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Abstract

     This paper presents the experimental identification of
the dynamic parameters of the Orthoglide [1], a 3-DOF
parallel.  The dynamic identification model is based on
the inverse dynamic model, which is linear in the
parameters. The model is computed in a closed form in
terms of the Cartesian dynamic model elements of the legs
and of the Newton-Euler equation of the platform. The
base inertial parameters of the robot, which constitute the
identifiable parameters, are given.

1 Introduction

     The inverse dynamic model is important for high
performance control algorithms, and the forward dynamic
model is required for their simulation. For these two
applications the numerical values of the dynamic
parameters (inertial and friction) must be known. The
determination of the base inertial parameters, which
represent the only identifiable parameters [2], is treated in
this paper by a numerical method [3]. This method is
based on the QR decomposition of the observation matrix
of the dynamic identification model of the robot. The
experimental identification of the dynamic parameters is
based on the use of a dynamic model linear in the
parameters. This model permits to use the least squares
solution to solve the estimation problem [4].

 2 Kinematic modeling of the Orthoglide

     The Orthoglide has three PRPaR identical legs (where
P, R and Pa stand for Prismatic, Revolute and
Parallelogram joint, respectively). Each leg is composed
of six passive revolute joints and 1 active prismatic joint,
(fig. 1). We define frame F0 fixed with the base and frame
FP fixed with the mobile platform (fig. 2). Their origins
are A1 and P respectively. Their axes (x0, y0, z0) and (xP,
yP, zP) are parallel. The base frames of the legs are
defined by the frames FA1, FA2 and FA3 (fig. 2), whose
origins are A1, A2 and A3 respectively. The zAi axes are

along the prismatic joint axes. The Khalil and Kleinfinger
notations [5], are used to describe the geometry of the
system (fig. 3).

Fig. 1: Orthoglide kinematic architecture.
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Fig. 2: Base frame,  platform frame and leg frames.

     The following notations are used:
L     (3×1) vector of the motorized joint variables:

        [ ]T
11 12 13q q q=L ;

0
pV  (3×1) vector of the linear velocity of the origin of the

         platform.
The derivative of L and 0

pV  with respect to the time are

denoted L!  and 0
pV!  respectively.     This work has been supported by the project MAX of the program

ROBEA of the department STIC of the French CNRS.
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     The following kinematic models are presented in [6]:
i) The inverse kinematic model of the robot:
     −= 0 1 0

p pL J V! (1)

Where 0 -1
PJ  is the inverse Jacobian matrix of the

Orthoglide, which is always regular in the working space.
ii) The inverse kinematic model of a leg i:
     = 0 -1 0

i i pq J V! (2)

     [ ]T
1i 2i 3iq q q=iq! ! ! ! (3)

Where 0 -1
iJ  is the inverse Jacobian matrix of the leg i.

The velocities of the other joints of each leg can be
obtained in terms of iq!  (see appendix).
iii) The second order inverse kinematic model of the leg:
     ( )0 -1 0 0

i i p i iq = J V - J q! !!! ! (4)

3 Inverse dynamic model

     The inverse dynamic model gives the motorized
forces, ΓΓΓΓrobot, in terms of the desired trajectory of the
mobile platform 0 0 0

p p pP , V , V! . The dynamic model is
computed in two steps. First we calculate, the reaction
forces of the platform on the legs at point P, which is
denoted by fi, then the Newton-Euler equation of the
platform is applied to obtain the motor forces [6].
     The general form of the inverse dynamic model of a
leg i, is written as (see appendix):
     ( ),= +! !! 0 T 0

i i i i i i iH q ,q q J fΓΓΓΓ  (5)
Where:
Hi is the inverse dynamic model of leg i, when its
terminal point is free.

ΓΓΓΓi is composed of the independent torques/forces of the
joints of the leg i, where Γ1i and Γ2i  are zero:
     [ ] [ ]T T

1i 2i 3i 1i 0 0= Γ Γ Γ = ΓiΓΓΓΓ (6)
    Using equation (5) the forces fi can be written as:
     ( ),= − +0 0 -T

i xi i i i i if H q ,q q J ΓΓΓΓ! !!  (7)
Where:
     ( ) ( ), ,= 0 -T

Xi i i i i i i i iH q ,q q J H q ,q q! !! ! !! (8)
Hxi is the inverse dynamic model with respect to the
position Cartesian space at point P (fig.3) [7][8]. We
show that [6]:
     ( ) [ ],

,= − +! !!0 0 -T
i xi i i i p i: i

f H q ,q q J ΓΓΓΓ (9)

