Wisama Khalil 
  
Maxime Gautier 
  
Philippe Lemoine 
  
Identification of the payload inertial parameters of industrial manipulators

Keywords: Identification, inertial parameters, dynamic modeling, least squares, payload parameters

   

I. INTRODUCTION

Several schemes have been proposed in the literature to identify the dynamic parameters [START_REF] Atkeson | Estimation of inertial parameters of manipulator loads and links[END_REF]- [START_REF] Khalil | Modeling, identification and control of robots[END_REF]. Most of the methods use an identification model linear in the parameters, and solve the system using least squares techniques (LS).

The experimental works have been carried out either on prototypes of laboratories or on industrial robots after replacing the industrial controller by an open loop controller specially developed for the application. In this paper, we show that new standard controllers allow now the identification of the dynamic parameters of the robot by providing the joint positions and torques for any trajectory. We show also that the classical trajectories of the manufacturer are sufficiently exciting for the identification. Very small number of papers were devoted for the identification of the payload [START_REF] Atkeson | Estimation of inertial parameters of manipulator loads and links[END_REF], [START_REF] Kawasaki | Terminal-link parameter estimation and trajectory control of robotic manipulators[END_REF]. In this paper we put the accent on the identification of the inertial parameters of the payload, but the identification of dynamic parameters of the robot will be also presented because they are needed also in some methods.

II. MODELING OF THE ROBOT RX 90

The Stäubli RX-90 robot has a serial structure with six rotational joints. Its nominal payload is equal to 6 Kg.

A. Description of the kinematics

The robot kinematics is defined using Khalil and Kleinfinger notation [START_REF] Khalil | A New Geometric Notation for Open and Closed Loop Robots[END_REF]. In this notation the link j fixed frame is defined such that the z j axis is taken along joint j axis and the x j axis is along the common normal with z j and z j+1 . The link frames are shown in Figure 1. The main advantage of using this notation is that the identifiable inertial parameters can be determined symbolically using simple closed-form rules [START_REF] Khalil | Modeling, identification and control of robots[END_REF], [START_REF] Gautier | Direct calculation of minimum set of inertial parameters of serial robots[END_REF], [START_REF] Khalil | Symbolic calculation of the base inertial parameters of closed-loop robots[END_REF]. (D3 = 0,45m and RL4 = 0,45m)

B. Dynamic identification model Different identification models have been used in robotics [START_REF] De | Parameters identification of robots manipulators via sequential hybrid estimation algorithms[END_REF], [START_REF] Gautier | Chapter 4 : Identification des paramètres des modèles[END_REF], [START_REF] Gautier | Identification of the dynamic parameters of a closed loop robot[END_REF], [START_REF] Gautier | Dynamic Identification of Robots with Power Model[END_REF], [START_REF] Gautier | Contribution à la Modélisation et à l'Identification des Robots[END_REF], [START_REF] Khosla | Parameter identification of robot dynamics[END_REF], [START_REF] Prüfer | Identification of Robot Dynamics with Differential and Integral Models: A Comparison[END_REF], [START_REF] Raucent | Identification of barycentric parameters of robotic manipulators from external measurements[END_REF], [START_REF] Liu | A Base Force/Torque Sensor Approach to Robot Manipulator Inertial Parameter Estimation[END_REF]. In the following, we use the inverse dynamic model, which was found to be the best one. It is represented for a robot with n joints by: Γ = ID(q, . q , .. q ,χ s ) (1) q, . q and .. q are the (nx1) vectors of joint positions, velocities and accelerations. Γ is the (nx1) vector of motor torques. χ s is the (Nsx1) vector of standard dynamic parameters (inertial parameters and friction parameters) of the robot.

A common friction model at non zero velocity is given by:

j f τ = j Fs sign( j q ) + j Fv j q (2)
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We take into account j IA , j Fv and j Fs in χ s .

