ T
0 f(qu) du

]

, it follows from Lemma 2.1 that {Ut, Zt}0≤t≤T is a solution of

the following BSDE:



















dYt = g(zt) dt − ztdBt, 0 ≤ t ≤ T ;

YT = ξ, ξ ∈ L∞(FT );

Y is bounded ,

(2.19)
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where E
[

∫ T
0 |zt|2 dt

]

< ∞ and E
[

∫ T
0 g(zt) dt

]

< ∞. Since, as we have proved above,

condition 5 implies limz→∞
g(z)
|z|2

< ∞, the BSDE has a unique bounded solution ac-

cording to Kobylanski [12].

6 ⇒ 2 We will prove this in the next section. See Theorem 3.1.

5 ⇒ 7 For any ξ ∈ L∞(FT ), there exists an equivalent measure Q ∼ P such that

U0(ξ) = EQ[ξ +
∫ T
0 f(qu) du] with dQ

dP = E(q · B).

Suppose that U0(η) = U0(ξ) for some η ∈ L∞(FT ) with η ≤ ξ, P a.s. Since

U0(η) ≤ EQ

[

η +

∫ T

0
f(qu) du

]

≤ EQ

[

ξ +

∫ T

0
f(qu) du

]

= U0(ξ),

we have EQ[ξ − η] = 0, hence ξ = η, Q a.s. Thus ξ = η, P a.s. and U0 is strictly

monotone.

7 ⇒ 2 See Remark 3.2, Remark 3.5 or Example 3.1.

We have proved that in the case when the generator g is at most quadratic, the

dynamic utility function U is the solution of BSDE (2.19). In general, however, we

have the following inequality.

Lemma 2.3. For any ξ ∈ L∞(FT ), if BSDE (2.19) has a bounded solution Y , then

we have U(ξ) ≥ Y .

Proof. Y is bounded. The following calculation is therefore justified:

EQ

[

ξ +

∫ T

t
f(qu) du

∣

∣

∣
Ft

]

= Yt + EQ

[
∫ T

t
g(Zu) du −

∫ T

t
ZudBu +

∫ T

t
f(qu) du

∣

∣

∣
Ft

]

= Yt + EQ

[
∫ T

t
[g(Zu) − Zuqu + f(qu)] du

∣

∣

∣
Ft

]

≥ Yt, for any Q ∼ P with EQ

[
∫ T

0
f(qu) du

]

< ∞.

3 Backward SDEs with superquadratic growth.

In this section, we discuss the following BSDE(g, ξ):







dYt = g(Zt) dt − ZtdBt;

YT = ξ, ξ ∈ L∞(FT ),
(3.1)
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where g : Rd → R+∪{+∞} is convex with g(0) = 0 and superquadratic lim|z|→∞
g(z)
|z|2 =

∞. A pair of predictable processes (Y , Z) is called a bounded solution to BSDE (3.1)

if

Y : Ω × [0, T ] → R is bounded and

Z : Ω × [0, T ] → Rd is such that E
[

∫ T
0 g(Zt) dt

]

< ∞.

Here for simplicity, we consider the BSDE with d = 1. However, the results remain

valid for d > 1.

3.1 Non-existence of the solution

Different from the BSDEs with at most quadratic growth, the solution to the BSDE

with super-quadratic growth does not always exist.

Theorem 3.1. (Non-existence) There exists η ∈ L∞(FT ) such that BSDE(3.1) with

superquadratic growth has no bounded solution.

Proof. The proof is divided into 4 steps.

Step 1. We construct a pair of processes (X,Z), a measure Q as well as a bounded

random variable ξ.

Since lim|z|→∞
g(z)
|z|2 = ∞, there exists a sequence {zk}∞k=1 such that limk→∞ |zk| = ∞

and g(zk) ≥ k|zk|2. Without loss of generality, we suppose zk > 0. The other case is

left to the reader. Thus we have

g′(zk) ≥
g(zk)

zk
≥ k · zk. (3.2)

We put Zu ,
∑∞

n=1 zn1[
P

k<n δk,
P

k≤n δk)(u) where

δk =
1

αzkg′(zk)k2

and we set

α =

∞
∑

k=1

1

Tzkg′(zk)k2
< ∞,

in order to have
∑

k≥1

δk =
∑

k≥1

1

αzkg′(zk)k2
= T.

Then from (3.2), we have
∫ T

0
g(Zu) du =

∑

k≥1

g(zk)δk ≤
∑

k≥1

zkg
′(zk)δk =

∑

k≥1

1

αk2
< ∞,
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∫ T

0
|Zu|2 du =

∑

k≥1

|zk|2δk ≤
∑

k≥1

zkg
′(zk)δk

1

k
=
∑

k≥1

1

αk3
< ∞.

Let qt = g′(Zt). It follows from

∫ T

0
|qu|2 du =

∑

k≥1

(g′(zk))
2δk ≥

∑

k≥1

kg′(zk)zkδk =
∑

k≥1

1

αk
= +∞,

that limt→T E(q · B)t = 0 and E(q · B)t > 0, P a.s. for any t < T.

Let Xt =
∫ t
0 g(Zu) du −

∫ t
0 ZudBu. We stop X at a random time σ

σ , inf {t ∈ [0, T ] | E(q · B)t ≥ n} ∧ inf {t ∈ [0, T ] | |Xt| ≥ n} ∧ T (3.3)

where n is a positive constant which is sufficiently large to ensure that P (σ = T ) > 0.

We then set a measure Q∗ with EP

[

dQ∗

dP

∣

∣

∣
Ft

]

= E(q∗ · B)t and q∗t = g′(Zt)1{t≤σ}.

We define ξ = Xσ ∈ L∞(FT ).

Step 2. The measure Q∗ ≪ P but it is not equivalent to P .

Set A1 = {σ = T}. Then

Q∗(A1) =

∫

A1

E(q · B)σdP =

∫

A1

E(q · B)T dP = 0

while P (A1) > 0. Thus we have Q∗
≁ P and Q∗ ≪ P . However, Q∗

⊗

m ∼ P
⊗

m

where m is the Lebesgue measure since Q∗ ∼ P on Ft for all t < T . Clearly

(Xσ
t , Zt1{t≤σ})0≤t≤T is a bounded solution of BSDE (g, ξ) where Xσ

t = Xσ∧t.

Step 3. In this step we prove that the dynamic utility function U(ξ) is the bounded

solution of BSDE (g, ξ) (3.1) and Ut(ξ) = EQ∗

[

ξ +
∫ T
t f(q∗u) du

∣

∣

∣
Ft

]

for any t < T .

As Xσ is a bounded solution of BSDE (g, ξ), we get

Ut(ξ) ≤ EQ∗

[

ξ +

∫ T

t
f(q∗u) du

∣

∣

∣
Ft

]

= EQ∗

[

ξ +

∫ σ

t∧σ
f(q∗u) du

∣

∣

∣
Ft

]

= Xσ
t + EQ∗

[

∫ σ

t∧σ
(f(q∗u) + g(Zu)) du −

∫ σ

t∧σ
ZudBu

∣

∣

∣
Ft

]

= Xσ
t + EQ∗

[

∫ σ

t∧σ
[f(q∗u) + g(Zu) − Zuq∗u] du

∣

∣

∣
Ft

]

= Xσ
t , Q∗ a.s. (3.4)

hence P a.s. because Q∗ ∼ P on Ft for t < T . Combining Lemma 2.3 with inequality

(3.4), we deduce that

Ut(ξ) = EQ∗

[

ξ +

∫ T

t
f(q∗u) du

∣

∣

∣
Ft

]

= Xσ
t , P a.s. for all t ∈ [0, T ). (3.5)
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Set η = ξ + h where h ∈ L∞
+ (FT ), P [h > 0] > 0 and h · E(q∗ · B)σ = 0.

Step 4. We show that Ut(ξ) = Ut(η), P a.s. for any t < T and hence BSDE (g,η)

has no solution.

It follows from η = ξ, Q∗-a.s. that

Ut(η) ≤ EQ∗

[

η +

∫ T

t
f(q∗u) du

∣

∣

∣
Ft

]

= EQ∗

[

ξ +

∫ T

t
f(q∗u) du

∣

∣

∣
Ft

]

= Ut(ξ) for any t < T.

Notice that U is monotone, i.e., Ut(ξ) ≤ Ut(η), and so we have Ut(ξ) = Ut(η), P

a.s. for any t < T .

Suppose Y is a bounded solution of BSDE (g, η), then we have for t < T ,

Xσ
t = Ut(ξ) = Ut(η) ≥ Yt,

and hence

η = YT = lim
t→T

Yt ≤ lim
t→T

Xσ
t = Xσ

T = ξ, P a.s.,

a contradiction to the fact that P [η > ξ] > 0. Therefore, BSDE (g, η) has no solution.

Remark 3.1. From this theorem, together with what we have proved in Theorem 2.2

we get that BSDE (g, ξ) has a solution for all ξ ∈ L∞(FT ) if and only if g is at most

quadratic.