Where [ ],
0 -T

p : i
J represents the ith column of the inverse

transpose Jacobian matrix of the robot.
     The Newton-Euler equation of the platform is written
as (no rotation):
     p pM M= −0 0 0

P PF V g!  (10)
With:
0g    Acceleration of gravity, referred to frame F0:
     [ ]T0 g 0=0 g , 2g 9.81m.s−=
Mp  Mass of the platform;
0Fp  Total external forces on the platform.
     From equations (9) and (10), the dynamic model is
given by:

     ( )
3

i 1
,

=

 = +     
∑ ! !!0 T 0

robot p p xi i i iJ F H q ,q qΓΓΓΓ  (11)

     Different methods can be used to calculate
( )iiii qq,qH !!! , [9][10][11]. To reduce the computational

cost, the customized Newton-Euler method, which is
linear in the dynamic parameters is used [12].

4 Dynamic identification model

     The dynamic model of each leg i can be represented as
a linear function of the inertial and friction parameters of
the leg Ki. Thus the equation (11) can be written as:
     robot robot robotΓ = D K (12)
     robotK is the vector of the standard dynamic parameters
of the Orthoglide:
     

T

PM =  
T T T

robot 1 2 3K K K K (13)

      =  robot P 1 2 3D D D D D (14)

     Ki is the vector of the standard dynamic parameters of
the leg i, such that:

     
T

1i 1i 1iMa Fs Fv =  
T

i iK χχχχ (15)

      
 

TT T
i 1i 5i=χ χ χχ χ χχ χ χχ χ χ" (16)

Where:



- Ma1i is the inertia of the rotor of motor i referred to the
joint side;
- Fv1i is the viscous friction parameter;
- Fs1i is the coulomb friction parameter;
- iχχχχ is the vector of the inertial parameters of link i.
     The standard inertial parameters of the link j (j = 1 to
5, fig. 3) of the leg i are collected in the (10×1) vector:

T

ji ji ji ji ji ji ji ji ji jiXX XY XZ YY YZ ZZ MX MY MZ M =  jiχχχχ (17)
Where:
- XXji, …, ZZji are the elements of the inertia matrix;
- MXji, MYji, MZji define the first moments of link ji;
- Mji is the mass of link ji.
     Thus, robotK  is a (160×1) vector and robotD  is a
(3×160) matrix.

4.1 Base dynamic parameters of the robot

     The base dynamic parameters represent the minimum
number of parameters from which the dynamic model can
be calculated. The dynamic model complexity is reduced
when computed by the base dynamic parameters. Besides,
they constitute the only identifiable parameters [3]. They
can be obtained from the standard parameters, by
eliminating the dynamic parameters that have no effect on
the dynamic model and by grouping some others.
     To determine them, we use a numerical method, which
is based on the QR decomposition [4]. First we determine
the base parameters of each leg, then we determine the
effect of connecting the platform.
     There are 14 base parameters for legs 1 and 2. They
are given by (i = 1, 2): Ma1Ri, Fv1i, Fs1i, ZZ2Ri, MX2i, MY2Ri,
XX3Ri, XY3Ri, XZ3Ri, YZ3Ri, ZZ3Ri, MX3Ri, MY3Ri, MX4i. Since,
the prismatic joint of leg 3 is along gravity, there are 15
base parameters for leg 3, the grouped inertia Ma1R3 does
not eliminate M1R3 (Whose effect on the force of motor 3
will be constant and equal to –g.M1R3). The grouped
relations are (the index R indicates that some parameters
are grouped with that one):
     1Ri 1i 1i 2i 3i 4i 7iMa Ma M M M M M= + + + + +

     2
2Ri 2i 3i 4i 4i 4i 7iZZ ZZ YY YY D M YY= + + + +

     2Ri 2i 3i 4i 7iMY MY MZ MZ MZ= + + +

     2
3Ri 3i 3i 7i 7i 4i 4iXX XX YY XX YY D M= − + − −

     3Ri 3i 7iXY XY XY= +

     3Ri 3i 4i 4i 7iXZ XZ D MZ XZ= − + (18)
     3Ri 3i 7iYZ YZ YZ= +

     2
3Ri 3i 7i 4i 4iZZ ZZ ZZ D M= + +

     3Ri 3i 7i 4i 4iMX MX MX D M= + +
     3Ri 3i 7iMY MY MY= +
     1R3 13 23 33 43 73M M M M M M= + + + +
D4i is the distance between the axes of q3i and q4i (fig.3).