A particular choice of the link inertial parameters allows obtaining the dynamic model linear in relation to the dynamic parameters, such that:

Γ = Φ S (q, . q , .. q ) χ s = s i=1,N i s ∑ Φ χ s i (4) 
where:

Φ S is a (nxNs) matrix, and i s Φ is the i th column of Φ S , χ s i is the i th element of χ s , χ s is the vector of standard dynamic parameters given by:

χ s = [χ s 1 T χ s 2 T … χ s n T ] T
(5) with χ s j is the dynamic parameters of joint and link j:

χ s j = [XXj XYj XZj YYj YZj ZZj MXj MYj MZj M j IAj F sj F vj ] T (6) where: 
-XX j , XY j , XZ j , YY j , YZ j , ZZ j are the six components of the inertia matrix of link j at the origin of frame j; -M j is the mass of link j; -MX j , MY j , MZ j are the components of the first moments; j IA is the inertia moment for rotor and gears of actuator j.

The columns of the matrix Φ s (q, . q , .. q ) can be obtained using the recursive algorithm of Newton-Euler, which calculates Γ in terms of the same set of standard dynamic parameters, such that the i th column of Φ s is equal to: Φ s i = ID (q, . q, .. q with χ s i = 1, χ sj = 0 for j ≠ i) [START_REF] Ha | An efficient estimation algorithm for the model parameters of robotic manipulators[END_REF] To increase the efficiency of this algorithm, we use the customized symbolic technique. Moreover, this technique is convenient for the computation of the observation matrix, which is composed of the concatenation of Φ s on all the points of a given trajectory, using an array multiply operator (.* of Matlab) without using loop calculations.

C. Particularities of the robot RX 90

The RX 90 robot is characterized by: 1. There is a spring on the joint 2, which compensates the gravity torque due to the robot links. The corresponding torque is added to the torque Γ 2 of joint 2, it is calculated using the manufacturer data in terms of θ 2 .

2. There is a coupling among the joints 5 and 6 such that: 

qr q K qr q K K ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ (8) 
Thus, the duality relation of torques gives: 

c r K K c r K Γ Γ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ Γ Γ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ (9) 
where: j qr : is the velocity of the rotor of motor j, j q : is the velocity of joint j, Γc j : the motor's torque of joint j, with coupling effect, Γr j : electro-magnetic torque of the rotor of motor j, K5 : the transmission gain ratio of axis 5, K6 : the transmission gain ratio of axis 6.

The coupling between joints 5 and 6, leads also to add the effect of the inertia of rotor 6 and new viscous and Coulomb friction parameters Fv m6 and Fs m6 to both Γ c5 and Γ c6. Thus, we can write:

Γ c5 = Γ 5 + IA 6
.. q 6 + Fv m6 . q 6 + Fs m6 sign( . q 6 ) (10) Γ c6 = Γ 6 + IA 6

.. q 5 + Fv m6 . q 5 + Fs m6 sign( . q 5 ) (11) where: Γ 5 , Γ 6 are obtained from (4), they have already the terms (IA j .. q j + Fvj . q j + Fs j sign( . q j )) for j =5 and 6

IA 5 = K5^2 JA 5 + K6^2 JA 6, IA 6 = K6^2 JA 6, JA j is the moment of inertia of the rotor j, Fv m6 and Fs m6 are the friction parameters due to coupling.

D. Calculation of the base dynamic parameters

It has been seen that some inertial parameters cannot be identified because they have no effect on the dynamic model, and some parameters are grouped with some others. The identifiable parameters, called also base inertial parameters [START_REF] Mayeda | Base parameters of manipulator dynamic models[END_REF], can be determined for the serial robots using simple closed-form rules if the Khalil and Kleinfinger notations are used to describe the robot kinematics [START_REF] Khalil | Modeling, identification and control of robots[END_REF], [START_REF] Gautier | Direct calculation of minimum set of inertial parameters of serial robots[END_REF]. For the robot RX 90 the following parameters cannot be identified, they do not belong to the base inertial parameters: -YYj, MZj and Mj for j = 1, … , 6. -XX1, XY1, XZ1, YZ1, MX1, MY1, IA1 and IA2.