Remark 3.2. From the proof, we get η ≥ ξ with P (η > ξ) > 0 and U0(ξ) = U0(η).

Thus the utility function U0 is NOT strictly monotone when lim|x|→∞
f(x)
|x|2

= 0.

Although the BSDE (g, ξ) (3.1) does not always have a solution, in the following

case it has.

Definition 3.1. We say that a random variable ξ ∈ L∞(FT ) is minimal if η ≤ ξ and

P [η < ξ] > 0 imply U0(η) < U0(ξ).

Theorem 3.2. Let ξ ∈ L∞(FT ) be minimal. Then U(ξ) is a solution of BSDE (g, ξ).

Proof. We prove it by contradiction. Let ξ ∈ L∞(FT ) be minimal and suppose

U(ξ) is not a solution of BSDE (g, ξ). Then it follows from Corollary 2.1 that there
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exists an increasing process C with C0 = 0 such that P [CT > 0] > 0 and

Ut(ξ) = ξ −
∫ T

t
g(Zu) du +

∫ T

t
ZudBu − CT + Ct. (3.6)

Define τ := inf {t ∈ [0, T ]|Ct ≥ k} ∧ T , where k > 0 is such that P [Cτ > 0] > 0.

Since C may have jumps, Cτ can be unbounded. However, τ is predictable so there

exists {τn}∞n=1 such that τn ↑ τ and τn < τ on {τ > 0}. It follows that Cτn ≤ k and

P [Cτn > 0] > 0 for n big enough. Denote by σ a stopping time τn for n big enough,

then we have

Ut(ξ) − Ct = Uσ(ξ) − Cσ −
∫ σ

t
g(Zu) du +

∫ σ

t
ZudBu,

which implies that (Ut∧σ(ξ) − Ct∧σ, Zt1{t≤σ})0≤t≤T is a solution of BSDE (g, Uσ(ξ) −
Cσ). Thus by Lemma 2.3, we deduce

U0(ξ) = U0(ξ) − C0 ≤ U0(Uσ(ξ) − Cσ).

On the other hand, it is clear that U0(ξ) ≥ U0(Uσ(ξ) − Cσ). Therefore, we have

U0(ξ) = U0(Uσ(ξ) − Cσ).

It follows from the above equality, the translability and the time-consistency of the

dynamic utility function that

U0(ξ) = U0 (Uσ(ξ) − Cσ) = U0 (Uσ(ξ − Cσ)) = U0(ξ − Cσ).

This is a contradiction to the fact that ξ is minimal.

Remark 3.3. For g with at most quadratic growth lim|z|→∞
g(z)
|z|2

< ∞, it follows from

Theorem 2.2 that ξ is minimal for all ξ ∈ L∞(FT ).

If g is superquadratic, there exists a bounded random variable ζ such that U(ζ) is

a solution of BSDE (g, ζ) and ζ is not minimal. See Example 3.1.

3.2 Non-uniqueness of the Solution

In this subsection, we shall prove that if the BSDE has a bounded solution, the bounded

solution is not unique. The main reason is that the generator g is superquadratic which

makes
∫ t
0 g(Zr)dr grow much faster than

∫ t
0 ZrdBr. Following this observation, we can

construct other solutions.
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Theorem 3.3. (Non-uniqueness) If the BSDE (g, ξ) with superquadratic growth

has a bounded solution Y for a ξ ∈ L∞(FT ), then for each y < Y0, there are infinitely

many bounded solutions {Xt}0≤t≤T with X0 = y.

Proof. Suppose (Y,Z) is a bounded solution of BSDE (g, ξ). Divide the time interval

[0, T ] into [T (1−2−n), T (1−2−n−1)), where n = 0, 1, 2, ... and denote αn = T (1−2−n).

Suppose the new solution (X,Z ′) has been constructed on [0, αn] with X0 = y where

y < Y0 such that Xαn ≤ Yαn P a.s. Let us construct (X,Z ′) on the time interval

[αn, αn+1).

Our idea is the following. Since g is superquadratic, we can construct a process

Xαn +Vt, t ∈ [αn, αn+1) such that limt→αn+1 Vt = +∞, P a.s. and for any 0 < ε < 1, Vt

exceeds downwards −2−n−1ε with a very small probability. The fact that the solution

Y is bounded implies that it is touched by the process Xαn + Vt because Xαn ≤ Yαn .

We then get a new solution Xt on this time interval [αn, αn+1] by stopping Xαn + Vt

when it reaches Y .

First, let us construct the process Vt.

It follows from limz→∞
g(z)
|z|2

= ∞ that there exists a sequence {xk}∞k=0 such that for

any k ≥ 0,

1. g(xk) ≥ 4nx2
k;

2. x2
k ≥ 1

(θk−θk+1)θkδn
where θ ∈ (0, 1) is a constant and δn = αn+1 − αn = 2−n−1T.

Set bt =
∑∞

k=0 xk1[αn+1−θkδn, αn+1−θk+1δn)(t) and Vt =
∫ t
αn

g(bu) du −
∫ t
αn

budBu for

any t ∈ [αn, αn+1).

We then have for t ∈ [αn+1 − θN+1δn, αn+1 − θN+2δn),

∫ t

αn

b2
u du ≥

N
∑

k=0

x2
k(θ

k − θk+1)δn ≥
N
∑

k=0

1

θk
, (3.7)

∫ t

αn

g(bu) du ≥ 4n

∫ t

αn

b2
u du ≥ 4n

N
∑

k=0

1

θk
. (3.8)

Thus limt→αn+1

∫ t
αn

b2
u du = ∞ and limt→αn+1

∫ t
αn

g(bu) du = ∞.

Step 1. We have limt→αn+1 Vt = +∞ P a.s.

Define φ(t) =
∫ t
αn

b2
u du for t ∈ [αn, αn+1). Then φ is strictly increasing with

φ(αn) = 0 and

lim
t→αn+1

φ(t) = +∞.
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Setting B∗
t ,

∫ φ−1(t)
αn

budBu, we get a time changed Brownian motion with respect to

the filtration {FB∗}. It follows from the construction of V that

Vt ≥ 4nφ(t) − B∗
φ(t) = φ(t)

[

4n −
B∗

φ(t)

φ(t)

]

,

which implies that

lim
t→αn+1

Vt = +∞, P a.s. (3.9)

since

lim
t→αn+1

B∗
φ(t)

φ(t)
= 0, P a.s.

Now we estimate the probability that Vt reaches a small negative number −2−n−1ε.

Step 2. Calculate the probability

P ({ω ∈ Ω | ∃ t ∈ [αn, αn+1) such that Vt(ω) < −2−n−1ε}).

Applying the submartingale inequality, we deduce that

P ({ω ∈ Ω | ∃ t ∈ [αn, αn+1) such that Vt(ω) < −2−n−1ε})

= P ({ω ∈ Ω | ∃ t ∈ [αn, αn+1) such that 4nφ(t) − B∗
φ(t) < −2−n−1ε})

= P ({ω ∈ Ω | ∃ s ∈ [0,∞) such that 4ns − B∗
s < −2−n−1ε})

≤ exp{−2nε}. (3.10)

Step 3. Construct the new solution (Xt, Z
′
t) for all t ∈ [αn, αn+1].

Define

τ1 , inf {t ≥ αn |Vt = −2−n−1ε} ∧ αn+1

and

τ2 , inf {t ≥ αn |Xαn + Vt ≥ Yt} ∧ αn+1

which are the stopping times when the process Xαn + Vt touches Xαn − 2−n−1ε and Yt

respectively. It follows from limt→αn+1 Vt = +∞ P a.s. that P [τ2 < αn+1] = 1. Define

τ3 , inf {t ≥ τ1 |Xαn − 2−n−1ε = Yt} ∧ αn+1.

Now we have three cases


















τ1 < τ2, τ3 < αn+1, put Z ′
t(ω) = bt1{t≤τ1} + Zt1{t>τ3};

τ1 < τ2, τ3 = αn+1, put Z ′
t(ω) = bt1{t≤τ1};

τ1 ≥ τ2, put Z ′
t(ω) = bt1{t≤τ2} + Zt1{t>τ2},

(3.11)
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where (Y,Z) is the original bounded solution of the BSDE (g, ξ).

Thus we get

Z ′
t = 1{τ1<τ2,τ3<αn+1}(bt1{t≤τ1} + Zt1{t>τ3})

+ 1{τ1<τ2,τ3=αn+1}bt1{t≤τ1}

+ 1{τ1≥τ2}(bt1{t≤τ2} + Zt1{t>τ2}) (3.12)

= 1{t≤τ1∧τ2}bt + [1{τ1<τ2,τ3<αn+1,t>τ3} + 1{τ1≥τ2,t>τ2}]Zt. (3.13)

Obviously, Z ′ is a predictable process.

Set

Xt , Xαn +

∫ t

αn

g(Z ′
u) du −

∫ t

αn

Z ′
udBu (3.14)

for all t ∈ [αn, αn+1].

Step 4. Some properties of X.