     Taking into account the three legs and the platform, we
obtain that the parameters MX3Ri (i = 1, 2, 3) are grouped
with the mass of the platform and with the parameters:
M1Ri3, ZZ2Ri, XX3Ri and ZZ3Ri:

     RP P 3R1 3R 2 3R3
41 42 43

1 1 1M M MX MX MX
D D D

= + + +

     1Ri 1Ri 3Ri
4i

1Ma Ma MX
D

= −

     2Ri 2Ri 4i 3RiZZ ZZ D MX= − (19)

     3Ri 3Ri 4i 3RiXX XX D MX= +

     3Ri 3Ri 4i 3RiZZ ZZ D MX= −

     1R3 1R3 3R3
43

1M M MX
D

= −

     To understand the physical meaning of these grouped
parameters, let us consider that the center of mass of links
3i and 7i is in the middle of O3iO4i and O7iO8i respectively.
Thus:

    4i
3i 3i

DMX M
2

= , 4i
7i 7i

DMX M
2

= (20)

     Using equations (18) and (20) into (19), we obtain:

     
3

RP P 4i 3i 7i
i 1

1 1M M M M M
2 2=

 = + + +  
∑

     1Ri 1i 1i 2i 3i 7i
1 1Ma Ma M M M M
2 2

= + + + +   (21)

     1R3 13 23 33 73
1 1M M M M M
2 2

= + + +

     From equation (21), we show that:
- The masses M4i are grouped entirely with the platform;
- The masses M3i and M7i are divided by two: one half is
grouped with the platform and the other with Ma1Ri and
also with M1R3 when i = 3.
     The base dynamic parameters of the Orthoglide are
given in table 1, on which we added an offset on the
motor forces. The masse M1R3 will be grouped with Off3.
Thus the total number of parameters is 43.

Table 1: Base inertial parameters of the Orthoglide

MRP
Ma1Ri Offi Fv1i Fs1i ZZ2Ri MX2i MY2Ri
XX3Ri XY3Ri XZ3Ri YZ3Ri ZZ3Ri MY3Ri MX4i

So, BrobK , which contains the base dynamic parameters
of the robot, is written as:

     
T

RPM  
T T T

Brob B1 B2 B3K = K K K (22)

Where KBi is the vector of the base dynamic parameters
of the leg i. The corresponding DBrob matrix can be
written as:

        Brob P B1 B2 B3D = D D D D (23)



4.2 Computation of DBrob

    The vector Hi of the leg i can be written as:

     ( ) 0
0

 
 =  
  

mi

i i i i Li Bi

D
H q ,q ,q D K! !!  (24)

     Where the elements of Dmi correspond to the base
parameters corresponding to the motorized joint (Ma1Ri,
Fv1i, Fs1i and Offi for i = 1 to 3):
     

1Ri 1i 1i iMa Fv Fs OffD D D D =  miD (25)

With:

1RiMa 1iD q= !! ,
1iFv 1iD q= ! ,

1iFs 1iD sign(q )= !  and 
iOffD 1= .

    The columns of DLi correspond to the other base
parameters.
     Then, from (11), and (24), we deduce that:
     ( )−0 T 0 0

P p PD = J V g! (26)

     0
0

 
 
 
  

m1
0 T 0 -T

B1 p 1 L1

D
D = J J D (27)

     
0

0

 
 
 
  

0 T 0 -T
B2 m2 p 2 L2D = D J J D (28)

     
0
0

 
 
 
  

0 T 0 -T
B3 p 3 L3

m3

D = J J D
D

(29)

4.3 Exploitation of the similarity of the legs

     The complexity of the dynamic identification model
could be reduced by making use of the similarity of the
legs. Thus, the base parameters ZZ2Ri, MX2i, MY2Ri,
XX3Ri, XY3Ri, XZ3Ri, YZ3Ri, ZZ3Ri, MY3Ri, MX4i of the
three legs could be grouped together. Thus the matrix

BrobD  becomes:

     

0 0
0 0
0 0

 
 
 
  

m1

sym P m2 LS

m3

D
D = D D D

D
(30)

3

i 1=

  ∑0 T 0 -T
LS p i LiD = J J D

symK  is a (23×1) matrix containing the base inertial
parameters of the Orthoglide:

=symK (31)
T

RP 1R1 11 11 1 1R3 13 13 3 2R 4M Ma Fv Fs Off Ma Fv Fs Off ZZ MX  " "
With:

2R 2R1 2R 2 2R3 4 41 42 43ZZ ZZ ZZ ZZ , , MX MX MX MX= = = = = ="

4.4 Identification of the base dynamic parameters

     The identification has been carried out using least
squares techniques on the dynamic model as described by
Gautier in [13],[14]. To identify the base dynamic
parameters some trajectories are sampled at different
times. The matrix Dsym is calculated for each sample and
all of them are collected in the matrix W, to obtain the
following overdetermined linear system of equations:
     +symY = W K ρρρρ (32)
Where:
ρρρρ   is the modeling error;
W is the (3r×c) observation matrix and Y  is the (3r×1)
matrix corresponding to the joint forces for all the
samples, with c = 23 and r represents the number of the
samples.
      The solution of the linear system of equations (32)
gives the estimation of the base dynamic parameters.