The grouped parameters are:

ZZ1R=IA1 + D3^2*(M3 + M4 + M5 + M6) + YY2 + YY3 + ZZ1 XX2R= -D3^2*(M3 + M4 + M5 + M6) + XX2 -YY2 XZ2R= -D3*MZ3 + XZ2 ZZ2R=IA2 + d3^2*(M3 + M4 + M5 + M6) + ZZ2 MX2R=D3*(M3 + M4 + M5 + M6) + MX2 XX3R=2*MZ4*RL4+(M4 + M5 + M6)*RL4^2 + XX3 - YY3+YY4 ZZ3R=2*MZ4*RL4 + (M4 + M5 + M6)*RL4^2 + YY4 + ZZ3 MY3R=MY3 -MZ4 -(M4 + M5 + M6)*RL4 XX4R=XX4 -YY4 + YY5 (12) ZZ4R=YY5 + ZZ4 MY4R=MY4 + MZ5 XX5R=XX5 -YY5 + YY6 ZZ5R=YY6 + ZZ5 MY5R=MY5 -MZ6 XX6R=XX6 -YY6
A numerical method based on the QR decomposition can also be used to determine the base inertial parameters [START_REF] Gautier | Numerical calculation of the base inertial parameters[END_REF].

The dynamic model of the RX90 model is a function of 40 inertial parameters. It is also a function of 14 friction parameters: (Fvj and Fs j for j=1,…,6) and (Fv m6 and Fs m6 ). The total number of the dynamic base parameters, denoted by N b ,is equal to 54.

The dynamic model can be written using the base inertial parameters as follows:

Γ = Φ(q, . q , .. q ) χ = b i=1,N i ∑ Φ χ i ( 13 
)
where Φ is obtained from Φ s by eliminating the columns corresponding to the non identifiable parameters.

III. RECALL OF THE IDENTIFICATION METHOD

We consider off-line identification of the base dynamic parameters χ , given measured or estimated off-line data for Γ , , , q q q , collected while the robot is tracking some planned trajectories.

The principle is to sample the identification model ( 13) at a sufficient number of samples i t , for i=1, ..., e n , with e (nxn ) >> N b , in order to get an over-determined linear system of e (nxn ) equations:

+ = χ ρ Y W (14)
ρ is the e ((nxn ) 1)

x vector of errors between the data in Y (measurement or estimation of the torques), and the data χ W , predicted by the model. ( , , ) W q q q is the ( e (nxn ) x b N ) observation matrix.

Y and W are obtained by grouping together the equations of each joint on all the trajectory such that:

Y = ⎣ ⎢ ⎢ ⎡ ⎦ ⎥ ⎥ ⎤ Y 1 … Y n , W = ⎣ ⎢ ⎢ ⎡ ⎦ ⎥ ⎥ ⎤ W 1 … W n (15)
where Y i and W i represent all the equations of joint i.

Most of the schemes in robotics solve the system (14) using ordinary (OLS) or weighted (WLS) least squares methods [START_REF] De | Parameters identification of robots manipulators via sequential hybrid estimation algorithms[END_REF], [START_REF] Kozlowski | Modelling and identification in robotics[END_REF], [START_REF] Khalil | Modeling, identification and control of robots[END_REF]. A maximum likelihood approach proposed by [START_REF] Swevers | Optimal robot excitation and identification[END_REF], reduces in practice to a WLS method. An approach based on LMI (linear matrix inequality) tools takes into account perturbations in the observation matrix but without improving the estimation given by the WLS. To our knowledge the best experimental results have been obtained with the WLS method, which is presented in the following.

The estimation of χ is obtained as the OLS solution of the over-determined linear system (14

): χ = 2 Arg.min || || χ ρ = + W Y ( 16 
)
where

+ W = T 1 T ( ) - W W
W is the pseudo inverse of W . If W is a full rank matrix the LS solution χ is unique. W numerical rank deficiency can come from two origins: -structural rank deficiency, which is solved by calculating the base or minimal parameters; -data rank deficiency due to a bad choice of noisy experimental , , q q q samples in W , which can be solved by a good planning of exciting trajectories.