It follows from the construction that {Xt}αn≤t≤αn+1 has the following properties:

1. Xt1{τ2≤τ1,t≥τ2} = Yt1{τ2≤τ1,t≥τ2};

2. Xt1{τ1<τ2,τ3≥t≥τ1} = (Xαn − 2−n−1ε)1{τ1<τ2,τ3≥t≥τ1};

3. Xt1{τ1<τ2,t>τ3} = Yt1{τ1<τ2,t>τ3}.

Therefore, we have

Xαn+1 = Yαn+1(1{τ2≤τ1} + 1{τ1<τ2,τ3<αn+1})

+ (Xαn − 2−n−1ε)1{τ1<τ2,τ3=αn+1}. (3.15)

So the induction assumption Xαn ≤ Yαn implies Xαn+1 ≤ Yαn+1 . It is also clear that

the new solution X is bounded by ‖ Y ‖∞ +|y| + ε.

Set An , {ω ∈ Ω | τ1 < τ2, τ3 = αn+1}. Then P (An) is the probability that Xαn+1

is not equal to Yαn+1 . From (3.10), we get

P (An) ≤ P ({ω ∈ Ω | ∃ t ∈ [αn, αn+1) such that Vt(ω) < −2−n−1ε}) ≤ exp{−2nε}.

Since
∑∞

n=0 exp{−2nε} < +∞, the Borel-Cantelli Lemma implies that

P (∩∞
n=0 ∪k≥n Ak) = 0, (3.16)

which shows XT = YT = ξ, P a.s.
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To sum up, (X,Z ′) is indeed a new bounded solution with X0 = y.

The construction used many different constants. It is clear that this yields infinitely

many different solutions.

Notice that in the proof we only use the fact that g is superquadratic to guarantee

that the new solution X is bounded below. This shows if g is at least quadratic , i.e.

lim|z|→∞
g(z)
|z|2 > 0, we can construct a process Vt such that limt→αn+1 Vt = +∞ as well.

Thus we have the following conclusion.

Corollary 3.1. Suppose g is at least quadratic lim|z|→∞
g(z)
|z|2

> 0 and, for ξ ∈ L∞(FT ),

Y is a bounded solution of the BSDE (g, ξ), then for each y < Y0, there exists infinitely

many solutions X which are bounded above with X0 = y.

3.3 Non-stability of the solutions

The monotone stability plays an important role in the study of quadratic BSDEs (See,

e.g., [12, 3]). Here we shall show that the same type of monotone stability does not

hold.

Theorem 3.4. (Non-stability) Suppose limz→∞
g(z)
|z|2

= ∞. Then there exists a se-

quence of solutions {Y k}∞k=1 of BSDEs (g, ξk) which increasingly and boundedly con-

verges to Y such that Y is not a solution of BSDE (g, ξ), where ξ is the L∞ limit of

{ξk}∞k=1.

Proof. It follows from limz→∞
g(z)
|z|2

= ∞ that there exists a sequence {zk}∞k=1

with |zk| → +∞ such that g(zk) ≥ max{16kT |zk|2, 2k+1T}. W.l.o.g., we suppose that

zk > 0.

Denote αk := ⌈g(zk)⌉ where ⌈·⌉ is the ceiling function and put Zk(t) , zk1∪αk
i=1[ T

αk
i− T

α2
k

, T
αk

i](t)

for all 0 ≤ t ≤ T . Then it follows that

E

[
∫ t

0
Zk

udBu

]2

≤
∫ T

0
(Zk

u)2 du

= (zk)
2 T

αk
≤ 16−k → 0, for k → ∞.

However, we have

∫ t

0
g(Zk

u) du =

∫ t

0
g(zk)1∪αk

i=1[ T
αk

i− T

α2
k

, T
αk

i](u) du ∈
[g(zk)

αk

(

t −
(

T

αk
− T

α2
k

))

,
g(zk)

αk
t
]

,

(3.17)
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which implies

sup
0≤t≤T

∣

∣

∣

∫ t

0
g(Zk

u) du − t
∣

∣

∣
≤ 2−k → 0, (3.18)

as k → ∞.

Define stopping times

νk , inf
{

t ≥ 0
∣

∣

∣

∣

∣

∫ t

0
Zk

udBu

∣

∣ > 2−k
}

∧ T (3.19)

and

ν = inf k≥1νk. (3.20)

Applying the submartingale inequality, we get

P [νk < T ] = P

[

sup
0≤t≤T

∣

∣

∫ t

0
Zk

udBu

∣

∣ > 2−k

]

≤ 4kE

[

(

∫ T

0
Zk

udBu

)2
]

≤ 4−k.

Thus we get

P [ν = T ] = 1 − P [∪k≥1{νk < T}]

≥ 1 −
∑

k≥1

P [νk < T ]

≥ 2

3
> 0,

which is due to the selection of sufficient large zk, k ≥ 1.

Since
∑

k≥1 P [νk < T ] < ∞, it follows from the Borel-Cantelli Lemma that

P
[

∩n≥1∪k≥n{νk < T}
]

= 0,

which means P [∪n≥1∩k≥n {νk = T}] = 1. It implies that, for almost all ω ∈ Ω, there

exists N(ω) such that for any k > N(ω), νk(ω) = T. Thus we have P [ν > 0] = 1.

Define yk
t =

∫ t∧ν
0 g(Zk

u) du −
∫ t∧ν
0 Zk

udBu. We then deduce that

sup
0≤t≤T

|yk
t − t ∧ ν|

≤ sup
0≤t≤T

∣

∣

∣

∫ t∧ν

0
g(Zk

u) du − t ∧ ν
∣

∣

∣
+ sup

0≤t≤T

∣

∣

∣

∫ t∧ν

0
Zk

udBu

∣

∣

∣

≤ 2 · 2−k, (3.21)

which implies that

lim
k→∞

sup
0≤t≤T

|yk
t − t ∧ ν| = 0. (3.22)
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Set

Y n
t = yn

t − 8 +
n
∑

k=1

4 · 2−(k−1). (3.23)

Notice that the stopping time νk is defined such that |
∫ t∧ν
0 Zk

udBu| ≤ 2−k,∀t ∈
[0, T ]. Combining (3.21) with the definition of νk, we get that

Y k
t − Y k−1

t = yk
t − yk−1

t + 4 · 2−k

≥
[

t ∧ ν − 2 · 2−k
]

−
[

t ∧ ν + 2 · 2−(k−1)
]

+ 4 · 2−(k−1)

≥ 0

which shows that {Y k}∞k=1 is a nondecreasing sequence. Set ξk = Y k
T for k ≥ 1. Then

Y k is a solution of the BSDE (g, ξk). It follows from (3.22) that Y k
t converges to t∧ ν

as k → ∞ and ξk → ν in L∞. However, t ∧ ν is not a solution of the BSDE (g, ν) for

t ∧ ν is an increasing process.

Remark 3.4. Although t∧ ν is not the solution of the BSDE (g, ν), it is the dynamic

utility function of ν, i.e. Ut(ν) = t ∧ ν.

Proof. Indeed, setting the measure Qk such that EP [dQk

dP |Ft] = E(qk · B)t where

qk
t = g′(zk)1∪αk

i=1[ T
αk

i− T

α2
k

, T
αk

i](t ∧ ν), we have

E

[

exp
{1

2

∫ T

0
(qk

t )2 dt
}

]

≤ exp
{1

2
(g′(zk))

2T
}

< ∞.

So E(qk · B)t is a P -martingale and Qk is well defined. Then

Ut(ξ
k) ≤ EQk

[

ξk +

∫ T

t
f(qk

u) du
∣

∣

∣
Ft

]

= Y k
t + EQk

[

∫ ν

t
(f(qk

u) + g(Zk
u) − Zk

uqk
u) du

∣

∣

∣
Ft

]

= Y k
t .

Thus it follows from Lemma 2.3 that Ut(ξ
k) = Y k

t . If k tends to infinity, we get

Ut(ν) = t ∧ ν,

since ξk → ν in L∞.

Remark 3.5. ν is not minimal since ν ≥ 0 with P (ν > 0) > 0 and U0(ν) = 0.
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3.4 A solution to BSDE (g, ν)

In the following, we find a bounded solution of BSDE (g, ν) where 0 < ν ≤ T is a

stopping time. Of course we can then construct infinitely many bounded solutions for

the BSDE.

Step 1. For any y0 < 0, construct an F−predictable process H which can be

dominated by t ∧ ν(ω) and t ∧ ν(ω) + (1 − t
T )y0 for any t small enough.

Since g is superquadratic and continuous, we can get an increasing sequence {xi}∞i=1

such that

g(xi) = i2x2
i

for any i ≥ √
a + 1 where a = inf |x|>0

g(x)
x2 and xi = 1 for any i <

√
a + 1.

Set kt = xi when t ∈ (
∑∞

n=i+1 δn,
∑∞

n=i δn] for i ≥ 1 where δn = a1
g(xn)n2 , and

a1 = T
P∞

n=1
1

g(xn)n2

is such that
∑∞

n=1 δn = T .