5 Experimental results

     The identification method has been experimentally
carried out on the Orthoglide prototype of the IRCCyN.
The motors are AC servomotors. The control system is
based on a DSPACE 1103 digital signal-processing card.
The sampling period is 2.5 ms.

5.1 Planning of the identification trajectory

     To identify the base dynamic parameters the choice of
the robot trajectory is very important in order to excite the
different parameters [15]. The condition number of W has
been used to select the best trajectory. This number
measures the sensitivity of the solution with respect to the
noise in the data. The Orthoglide motorized joints could
be derived independently. So trajectories have been
generated between random joint positions. By simulation
we selected 10 random trajectories giving a good
condition number. The trajectories are then executed on
the real system and sampled with a period which is equal
to 2.5 ms. The matrix Dsym is calculated for each sample
and all of them are collected in the observation matrix W.

5.2 Estimation of the observation matrix

     The computation of the Dsym matrix needs the
estimation of the joint positions, velocities and
accelerations. The joint positions are measured thanks to
the digital encoder.
The joint positions have been filtered with a 4th-order
low-pass Butterworth filter in both the forward and
reverse directions to avoid phase distortion. The
corresponding cut-off frequency is 100 Hz.  The joint
velocities and accelerations are calculated using
numerical derivation based on a central difference



algorithm. In fact, low-pass filtering associated with a
difference algorithm provides a pass-band filter to
estimate derivatives at low frequency, which avoid
derivating high frequency noise [13].
     In order to eliminate high frequency torque noises and
ripples from Y, the columns of W and the vector Y are
filtered in a process called parallel filtering, using the
function "decimate" of order 5 from Matlab [13].

5.3 Estimation of the dynamic parameters

     The least squares solution has been applied to relation
(32) in order to estimate the dynamic parameters:
      ˆ +

symK = W Y (33)

     Where +W is the pseudo-inverse of W.
     The standard deviations are estimated considering the
matrix W to be deterministic one, and ρρρρ  to be a zero
mean additive independent noise, with standard deviation

ρρρρσσσσ . The variance-covariance matrix of the estimation
error and standard deviations can be calculated by [13]:

     ( ) 1

ˆ

−
= 2 T

KC W Wρρρρσσσσ (34)

     ˆ ˆKi KiCσ = (35)

     Where ρρρρσσσσ  is obtained by the expression:

     
ˆ

ˆ
3r c

=

2

2
Y - W K

-ρρρρσσσσ (36)

     The relative standard deviation is given by:

     K̂i
K̂ri

i

100
K̂

σ
σ = (37)

     Table 2 gives the estimated base dynamic parameters
and their relative standard deviations:

Table 2: Estimation of the base dynamic parameters

K̂ K̂riσ K̂ K̂riσ
MRP 3.2555 3.4208 Off3 -2.6104 -23.524
Ma1R1 8.9738 0.4971 ZZ2R -2.8560 -31.5797
Fv11 84.7633 0.5559 MX2 -4.6706 -31.0705
Fs11 54.35 0.4534 MY2R -0.0200 -29.4402
Ma1R2 8.843 0.4904 XX3R 1.5458 30.7643
Fv12 67.1047 0.7118 XY3R 0.0127 23.2455
Fs12 80.5591 0.3105 XZ3R 0.0378 14.5685
Ma13 8.7612 0.5125 YZ3R -0.0088 -22.8285
Fv13 83.7167 0.5669 ZZ3R -0.1356 -10.103
Fs13 54.9855 0.4426 MY3R 0.0120 43.8424
Off1 -3.0074 -7.8658 MX4R 4.5554 31.827
Off2 -1.8386 -11.989
Size of W: 65814 x 23
Condition number of W: 4805.57