In practice, the experimental measurements or estimations of ( )

i t Γ
, ( ), ( ), ( )

i i i t t t q q q
give noisy data. The matrices Y and W are perturbed and the LS solution may lead to a bias estimation if the two random matrices are not independent. Because the coefficients in the observation matrix ( , , )

Φ q q q are non linear functions of , , q q q , it is not possible to get a theoretical expression of the bias and variance. To overcome this difficulty we adopt a practical strategy which reduces bias and variance of the LS solution with twofold: -data filtering to decrease noise effect in ( 14); -closed loop identification for the robot to track exciting trajectories which ensure persistency excitation. In order to cancel high frequency torque ripple in Γ, the vector Y and the columns of the observation matrix W are both low pass filtered and decimated. This parallel filtering procedure [START_REF] Richalet | Pratique de l'identification[END_REF] can be carried out with the Matlab decimate function [START_REF] Gautier | Chapter 4 : Identification des paramètres des modèles[END_REF], [START_REF] Gautier | Dynamic Identification of Robots with Power Model[END_REF], [START_REF] Khalil | Modeling, identification and control of robots[END_REF].

Standard deviations are estimated considering W to be deterministic, and ρ to be a zero mean additive independent Gaussian noise, with standard deviation σ ρ such that [START_REF] Gautier | Chapter 4 : Identification des paramètres des modèles[END_REF]:

C ρ = E(ρ ρ T ) = σ ρ 2 I r ( 17 
)
where E is the expectation operator and I r is the (rxr) identity matrix. An unbiased estimation of σ ρ can be:

σ ρ 2 = ||Y -W χ|| 2 (r -c) (18) 
The covariance matrix of the estimation error is given by:

Cχ = E[(χ -χ ) (χ -χ ) T ] = σ ρ 2 (W T W) -1 (19) 
The standard deviation σχ j and its relative value σχ jr % by:

σχ j = Cχ (j,j) (20) 
σχ jr % = 100

σχ j | χ j | (21) 
The equations of joint i will be weighted with the inverse of the standard deviation of the error calculated using the equations of joint i [START_REF] Gautier | Chapter 4 : Identification des paramètres des modèles[END_REF], [START_REF] Gautier | Dynamic Identification of Robots with Power Model[END_REF]. This weighting operation normalises the errors to give the WLS estimation of the parameters.

The WLS solution is obtained by a recursive formulation of the QR decomposition of the weighted matrix W [START_REF] Gautier | Chapter 4 : Identification des paramètres des modèles[END_REF]. Some small parameters remain poorly identifiable because they have no significant contribution in the torque. These parameters can be cancelled in order to simplify the dynamic model. Parameters such that σχ jr % is greater than a bound between 5 and 10 are cancelled to keep a set of essential parameters of a simplified dynamic model without loss of accuracy [START_REF] Gautier | Chapter 4 : Identification des paramètres des modèles[END_REF]. The essential parameters are calculated using an iterative procedure starting from the base parameters estimation. At each step the base parameter which has the largest relative standard deviation is cancelled. A new parameter estimation of the simplified model is carried out with a new error standard deviation σ ρe . The procedure ends when σ ρe ≥ 1.02 σ ρb , where σ ρb is the initial error standard deviation obtained with all the parameters.

IV. IDENTIFICATION OF THE DYNAMIC PARAMETERS OF THE ROBOT RX 90

A. Data Acquisition and identification

The identification of the dynamic parameters without load has been carried out using 18 trajectories. The path of each trajectory consists of about 14 intermediate points. The trajectory between the points is carried out using the interpolation function of the controller CS8 of the Stäubli robots. The joint positions and torques are read with a sampling frequency equal to 250 Hz. The condition number of the observation matrix of all the trajectories is equal to 58, which is considered as being sufficiently exciting. The total number of equations is about r = 63000. A supplementary trajectory is used in the validation of the estimated values of the dynamic parameters.

The estimation of . q and .. q are carried out from q by a low pass Butterworth filter and a central derivative algorithm. The Matlab function filtfilt, which is a zero-phase forward and reverse digital filtering, can be used.

After elimination of the parameters with large relative standard deviation (RSD), the robot dynamics is represented by 28 essential parameters. The estimated values of these parameters are not given here. They are close to the first 28 parameters of Table 2.

B. Validation of the identification results

The validation of the identification result is carried out by comparing the measured joint torques mes Y and the estimated torques est χ W on a trajectory which has not been used in the identification (cross validation). Owing to the limited number of pages, the validation curves are not presented in this paper. However, the identification of the payload inertial parameters presented in the following section constitutes another validation procedure.