We then have
∫ T

0
(ku)2 du =

∞
∑

i=1

x2
i

a1

g(xi)i2
< ∞,

∫ T

0
g(ku) du =

∞
∑

i=1

g(xi)
a1

g(xi)i2
< ∞.

Put Ht = y0 +
∫ t
0 g(ku) du −

∫ t
0 kudBu.

Lemma 3.1. There exists Ω∗ ⊆ Ω with P (Ω∗) = 1 satisfying for any ε > 0 and ω ∈ Ω∗

there is tε(ω) such that, for any t < tε(ω), t ∧ ν(ω) + (1 − t
T )y0 < Ht(ω).

Proof. It follows from the law of the iterated logarithm of Brownian motion that

there exists a set Ω∗, P (Ω∗) = 1 satisfying: for any ε > 0 and ω ∈ Ω∗ there is tε(ω) < ν

such that

[

∫ t

0
kudBu

]

(ω) ≤ (1 + ε)

√

2

(
∫ t

0
k2

u du

)

log log

(

1/

∫ t

0
k2

u du

)

for any t < tε(ω).

Set F (t) =
∫ t
0 g(ku) du−(1+ε)

√

2
(

∫ t
0 k2

u du
)

log log
(

1/
∫ t
0 k2

u du
)

−
(

T−y0

T

)

t. Now

we want to prove F (t) > 0 for t small enough. Calculating the differential of F with

respect to t, we have, for sufficiently small t,

F ′(t) > g(kt) − 1 +
y0

T
− γk2

t

( 1

ct
log log

1

ct

)1/2
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where γ = (1 + ε)2−
1
2 and ct =

∫ t
0 k2

u du. For t ∈ (
∑∞

n=i+1 δn,
∑∞

n=i δn], we get

F ′(t) > g(xi) − 1 +
y0

T
− γx2

i

( 1

ct
log log

1

ct

)1/2

and

ct ≥
∫

P∞
n=i+1 δn

0
k2

u du

=

∞
∑

n=i+1

x2
nδn

= a1

∞
∑

n=i+1

n−4,

for i big enough. Thus

F ′(t) > i2x2
i − 1 +

y0

T
− γx2

i

( 1

a1
∑∞

n=i+1 n−4
log log

1

a1
∑∞

n=i+1 n−4

)1/2
.

It follows from

lim
i→∞

i2

γ
(

1
a1

P∞
n=i+1 n−4 log log 1

a1
P∞

n=i+1 n−4

)1/2
= +∞

that there exist 0 < t0 < T such that for any t < t0, F ′(t) > 0. Since F (0) = 0, we

have, for any t < t0,

F (t) > 0. (3.24)

Thus for any ω ∈ Ω∗ and 0 < t < t0 ∧ tε(ω), we have

Ht(ω) −
[

t ∧ ν(ω) +
(

1 − t

T

)

y0

]

≥ F (t) > 0.

.

Step 2. Since Ht and t ∧ ν(ω) are {Ft}t≥0-predictable, we can define stopping

times:

τ1
1 , inf

{

t > 0
∣

∣

∣
Ht ≤ t ∧ ν +

(

1 − t

T

)

y0

}

∧ T,

τ2
1 , inf {t > 0 |Ht ≥ t ∧ ν} ∧ T.

Define a random time

τ1 , 1{τ1
1 <τ2

1 }
τ1
1 + 1{τ1

1≥τ2
1 }

1{τ2
1≤ν+(1− ν

T
)y0}

τ2
1 − y0

T − y0
T

+ 1{τ1
1≥τ2

1 }
1{ν>τ2

1 >ν+(1− ν
T

)y0}

ν − τ2
1 + y0

y0
T

+ 1{τ1
1≥τ2

1 }
1{τ2

1≥ν}T. (3.25)

It is easy to verify that for any ω ∈ {τ1
1 ≥ τ2

1 }, τ1(ω) ∧ ν + (1 − τ1(ω)
T )y0 = τ2

1 ∧ ν.
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Lemma 3.2. τ1 is a stopping time.

Proof. This is straightforward but for completeness we give a proof. The random

time τ1 is defined by four parts without any intersections. For the first part, it is easily

verified by

{1{τ1
1 <τ2

1 }
τ1
1 ≤ t} = {τ1

1 < τ2
1 } ∩ {τ1

1 ≤ t} ∈ Ft. (3.26)

For the second part, it is necessary to check that

{τ1
1 ≥ τ2

1 } ∩
{

τ2
1 ≤ ν +

(

1 − ν

T

)

y0

}

∩
{τ2

1 − y0

T − y0
T ≤ t

}

∈ Ft.

It follows from t(1 − y0

T ) + y0 ≤ t that

{τ2
1 − y0

T − y0
T ≤ t

}

=
{

τ2
1 ≤ t(1 − y0

T
) + y0

}

∈ Ft

which implies that
τ2
1−y0

T−y0
T is a stopping time.

If ω ∈ { τ2
1−y0

T−y0
T ≤ t}, then we have

τ2
1 (ω) ≤ t + (1 − t

T
)y0 ≤ t.

Thus

{τ1
1 ≥ τ2

1 } ∩
{

τ2
1 ≤ ν +

(

1 − ν

T

)

y0

}

∩
{τ2

1 − y0

T − y0
T ≤ t

}

= {τ1
1 ≥ τ2

1 } ∩ {τ2
1 ≤ t} ∩

{τ2
1 − y0

T − y0
T ≤ ν

}

∩
{τ2

1 − y0

T − y0
T ≤ t

}

=
[

{τ1
1 ≥ τ2

1 } ∩ {τ2
1 ≤ t}

]

∩
{τ2

1 − y0

T − y0
T ≤ ν ∧ t

}

∈ Ft. (3.27)

For the third part, observe that for any ω ∈ {τ2
1 > ν +(1− ν

T )y0}∩{ν−τ2
1 +y0

y0
T ≤ t},

we have

ν(ω) − τ2
1 (ω) ≥

( t

T
− 1
)

y0 ≥ 0.

Combining with ν(ω) − τ2
1 (ω) < (ν(ω)

T − 1)y0, we get

τ2
1 (ω) ≤ ν(ω) < t.
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Therefore,

{τ1
1 ≥ τ2

1 } ∩
{

ν > τ2
1 > ν +

(

1 − ν

T

)

y0

}

∩
{ν − τ2

1 + y0

y0
T ≤ t

}

= {τ1
1 ≥ τ2

1 } ∩
{

τ2
1 > ν +

(

1 − ν

T

)

y0

}

∩
{ν − τ2

1 + y0

y0
T ≤ t

}

=
(

{τ1
1 ≥ τ2

1 } ∩ {τ2
1 < t}

)

∩
(

{τ2
1 − y0

T − y0
T > ν

}

∩ {ν < t}
)

∩
(

{

τ2
1 +

( t

T
− 1
)

y0 ≤ ν
}

∩ {ν < t}
)

∈ Ft. (3.28)

The fourth part is obviously Ft-measurable. Thus from (3.26) to (3.28) we get that τ1

is a stopping time.

Define the predictable process Z on the set {t ≤ τ1} as:

Zt1{t≤τ1} = kt1{t≤τ1
1 ∧τ2

1 }
. (3.29)

Lemma 3.3. Set Xt , y0+
∫ t
0 g(Zu) du−

∫ t
0 ZudBu. We have Xτ1 = τ1∧ν+(1− τ1

T )y0.

Proof. The definitions of the stopping times yield that

Xτ1 = y0 +

∫ τ1

0
g(Zu) du −

∫ τ1

0
ZudBu

= y0 +

∫ T

0
g(Zu1{t≤τ1}) du −

∫ T

0
Zu1{t≤τ1} dBu

= y0 +

∫ T

0
g(ku)1{t≤τ1

1 ∧τ2
1 }

du −
∫ T

0
ku1{t≤τ1

1 ∧τ2
1 }

dBu

=
(

y0 +

∫ τ1
1

0
g(ku) du −

∫ τ1
1

0
kudBu

)

1{τ1
1 <τ2

1 }

+
(

y0 +

∫ τ2
1

0
g(ku) du −

∫ τ2
1

0
kudBu

)

1{τ1
1≥τ2

1 }

=
(

τ1
1 ∧ ν +

(

1 − τ1
1

T

)

y0

)

1{τ1
1 <τ2

1 }
+ (τ2

1 ∧ ν)1{τ1
1≥τ2

1 }

=
(

τ1 ∧ ν +
(

1 − τ1

T

)

y0

)

1{τ1
1 <τ2

1 }
+
(

τ1 ∧ ν +
(

1 − τ1

T

)

y0

)

1{τ1
1 ≥τ2

1 }

= τ1 ∧ ν +
(

1 − τ1

T

)

y0

which completes the proof.

Step 3. Consider the solution in the time interval (τ1, T ).