     A parameter with K̂ri 15σ ≥  is considered to be not
good identified [15], it may have a little effect on the
model and cannot be identified with acceptable accuracy

on the actual trajectory. Taking into account that the
parallelograms links are light and symmetric, and
considering the grouped relations, we find that ZZ2R,
MX2, …, MX4 are close to zero and can be neglected.
Thus, we repeat the identification process with the
following essential parameters (table 3):

Table 3: Estimation of the essential base dynamic
parameters

K̂ K̂ri
σ K̂ K̂ri

σ
MRP 1.5993 1.2601 Ma13 8.6790 0.3487
Ma1R1 8.7002 0.3128 Fv13 83.7047 0.5700
Fv11 84.6695 0.5594 Fs13 54.9723 0.4451
Fs11 54.4006 0.4554 Off1 -2.5644 -4.8819
Ma1R2 8.4992 0.3210 Off2 -0.4616 -27.1756
Fv12 66.888 0.7177 Off3 -10.1975 2.3957
Fs12 80.7283 0.3114
Size of W: 65814 x 13
Condition number of W: 77.69

    We note that the identified values are in accordance
with respect to our knowledge of the system. The
parameters MRP is near the a priori value, which is 1.5 Kg.
The estimation errors of each parameter X̂riσ  are
acceptable (except Off2, which could be neglected). The
condition number of the observation matrix is very good.
We note that the effect of the rotor inertia, viscous friction
and coulomb friction of the motorized joints are important
compared to the effect of the base parameters of the
parallelogram links. The dynamic model corresponding to
the parameters of table 3 is easy to compute on line for
control purpose.

5.4 Validation of the results

    Two main validation procedures have been carried out:
i) The comparison of the estimated torques with respect to
the measured torques on the trajectory that have been
used in the identification, and with some other trajectories
that have been not used in the identification.
ii) The addition of a payload on the platform to observe
the evolution of the mass parameter of the platform MRP.
     All these tests show very good results.

6 Conclusion

     This paper presents the identification of the dynamic
parameters of the Orthoglide, a 3-DOF parallel robot that
moves in the Cartesian space with fixed orientation.  The
dynamic identification model is based on the inverse
dynamic model, which is linear in the parameters. The
model is computed in terms of the Cartesian dynamic
model elements of the legs and of the Newton-Euler
equation of the platform. The base inertial parameters of
the robot, which constitute the minimum number of
inertial parameters, are determined using a numerical



method using the QR decomposition. We proposed to
make use of the similarity of the legs in order to reduce
the number of parameters and to improve the condition
number of the observation matrix. Experimental results
are presented, and the validation is very good. Future
work will concern the use of the identified model to
control the robot using a dynamic control law.
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Appendix : Dynamic model of a leg

     Each leg has a planar parallelogram closed loop. The
inverse dynamic model of the equivalent tree structure is
obtained by cutting the revolute joint q8i (i = 1, 2, 3),
figure 3:
     ( )! !!

i itr tr i i i= H q ,q ,qΓΓΓΓ (38)
     Leg i is isolated from the platform, so we can consider
the variables q1i, q2i and q3i to be independent. In the
complete model of the robot, only q1i is active and the
torques Γ2i and Γ3i are zero.
     Let the vector 

iaq be composed of the independent
joints and the vector 

ipq be composed of the passive joints
of leg i:
     [ ]T

1i 2i 3iq q q=
iaq         [ ]T

4i 5i 7iq q q=
ipq (39)

The constraint equations of the loop are:

     4i 3i 5i 2i 7i 3i 8i 3iq q , q q , q q , q q
2
π= − = − − = = − (40)

     The dynamic model of the leg is obtained from Γ
itr and

the constraint equations by [9]:

     
( )

[ ]T
1i 2i 3i

=

= Γ Γ Γ =
i

i i i i i

T
i i tr

H q ,q ,q

G

ΓΓΓΓ

Γ ΓΓ ΓΓ ΓΓ Γ

! !!
(41)

With:
∂

=
∂

i

i

tr
i

a

q
G

q
 and   i i i

TT T
tr a pq = q q , thus:

     
1 0 0 0 0 0
0 1 0 0 1 0
0 0 1 1 0 1

 
 = − 
 − 

T
iG (42)

     The dynamic model of the tree structure is obtained by
recursive symbolic Newton-Euler method [12].
     Since all the parameters of the 5th and 7th links are
grouped with the other links. Thus the matrix G can be
reduced to the first 4 columns:

     
1 0 0 0
0 1 0 0
0 0 1 1

 
 =  
 − 

T
iG (43)

And:

     
T

 =  i 1i 4itr tr trΓ Γ ΓΓ Γ ΓΓ Γ ΓΓ Γ Γ" (44)
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