V. IDENTIFICATION OF THE INERTIAL PARAMETERS OF THE PAYLOAD

A. Presentation of the different methods

Having estimated the dynamic parameters of the robot without load, we present in this section four methods for the identification of the inertial parameters of a payload fixed on the terminal link of the robot.

1) Making use of the values estimated without payload

When the robot is carrying a payload, the dynamic equations can be written as follows:

Y T = W(q, . q , .. q ) χ + W L (q, . q , .. q ) χ L + ρ ( 22 
)
where Y T : the measured torques when the robot is loaded, W : the observation matrix without load, χ : the vector of the dynamic parameters of the robot without load (this is already estimated), χ L : the(10x1) vector of the inertial parameters of the load, W L : the observation matrix corresponding to the load inertial parameters.

The load inertial parameters are estimated from ( 22) by: χL

= (W L ) + (Y T -W χ) (23) 
We note that physically the 10 inertial parameters are identifiable.

In this method we suppose that the friction parameters are invariant with respect to the payload. If this hypothesis is not satisfied these parameters should be taken into account in both W L and χ L .

2) New identification of the robot parameters with the payload

We identify once more all the dynamic parameters while the robot is carrying the payload. The inertial parameters of the load can be computed using the variation on some estimated inertial parameters with and without payload. In this case we make use of the grouping relations [START_REF] Prüfer | Identification of Robot Dynamics with Differential and Integral Models: A Comparison[END_REF]. Let ∆χ i be the variation of an inertial parameter: ∆χ i = χj (robot with payload)-χj (robot without payload) [START_REF]Theory of Robot Control[END_REF] The load inertial parameters XY L , XZ L , YZ L , ZZ L , MX L , MY L can be obtained directly as ∆XY6, ∆XZ6, ∆YZ6, ∆ZZ6, ∆MX6, ∆MY6. Using ( 12) and ( 24), the parameters XX L , YY L , MZ L and M L can be obtained by solving the following relations:

∆ZZ1R= D3^2* M L ∆XX2R= -D3^2* M L ∆ZZ2R= D3^2* M L ∆MX2R= D3*M L (25) ∆XX3R= RL4^2 * M L ∆ZZ3R= RL4^2* M L ∆MY3R= -RL4* M L ∆XX5R= YY L ∆ZZ5R= YY L (26) ∆MY5R= -MZ L (27) ∆XX6R= XX L -YY L (28) 
The parameters M L and YY L are estimated by the least squares solution of equations ( 25) and (26) respectively, whereas the parameters MZ L and XX L are directly obtained from equations ( 27) and (28) respectively.

3) Using the difference between the joint torques before and after loading the robot on the same trajectory

In this method we make use that the term W χ of ( 22) is equal to the joint torques without load. Consequently the payload parameters could be identified by [START_REF] Gautier | A comparison of filtered models for dynamic identification of robots[END_REF] after replacing W χ by Y wL representing the joint torques on the same trajectory without load, which gives:

χL = (W L ) + (Y T -Y wL ) (29) 
The unknowns of this method are only the 10 inertial parameters of the payload, which lead to the possibility of reducing considerably the number of points needed for the construction of the observation matrix. In our experiment just one trajectory (out of the planned 8) was sufficient.

This method supposes that the control system is efficient such that the difference between the joint positions with and without payload is negligible and that the friction parameters are the same under the two conditions. For the RX 90 robot the maximum error on joint positions due to the load is 10 -3 rad while carrying a load of 7.025 Kg, which allowed obtaining good results with this simple method.

4) Global identification of the robot parameters and the load parameters

In this method the identification model is constructed by grouping two sets of equations, the first representing a trajectory without load, and the second representing a trajectory with load. These two trajectories could be different:

a b L W W W L ⎡ ⎤ ⎡ ⎤⎡ ⎤ = ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ 0 a b Y Y χ χ (30) 
where the first row represents the equations of the trajectory without payload, whereas the second row corresponds to the trajectory with payload. The link parameters χ and the payload inertial parameters L χ are estimated by solving (30) using weighted least squares solution. This method has the advantage of using a global identification procedure that can avoid the accumulation of errors, which may occur for sequential identification methods.