Construct H2
t = τ1 ∧ ν + (1− τ1

T )y0 +
∫ t
τ1

g(ku−τ1) du−
∫ t
τ1

ku−τ1 dBu for any t > τ1.
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Set t = τ1 + s where s > 0. We have

H2
t −

(

t ∧ ν +
(

1 − t

T

)

y0

)

= τ1 ∧ ν +
(

1 − τ1

T

)

y0 −
(

t ∧ ν +
(

1 − t

T

)

y0

)

+

∫ t

τ1

g(ku−τ1) du −
∫ t

τ1

ku−τ1 dBu

≥
∫ s

0
g(ku) du −

∫ τ1+s

τ1

ku−τ1 dBu +
s

T
y0 − s. (3.30)

Applying the law of the iterated logarithm of Brownian motion to (3.30), we get that

there is a set Ω∗ ∈ Ω with P (Ω∗) = 1 such that for any ε > 0 and ω ∈ Ω∗ there exists

a sε(ω) satisfying for all s < sε(ω),

∫ s

0
g(ku) du −

∫ τ1+s

τ1

ku−τ1 dBu +
s

T
y0 − s

≥
∫ s

0
g(ku) du − (1 + ε)

√

2

(
∫ τ1+s

τ1

k2
u−τ1 du

)

log log

(

1/

∫ τ1+s

τ1

k2
u−τ1 du

)

+
s

T
y0 − s

=

∫ s

0
g(ku) du − (1 + ε)

√

2

(
∫ s

0
k2

u du

)

log log

(

1/

∫ s

0
k2

u du

)

+
s

T
y0 − s

= F (s).

It follows from (3.24) and (3.30) that

H2
τ1+s(ω) > (τ1 + s) ∧ ν(ω) +

(

1 − τ1 + s

T

)

y0 (3.31)

for all 0 < s < sε(ω) ∧ t0.

Then similarly we can define stopping times:

τ1
2 , inf

{

t > τ1

∣

∣

∣
H2

t ≤ t ∧ ν +
(

1 − t

T

)

y0

}

∧ T, (3.32)

τ2
2 , inf

{

t > τ1

∣

∣

∣
H2

t ≥ t ∧ ν
}

∧ T, (3.33)

and a random time

τ2 , 1{τ1
2 <τ2

2 }
τ1
2 + 1{τ2

2≤τ1
2 }

1{τ2
2≤ν+(1− ν

T
)y0}

τ2
2 − y0

T − y0
T

+ 1{τ2
2≤τ1

2 }
1{ν>τ2

2 >ν+(1− ν
T

)y0}

ν − τ2
2 + y0

y0
T

+ 1{τ2
2≤τ1

2 }
1{τ2

2≥ν}T, (3.34)

which is also a stopping time by a similar proof of τ1 in Lemma 3.2.

Step 3. Define the random times by transfinite induction.

The random time τα for some ordinal number α is defined by the following rules:

27



1. τ0 = 0;

2. If E[τα] < T , define τ1
α+1 , inf {t > τα | Hα+1

t ≤ t ∧ ν + (1 − t
T )y0} ∧ T ,

τ2
α+1 , inf {t > τα | Hα+1

t ≥ t ∧ ν} ∧ T and

τα+1 , 1{τ1
α+1<τ2

α+1}
τ1
α+1 + 1{τ2

α+1≤τ1
α+1}

1{τ2
α+1≤ν+(1− ν

T
)y0}

τ2
α+1 − y0

T − y0
T

+ 1{τ2
α+1≤τ1

α+1}
1{ν>τ2

α+1>ν+(1− ν
T

)y0}

ν − τ2
α+1 + y0

y0
T

+ 1{τ2
α+1≤τ1

α+1}
1{τ2

α+1≥ν}T (3.35)

where Hα+1
t = τα ∧ ν + (1 − τα

T )y0 +
∫ t
τα

g(ku−τα) du −
∫ t
τα

ku−τα dBu for t > τα.

3. If β is a limit number and satisfies E[τα] < T , for all α < β, then τβ , limα<β τα.

We adopt the symbol ω1 for the first uncountable ordinal and let O be the well ordered

set of all countable ordinals, i.e. ordinals α < ω1. Define

Λ , {α ∈ O | E[τξ] < T, for all ξ < α}. (3.36)

Since {E[τα]}α∈Λ is strictly increasing, Λ is countable and hence there must exist

β0 with E[τβ0 ] = T , hence τβ0 = T .

Define the predictable process Z by

Zt =
∑

0≤k<β0

kt−τk
1{τk<t≤τk+τ1

k+1∧τ2
k+1}

(3.37)

and the stochastic process

Xt = y0 +

∫ t

0
g(Zu) du −

∫ t

0
ZudBu (3.38)

for any t ∈ [0, T ].

Similarly as lemma (3.3), we have

Xτk
= τk ∧ ν + (1 − τk

T
)y0

for any k < β0. Letting k tend to β0, we get XT = ν.

Therefore, we constructed a solution (X,Z) for the BSDE (g,ν) with X0 = y0 < 0.
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Example 3.1. In this example, our goal is to construct a bounded random variable

ζ such that U(ζ) is a solution of BSDE (g, ζ) and ζ is not minimal when g is su-

perquadratic. Define ζ = Hτ1
1∧τ2

1
, then (H

τ1
1∧τ2

1
t , kt1{t≤τ1

1∧τ2
1 }

)0≤t≤T is a solution to the

BSDE(g, ζ). It follows that

U(ζ) = Hτ1
1∧τ2

1 .

Indeed, for any t ∈ (0, T ], set the probability measure Qt via dQt

dP = E(qt · B)T with

qt
s = g′(ks)1{t<s<τ1

1∧τ2
1 }

. We then have

E

[

exp

(

1

2

∫ T

0
|qt

s|2 ds

)]

≤ exp

(

1

2

∫ T

t
|g′(ks)|2 ds

)

< ∞,

which implies Qt ∼ P . We deduce that

Ut(ζ) = EQt

[

ζ +

∫ T

t
f(qt

s) ds

∣

∣

∣

∣

Ft

]

= H
τ1
1∧τ2

1
t , for any t ∈ (0, T ],

by the same argument of (3.5). Since H
τ1
1∧τ2

1
· is continuous and U·(ζ) is càdlàg, we get

U0(ζ) = y0.

However, ζ is not minimal since ζ ≥ y0 with P (ζ > y0) > 0 and U0(y0) = y0.

4 Existence of solution to BSDEs in the Marko-

vian case

From the last section, we know that the BSDE with superquadratic growth is ill-posed.

However we will show that in some particular Markovian case, there exists a solution

for such a BSDE.

Define the diffusion process Xt,x to be the solution to the following SDE:

dXs = b(s,Xs) ds + σ dBs, t ≤ s ≤ T,

Xs = x, 0 ≤ s ≤ t,

where b : [0, T ]×R
n → R

n is continuously differentiable with respect to x with bounded

derivative bx, and σ : [0, T ] → R
n×d is a constant (matrix).

Let us consider BSDE (3.1) with ξ = Φ(Xt,x
T ):

Ys = Φ(Xt,x
T ) −

∫ T

s
g(Zr) dr +

∫ T

s
Zr dBr, s ∈ [0, T ], (4.1)
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where g : Rd → R+ is a continuously differentiable convex function with g(0) = 0. We

suppose it is superquadratic lim|z|→∞
g(z)
|z|2

= ∞. f : Rd → R+ ∪ {∞} is the Fenchel-

Legendre transform of g:

f(x) = sup
z∈Rd

(zx − g(z)),

then f is also convex and f(0) = 0.

4.1 Lipschitz case

Let us first consider the case when Φ is sufficiently smooth.

Theorem 4.1. Suppose that Φ is bounded and Lipschitz. Then there exists a unique

solution (Y t,x, Zt,x) to BSDE (4.1) such that both processes Y t,x and Zt,x are bounded.

Furthermore, the solution is a dynamic utility function of the following form

Y t,x
s (4.2)

= inf

{

EQ

[

Φ(Xt,x
T ) +

∫ T

s
f(qu) du

∣

∣

∣
Fs

]

∣

∣

∣

∣

Q ∼ P

}

= inf

{

EQ

[

Φ(Xt,x
T ) +

∫ T

s
f(qu) du

∣

∣

∣
Fs

]

∣

∣

∣

∣

Q ∼ P,

EQ

[

∫ T

r
f(qu) du

∣

∣

∣
Fr

]

≤ 2 ‖ Φ ‖∞,∀r ∈ [0, T ]

}

for any s ∈ [0, T ].

Proof. First, let us suppose that Φ ∈ C1 and that Φx is bounded. We apply a

truncation argument to prove the existence of solution. Let us introduce the trun-

cation function: for an integer N , ρN : R
1×d → R

+ is smooth, such that ∀|z| ≤ N ,

ρN (z) = 1; and ∀|z| ≥ N + 1, ρN (z) = 0. Then it is obvious that ρNg is a bounded

Lipschitz function. Hence for any N , there exists a unique solution (Y N ;t,x, ZN ;t,x) to

the following BSDE:

Ys = Φ(Xt,x
T ) −

∫ T

s
(ρNg)(Zr)dr +

∫ T

s
Zr dBr. (4.3)

On the other hand, we denote by (FN ;t,x, V N ;t,x) the unique solution to the following

BSDE:

Fs = Φx(X
t,x
T )∇xXt,x

T −
∫ T

s
(ρNg)z(Z

N ;t,x
r )Vr dr +

∫ T

s
Vr dBr, (4.4)
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where
∫ T
s Vr dBr means

∑

1≤i≤d

∫ T

s
V i

r dBi
r,

with V i denoting the i-th line of the d × n matrix process V .

We then have (see, e.g., [14]):

ZN ;t,x
s = −FN ;t,x

s (∇xXt,x
s )−1σ. (4.5)

As for any N , (ρNg)z(Z
N ;t,x) is bounded, we can apply a Girsanov transformation to

get:

FN ;t,x
s = Φx(X

t,x
T )∇xXt,x

T +

∫ T

s
V N ;t,x

r dBN ;t,x
r , (4.6)

where BN ;t,x is a Brownian Motion under an equivalent probability measure QN ;t,x.

Taking the conditional expectation with respect to the measure QN ;t,x, one finally

deduces that

|FN ;t,x
s | ≤‖ Φx ‖∞ · ‖ ∇xXt,x

T ‖∞

which implies that

|ZN ;t,x
s | = |FN ;t,x

s (∇xXt,x
s )−1σ|

≤ ‖ σ ‖ · ‖ Φx ‖∞ ·e2‖bx‖∞T (4.7)

:= c.

The same argument (recall that g(0) = 0) gives us also that

|Y N ;t,x
s | ≤‖ Φ ‖∞ .

Taking N ≥ c, then the solution (Y N ;t,x, ZN ;t,x) to BSDE (4.3) is actually a solution

to BSDE (4.1).

In the case when Φ is bounded and Lipschitz, we can also prove, by a standard

approximation, that there exists a bounded solution (Y t,x, Zt,x) with |Zt,x| ≤ c with

c =‖ σ ‖ ·LΦ · e2‖bx‖∞T where LΦ is the Lipschitz constant of Φ.

It is routine to prove the uniqueness of the bounded solution (Y t,x, Zt,x) where Zt,x

is also bounded.

Finally, as gz(Z
t,x) is bounded, and

EQN;t,x

[

∫ T

r
f(gz(Z

t,x
u )) du

∣

∣

∣
Fr

]

≤ 2 ‖ Φ ‖∞, for N ≥ c, ∀r ∈ [0, T ].
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We conclude that Y t,x is a dynamic utility function of the form (4.2).

Remark 4.1. A new solution (Y,Z) can be constructed by the same technique as before

with the process Z unbounded.

We define

u(t, x) := Y t,x
t , (4.8)

where (Y t,x, Zt,x) is the unique bounded solution to (4.1) with Zt,x bounded. Since Φ

is Lipschitz, (Y t,x, Zt,x) is also the unique bounded solution to (4.3) with N ≥ c. An

important property is that u(t, x) is deterministic.

Remark 4.2. It follows from the classical result of Markovian BSDEs that

Y t,x
s = Y t,x

t , Zt,x
s = 0, for s < t.

Besides, (Y t,x, Zt,x) has the Markov property:

Y t,x
s = u(s,Xt,x

s ), for s ≥ t.

Furthermore, we have a uniqueness, a stability theorem and a strict comparison

theorem for the BSDEs. Thus we get the following proposition.

Proposition 4.1. Suppose that Φ is bounded and Lipschitz, then u(t, x) defined by

(4.8) is bounded and continuous on [0, T ] × R
n and a viscosity solution to the PDE:







ut(t, x) + 1
2 trace

(

σσT uxx(t, x)
)

+ ux(t, x)b(t, x) − g(−ux(t, x)σ) = 0,

u(T, x) = Φ(x).
(4.9)

4.2 A Priori estimates of Z

Now we suppose that both Φ and Φx are bounded. Let us first suppose that b ≡ 0 and

n = d, σ is the identity to explain our main idea. In this case, Xt,x
T = x + BT − Bt.

Then equation (4.5) turns out to be

ZN ;t,x
s = −FN ;t,x

s .

On the other hand, BSDE (4.4) becomes:







dZN ;t,x
s = −(ρNg)z(Z

N ;t,x
s )V N ;t,x

s ds + V N ;t,x
s dBs, 0 ≤ s ≤ T ;

ZN ;t,x
T = −Φx(x + BT − Bt).

(4.10)
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This gives the following framework (taking N ≥‖ Φx ‖∞):



















dYs = g(Zs) ds − Zs dBs;

dZs = −gz(Zs)Vs ds + Vs dBs;

YT = ξ ∈ L∞(FT ), Y bounded,

(4.11)

where E
[

∫ T
0 |Zr|2 dr

]

< +∞ and
∫ T
0 |Vr|2dr < +∞ P a.s. Thus we get special second

order backward stochastic differential equations (see [5] for a definition).

Theorem 4.2. In the framework (4.11), suppose there is a solution and

1) The probability measure Q with dQ
dP = E(gz(Z)B)T is equivalent to P ;

2) Z is a Q-martingale.

We then have

|Zs| ≤ 2 ‖ ξ ‖∞ (T − s)−
1
2 , ∀s ∈ [0, T ). (4.12)

Furthermore, if f(gz(·)) : R
d → R

+ is convex, we also have:

f(gz(Zs)) ≤ 2 ‖ ξ ‖∞ (T − s)−1, ∀s ∈ [0, T ). (4.13)

Proof. Under the measure Q, we get

dYs = −f(gz(Zs)) ds − Zs dBQ
s , (4.14)

where BQ
s = Bs −

∫ s
0 gT

z (Zr)dr is a Q-Brownian Motion.

Since Y is bounded and
∫ s
0 f(gz(Zr))dr is an increasing process, it follows from

Lemma 2.2 that
∫ s
0 ZrdBQ

r is a BMO martingale under the measure Q:

EQ

[
∫ T

s
|Zr|2dr

∣

∣

∣

∣

Fs

]

≤ 4 ‖ ξ ‖2
∞,

which implies, by Jensen’s inequality,

|Zs|2(T − s) ≤ 4 ‖ ξ ‖2
∞,

i.e.

|Zs| ≤ 2 ‖ ξ ‖∞ (T − s)−
1
2 .

It follows from equation (4.14) that

EQ

[
∫ T

s
f(gz(Zr))dr

∣

∣

∣

∣

Fs

]

= −EQ[ξ − Ys|Fs]

≤ 2 ‖ ξ ‖∞ .
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If f(gz(·)) is convex, then applying Jensen’s inequality, we get

f(gz(Zs)) ≤ 2 ‖ ξ ‖∞ (T − s)−1.

In fact the condition 1) in the theorem is a constraint to make the process {Zt}0≤t≤T

not grow so fast as we constructed in the non-uniqueness theorem. In this case, the

solution is unique. We have the following remark.

Remark 4.3. Suppose there is a bounded solution Y and the probability measure Q

with dQ
dP = E(gz(Z)B)T is equivalent to P , then the solution is unique and

Ys = EQ

[

ξ +

∫ T

s
f(gz(Zr))dr

∣

∣

∣

∣

Fs

]

, 0 ≤ s ≤ T.

Let us consider the original BSDE (4.1) again. Taking N ≥ c as in the proof of

Theorem 4.1, we deduce the following “general” framework:



















dYs = g(Zs) ds − Zs dBs, YT = Φ(XT );

dFs = gz(Zs)Vsds − Vs dBs, FT = Φx(XT )∇xXT ;

Zs = −Fs(∇xXs)
−1σ,

(4.15)

where Φ and Φx are bounded. Under the probability measure Q, BQ
s = Bs−

∫ s
0 gz(Zr)dr

is a Brownian Motion, and the “general” framework becomes:


















dYs = −f(gz(Zs)) ds − Zs dBQ
s , YT = Φ(XT );

dFs = −Vs dBQ
s , FT = Φx(XT )∇xXT ;

Zs = −Fs(∇xXs)
−1σ.

(4.16)

Recall that

d∇xXs = bx(Xs)∇xXsds,

from which we deduce

d(∇xXs)
−1 = −(∇xXs)

−1(d∇xXs)(∇xXs)
−1 = −(∇xXs)

−1bx(Xs) ds.

Applying Itô’s formula, we deduce

dZs = −(dFs)(∇xXs)
−1σ + Fs(∇xXs)

−1bx(Xs)σ ds.

We suppose that there exists a constant λ ≥ 0 such that

∀η ∈ R
n, |ηT σσT bT

x (x)η| ≤ λ|ηT σ|2. (4.17)
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We then have

d(exp(λs)Zs) = λ exp(λs)Zsds + exp(λs)Fs(∇xXs)
−1bx(Xs)σ ds + dMs

= F ∗
s (λI − bx(Xs))σ ds + dMs,

where M is a Q-martingale and

F ∗
s = − exp(λs)Fs(∇Xs)

−1.