B. Experimental results

To test the proposed methods, a calibrated payload is used. The inertial parameters are provided by the software package CATIA. These values, denoted in the following as a priori, are sufficiently accurate due to the simplicity of the shape of the load. The mass of the reference payload is estimated as 7.025 Kg using a weighing machine whose accuracy is ± 0.050 Kg. The four methods have been applied and the results are nearly the same. We give the results of methods 3 and 4. Method 3 is considered as the simplest one, whereas method 4 is considered as the best scientific one.

The results of methods 3 and 4 are given in Tables 1 and2 respectively. We note that the parameters XX L , YY L , MZ L and M L are very well identified in both methods in terms of relative standard deviation. The reference values of the other parameters are almost zero. In method 3, they have big relative standard deviations, but the estimated values are almost zero. In method 4, the application of the elimination strategy led to eliminate automatically these parameters because they have negligible effect on the dynamics of the robot.

The robot parameters identified in method 4 are very close to those estimated in section 4.

VI. CONCLUSION

In this paper we dealt with the problem of the identification of the inertial parameters of the payload of industrial robots. In the experimentation we used the Stäubli RX 90 robot with its CS8 controller for the data acquisition and for the trajectory generation. Four methods have been proposed and validated by comparing the inertial parameters of a reference-calibrated payload. We put the accent on two methods, the method 3 makes use of data of a given trajectory executed twice, once without the payload and then with the payload. This method relies on a good control tuning in order that the position error between the two executions will be small enough. The method 4 identifies both robot parameters and payload parameters in one step by a global procedure. This method avoids the accumulation of errors, which may occur in methods 1 and 2, and does not impose any hypothesis as in method 3. The experimental results, for the RX 90 robot, are very close for the four methods, thus any of them can be used for the RX90 robot. This may be not the case for other robots using method 3. 
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 41 Figure 1. Link frames of Stäubli RX-90 robot.(D3 = 0,45m and RL4 = 0,45m)

  the viscous and Coulomb friction parameters.The inertia of the rotors is generally taken in this model as:

Table 1 .

 1 Identification of the payload parameters using method 3

	Parameter	A priori	Identified	2 σ χ		σ χr %
	XX L	0.161	0.157		0.019		5.931
	XY L	0	0.007		0.009		66.152
	XZ L	0	0.008		0.009		62.705
	YY L	0.161	0.153		0.018		5.738
	YZ L	0	-0.005		0.009		91.418
	ZZ L	0.035	0.025		0.012		24.612
	MX L	0	0.034		0.015		21.869
	MY L	0	0.006		0.015		119.190
	MZ L	1.003	0.977		0.020		1.015
	M L	7.025	7.216		0.045		0.313
	Parameter A priori Identified	2 σ χ	σ χr %
		ZZ1R		12.600		0.040	0.158
		FV1		29.300		0.139	0.237
		FS1		21.700		0.228	0.526
		XX2R		-7.770		0.053	0.339
		XZ2R		-0.866		0.039	2.227
		ZZ2R		11.400		0.046	0.204
		MX2R		15.900		0.026	0.081
		FV2		27.300		0.218	0.399
		FS2		21.300		0.286	0.670
		XX3R		1.230		0.042	1.723
		ZZ3R		1.300		0.017	0.655
		MY3R		-3.170		0.012	0.189
		IA3		1.480		0.019	0.636
	Robot	FV3		7.090		0.067	0.472
	parameters	FS3		12.800		0.102	0.399
		MX4		-0.052		0.004	4.252
		IA4		0.866		0.004	0.231
		FV4		6.000		0.023	0.191
		FS4		5.800		0.048	0.412
		IA5		0.280		0.010	1.847
		FV5		4.730		0.049	0.519
		FS5		2.310		0.063	1.369
		YZ6		-0.020		0.001	3.246
		IA6		0.104		0.002	0.997
		FV6		1.200		0.015	0.612
		FS6		0.820		0.022	1.371
		FVM6		1.050		0.012	0.552
		FSM6		0.700		0.024	1.679
		XX L	0.161	0.157		0.008	2.572
	Payload parameters	YY L ZZ L	0.161 0.035	0.151 0.027		0.008 0.002	2.567 4.487
		MZ L	1.003	0.979		0.010	0.495
		M L	7.025	6.700		0.039	0.294

Table 2 .

 2 Identification results using method 4
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