Finally,

d| exp(λs)Zs|2 = d〈M〉s + 2[λ|F ∗
s σ|2 − F ∗

s σσT bT
x (Xs)(F

∗
s )T ] ds + dM∗

s ,

where M∗ is a Q-martingale, hence | exp(λs)Zs|2 is a Q-submartingale.

Proposition 4.2. Let us suppose that Φ is bounded and Lipschitz, b and σ satisfy

the assumption (4.17), and (Y t,x, Zt,x) is the unique bounded solution to BSDE (4.1).

Then there exists a constant c1 > 0 such that

|Zt,x
s | ≤ c1 ‖ Φ ‖∞ (T − s)−

1
2 , ∀s ∈ [0, T ). (4.18)

Proof. First let us consider the smooth case when Φ and Φx are bounded. Since

Zt,x is of the framework (4.16), from Lemma 2.2, we have

EQ

[
∫ T

s
|Zt,x

r |2 dr

∣

∣

∣

∣

Fs

]

≤ 4 ‖ Φ ‖2
∞,

from which we deduce that

EQ

[
∫ T

s
exp(2λr)|Zt,x

r |2 dr

∣

∣

∣

∣

Fs

]

≤ 4 exp(2λT ) ‖ Φ ‖2
∞ .

As exp(2λs)|Zt,x
s |2 is a Q-submartingale, it follows that

exp(2λs)|Zt,x
s |2(T − s) ≤ 4 exp(2λT ) ‖ Φ ‖2

∞,

i.e.

|Zt,x
s | ≤ c1 ‖ Φ ‖∞ (T − s)−

1
2 ,

where c1 = 2exp(λT ).

We can get the same estimate by a standard approximation when Φ is only bounded

and Lipschitz.
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Remark 4.4. As an example, let us take g(z) = |z|q for q ≥ 2. Since | exp(λs)Zt,x
s |2 is

a Q-submartingale, it is clear that | exp(λs)Zt,x
s |q is also a Q-submartingale for q ≥ 2.

It follows from (4.14) that

|Zt,x
s |q ≤ Cq ‖ Φ ‖∞ (T − s)−1, s ∈ [t, T ),

where Cq > 0 is a constant depending only on q and λ. Suppose u is the bounded

classical solution to the following PDE:







ut(t, x) + 1
2 trace

(

σσT uxx(t, x)
)

+ ux(t, x)b(t) − |ux(t, x)σ|q = 0,

u(T, x) = Φ(x).
(4.19)

Since

Zt,x
s = −ux(s,Xt,x

s )(∇xXt,x
s )−1σ, ∀s ∈ [t, T ],

we deduce that

|ux(t, x)σ| ≤ (Cq ‖ Φ ‖∞)1/q(T − t)−1/q.

The same type of estimate is given by Gilding et al. in [10] using Bernstein’s technique,

in the case when b = 0 and σ is the identity.

4.3 Lower semi-continuous case

Notice that Zt,x is bounded when Φ is bounded and Lipschitz. The bound, however,

depends on the Lipschitz constant. The advantage of the estimate in Proposition 4.2

is that the estimate only depends on ‖ Φ ‖∞. This allows us to weaken the hypothesis

further.

Proposition 4.3. Let us suppose that Φ is bounded and lower semi-continuous, and b

and σ satisfy the assumption (4.17). Then there exists a bounded solution (Y t,x, Zt,x)

to BSDE (4.1) such that

|Zt,x
s | ≤ c1 ‖ Φ ‖∞ (T − s)−

1
2 , ∀s ∈ [t, T ). (4.20)

Proof. For each integer m ≥ 0, construct the function

Φm(u) = inf {Φ(p) + m|p − u| : p ∈ R
n}.
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Then Φm is well defined and globally Lipschitz with Lipschitz constant m. Moreover,

(Φm)m≥0 is increasing and converges pointwise to Φ with

− ‖ Φ ‖∞≤ Φm ≤ Φ.

Let (Y m;t,x, Zm;t,x) be the bounded solution to BSDE (g, Φm(Xt,x
T )). It follows from

the classical comparison theorem that

− ‖ Φ ‖∞≤ Y 0;t,x ≤ Y m;t,x ≤ Y m+1;t,x ≤‖ Φ ‖∞,

and from Proposition 4.2,

|Zm;t,x
s | ≤ c1 ‖ Φ ‖∞ (T − s)−

1
2 , s ∈ [0, T ). (4.21)

For any fixed T ′ ∈ (0, T ), (Y m;t,x, Zm;t,x) satisfies

Y m;t,x
s = Y m;t,x

T ′ −
∫ T ′

s
(ρMg)(Zm;t,x

r ) dr +

∫ T ′

s
Zm;t,x

r dBr, ∀s ∈ [0, T ′], (4.22)

where

M = c1 ‖ Φ ‖∞ (T − T ′)−
1
2 .

Moreover, by Lemma 2.2,

E

[
∫ T

s
|Zm;t,x

r |2dr
∣

∣

∣
Fs

]

≤ 4 ‖ Φ ‖2
∞ .

The classical stability theorem (see N. El Karoui et al [8]) for Lipschitz generators

implies

lim
m,m′→∞

E

[

∫ T ′

0

∣

∣

∣
Zm;t,x

r − Zm′;t,x
r

∣

∣

∣

2
dr

]

= 0.

So define

Y t,x = lim
m→∞

Y m;t,x, Zt,x = lim
m→∞

Zm;t,x.

Then by passing to the limit when m → ∞ in (4.22), we conclude that for any fixed

T ′ ∈ (0, T ), (Y t,x, Zt,x) satisfies

Ys = YT ′ −
∫ T ′

s
g(Zr) dr +

∫ T ′

s
Zr dBr, ∀s ∈ [0, T ′], (4.23)

and

|Y t,x
s | ≤‖ Φ ‖∞, E

[
∫ T

s
|Zt,x

r |2dr
∣

∣

∣
Fs

]

≤ 4 ‖ Φ ‖2
∞, s ∈ [0, T ].

37



On the other hand, we have

lim
s→T

Y t,x
s ≥ lim

s→T
Y m;t,x

s = Φm(Xt,x
T ) for any m ∈ N, P a.s.

which implies lims→T Y t,x
s ≥ Φ(Xt,x

T ), P a.s.

Since Φm is bounded and Lipschitz for any m ∈ N, it follows from Theorem 4.1

that Y m;t,x
s ≤ E[Φm(Xt,x

T )|Fs]. We then get

lim
s→T

Y t,x
s = lim

s→T
lim

m→∞
Y m;t,x

s

≤ lim
s→T

lim
m→∞

E[Φm(Xt,x
T )|Fs]

= lim
s→T

E[Φ(Xt,x
T )|Fs]

= Φ(Xt,x
T ), P a.s.

Hence lims→T Y t,x
s = Φ(Xt,x

T ).

Finally, passing to the limit when T ′ → T in (4.23), we conclude that (Y t,x, Zt,x)

is a bounded solution to BSDE (4.1). By passing to the limit when m → ∞ in (4.21),

we derive (4.20) immediately.

4.4 Bounded and Continuous Case

In the smooth case, the dynamic utility function is a solution to BSDE (4.1) by Theorem

4.1. This remains true in more general case.

Proposition 4.4. Let us suppose that Φ is bounded and continuous, and b and σ

satisfy the assumption (4.17). Then there exists a bounded solution (Ȳ t,x, Z̄t,x) such

that

Ȳ t,x
s = inf

{

EQ

[

Φ(Xt,x
T ) +

∫ T

s
f(qr)dr

∣

∣Fs

]

∣

∣

∣
Q ∼ P

}

.

Proof. By the same technique as that used in Proposition 4.3, let us define the

function

Φ̄m(u) = sup{Φ(p) − m|p − u| : p ∈ R
n}

for each integer m ≥ 0. Then Φ̄m is also bounded and globally Lipschitz with Lipschitz

constant m. (Φ̄m)m≥0 is decreasing and converges pointwise to Φ with

‖ Φ ‖∞≥ Φ̄m ≥ Φ.
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Let (Ȳ m;t,x, Z̄m;t,x) be the solution to BSDE (g, Φ̄m(Xt,x
T )). It follows from the same

argument as that in Proposition 4.3 that by setting

Ȳ t,x = lim
m→∞

Ȳ m;t,x, Z̄t,x = lim
m→∞

Z̄m;t,x,

(Ȳ t,x, Z̄t,x) satisfies (4.23). On the other hand, since

Y m;t,x
s ≤ Ȳ m;t,x

s ≤ E[Φ̄m(Xt,x
T )|Fs],

we deduce that

Y t,x
s ≤ Ȳ t,x

s ≤ E[Φ(Xt,x
T )|Fs],

which implies that

lim
s→T

Ȳ t,x
s = Φ(Xt,x

T ).

Hence (Ȳ t,x, Z̄t,x) is also a bounded solution to BSDE (g, Φ(Xt,x
T )). Lemma 2.3

implies that any bounded solution of BSDE is less than or equal to the corresponding

dynamic utility function,

Ȳ t,x
s ≤ ess.inf

{

EQ

[

Φ(Xt,x
T ) +

∫ T

s
f(qr)dr

∣

∣Fs

]

∣

∣

∣
Q ∼ P

}

.

Finally, as

Ȳ m;t,x
s = ess.inf

{

EQ

[

Φ̄m(Xt,x
T ) +

∫ T

s
f(qr)dr

∣

∣Fs

]

∣

∣

∣
Q ∼ P

}

and Φ̄m(Xt,x
T ) converges decreasingly to Φ(Xt,x

T ), we deduce

Ȳ t,x
s ≥ ess.inf

{

EQ

[

Φ(Xt,x
T ) +

∫ T

s
f(qr)dr

∣

∣Fs

]

∣

∣

∣
Q ∼ P

}

.

Combining the above, we conclude that the solution Ȳ t,x is a dynamic utility function.

Notice that we used Φm to approximate Φ in the lower semi-continuous case. In

the continuous case, we can show that both Y m;t,x and Y
m;t,x

converge to the same

limit. Now first let us consider the uniformly continuous case.

Theorem 4.3. Suppose that Φ is bounded and uniformly continuous. We then have

Ȳ t,x
s = Us(Φ(Xt,x

T )) = Y t,x
s . (4.24)
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Proof. It follows from the uniform continuity of Φ that both (Φ̄m)m≥0 and (Φm)m≥0

converge to Φ with the norm ‖ · ‖∞.

Indeed, the uniform continuity of Φ implies that, for any ǫ > 0, there exists δǫ > 0,

such that if |p − u| ≤ δ(ǫ), then

|Φ(p) − Φ(u)| ≤ ǫ.

By the definition, we get

Φ(u) − Φm(u) = sup{Φ(u) − Φ(p) − m|p − u| : p ∈ R
n}.

But we have

Φ(u) − Φ(p) − m|p − u|

= (Φ(u) − Φ(p))1{|p−u|<δǫ} + (Φ(u) − Φ(p))1{|p−u|≥δǫ} − m|p − u|

≤ ǫ + 2
‖ Φ ‖∞

δǫ
|p − u| − m|p − u|

from which we deduce that if m > 2‖Φ‖∞
δǫ

, then

0 ≤ Φ(u) − Φm(u) ≤ ǫ,∀u ∈ R
n,

hence,

lim
m→∞

‖ Φ − Φm ‖∞= 0.

Combining with the convergence of a dynamic utility function and

Y m;t,x
s = ess.inf

{

EQ

[

Φm(Xt,x
T ) +

∫ T

s
f(qr)dr

∣

∣Fs

]

∣

∣

∣
Q ∼ P

}

,

we get

Y t,x
s = Us(Φ(Xt,x

T )) = ess.inf
{

EQ

[

Φ(Xt,x
T ) +

∫ T

s
f(qr)dr

∣

∣Fs

]

∣

∣

∣
Q ∼ P

}

.

By the same argument or simply by Proposition 4.4, we have

Ȳ t,x
s = Us(Φ(Xt,x

T )) = Y t,x
s .

Let us now consider the general case: Φ is bounded and continuous.
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Theorem 4.4. Suppose that Φ is bounded and continuous and f satisfies the assump-

tion: there exists a constant M such that

α := min
|x|=M

{f(x)} > 0. (4.25)

We then have

Ȳ t,x
s = Us(Φ(Xt,x

T )) = Y t,x
s , ∀s ∈ [0, T ]. (4.26)

Proof. First, in the special case Xt,x
T = x+BT −Bt, let us consider Y

m;t,x −Y m;t,x.

It follows from (4.2) that

Y
m;t,x
0 − Y m;t,x

0

= ess.inf
{

EQ

[

Φm(Xt,x
T ) +

∫ T

0
f(qu) du

]

∣

∣

∣
Q ∼ P,EQ

[

∫ T

0
f(qu) du

]

≤ 2 ‖ Φ ‖∞
}

−ess.inf
{

EQ

[

Φm(Xt,x
T ) +

∫ T

0
f(qu) du

]

∣

∣

∣
Q ∼ P,EQ

[

∫ T

0
f(qu) du

]

≤ 2 ‖ Φ ‖∞
}

≤ ess.sup
{

EQ

[

Φm(Xt,x
T ) − Φm(Xt,x

T )
]

∣

∣

∣
Q ∼ P,EQ

[

∫ T

0
f(qu) du

]

≤ 2 ‖ Φ ‖∞
}

.

Denoting Φm − Φm as Ψm, then Ψm is continuous. We then analyze

Ψm(x + BT − Bt) = Ψm

(

x + BQ
T − BQ

t +

∫ T

t
qudu

)

,

in three parts. First, we have, for N > M ,

EQ

[

Ψm

(

x + BQ
T − BQ

t +

∫ T

t
qudu

)

1
{|

R T

t
qudu|>N}

]

≤ 2 ‖ Φ ‖∞ Q
({

∣

∣

∫ T

t
qudu

∣

∣ > N
})

≤ 2 ‖ Φ ‖∞
EQ[|

∫ T
t qudu|]
N

.

Combining with

EQ

[∣

∣

∣

∫ T

t
qudu

∣

∣

∣

]

≤ EQ

[

∫ T

t

∣

∣qu

∣

∣1{|qu|<M} du
]

+ EQ

[

∫ T

t

∣

∣qu

∣

∣1{|qu|≥M} du
]

≤ MT + EQ

[

∫ T

0

M

α
f(qu)1{|qu|≥M} du

]

≤ MT + 2
M

α
‖ Φ ‖∞,

we deduce that

EQ

[

Ψm

(

x + BQ
T − BQ

t +

∫ T

t
qudu

)

1
{|

R T

t
qudu|>N}

]

≤ c1

N
,
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where c1 > 0 is a constant. Second, we have

EQ

[

Ψm

(

x + BQ
T − BQ

t +

∫ T

t
qudu

)

1
{|BQ

T
−BQ

t |>N,|
R T

t
qudu|≤N}

]

≤ 2 ‖ Φ ‖∞
EQ[|BQ

T − BQ
t |]

N

=
c2

N

where c2 > 0 is a constant independent of Q and m. Third, we have

EQ

[

Ψm

(

x + BQ
T − BQ

t +

∫ T

t
qudu

)

1
{|BQ

T
−BQ

t |≤N,|
R T

t
qudu|≤N}

]

≤ sup
|y|≤|x|+2N

Ψm(y).

It follows from the preceding three estimates that

EQ[Ψm(x + BT − Bt)] ≤
c1 + c2

N
+ sup

|y|≤|x|+2N
Ψm(y),

which implies that

lim
m→∞

(Y
m;t,x
0 − Y m;t,x

0 ) ≤ lim
m→∞

[c1 + c2

N
+ sup

|y|≤|x|+2N
Ψm(y)

]

=
c1 + c2

N
.

Since Y
m;t,x
0 − Y m;t,x

0 ≥ 0, by letting N tend to ∞, we deduce that

Y
t,x
0 = Y t,x

0 . (4.27)

Combining with the Markov property of Y
t,x

and Y t,x, we conclude that Y
t,x
s = Y t,x

s ,

for any 0 < s < T .

Notice that essentially we have made use of the simple fact that

lim
m→∞

sup
|y|≤c

Ψm(y) = 0,

where c is a constant. So in the general case,

Xt,x
s = x +

∫ s

t
b(u,Xt,x

u ) du + σ

(

BQ
s − BQ

t +

∫ s

t
qu du

)

,

since b is Lipschitz, applying Gronwall’s inequality, we get

|Xt,x
T | ≤ sup

t≤s≤T
|Xt,x

s | ≤ C

(

1 +

∫ T

t
|qu| du + sup

t≤s≤T
|BQ

s − BQ
t |
)

,
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where C > 0 is a constant. Hence the same proof works.

Now we define

um(t, x) := Y
m;t,x
t , um(t, x) := Y m;t,x

t ,

and

u(t, x) := Ut(Φ(Xt,x
T )). (4.28)

We have the following theorem.

Theorem 4.5. Suppose that Φ is bounded and continuous and f satisfies the assump-

tion: there exists a constant M > 0 such that

α := min
|x|=M

{f(x)} > 0;

and that b and σ satisfy the assumption (4.17). Then u(t, x) defined by (4.28) is

a bounded and continuous deterministic function on [0, T ] × R
n and it is a viscosity

solution to PDE (4.9).

Proof. Theorem 4.4 implies that {um(t, x)}∞m=1 (resp. {um(t, x)}∞m=1) converges

decreasingly (resp. increasingly) to u(t, x). Combining with the continuity of um(t, x)

and um(t, x), we deduce that u(t, x) is continuous.

By Dini’s theorem, they converge to u uniformly in any compact set. This implies

that u is a viscosity solution by the stability theorem of viscosity solutions to PDEs

(see, e.g., [6]) .
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