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In this article we rigourously prove several asymptotical results for the ow curves of the Hébraud-Lequeux model, a rheological model which describes the behaviour of soft glassy uids. This model has a control parameter α which governs the behaviour of the uid at low shear rate. More precisely, we consider τ ( γ) the stress in a block that is sheared at a constant rate γ and we prove that the system exhibits a transition in its behaviour at low shear rate when α goes through a critical value. The study is complicated by the fact that one of the parameter is only given implicitly and also we have to study two variables function in the neighbourhood of singularities.

Introduction

In this article we are interested in a rheological model for glassy material in simple shear ow conguration. Glassy materials range from suspensions (like bentonite for example) to emulsions or to foams. Among other features, these materials exhibit a transition as a control parameter goes through a critical value. This control is for instance, in the case of suspensions, related to the density of solid particle in the uid.

One model available to describe such material is the Hébraud-Lequeux (HL) model. In Section 2 we rapidly review the model and the physical quantities it involves. We prove in the following that this model exhibits such a transition.

Let us rst give some notations. We note H is the Heaviside function 1 R + and h(σ) = H(|σ| -1) (which is then a function that cuts o σ in [-1, 1]); we also note by δ 0 the Dirac measure. The real constants De and λ are given below while b is a real parameter given by the experimental setting (it can thus vary but we can consider it a known data of the problem). The real constant µ is what we will call in the following the control parameter and, as b, may vary 1 but can always be considered given. Finally let us dene Γ(p) = |σ|>1 p(σ)dσ a quantity sometimes called the uidity. We are then looking for a density of probability p that solves the following equation:

-λb∂ σ p -Deh(σ)p + DeΓ(p)δ 0 (σ) + µDeΓ(p)∂ 2 σ p = 0.

(
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This model thus presents a threshold (set to 1 in nondimensional form) and a relaxation to a zero stress state (described by the Dirac δ 0 ) when the stress σ grows beyond the threshold. The equation is supplemented with the following conditions:

p ∈ H 1 (R), p ≥ 0, R p(σ)dσ = 1. (2) 
Indeed p represents the density of probability to nd a block of material in stress σ. We treat here b as a given independent variable (actually we shall rather use y = λb/De as an independent variable) and keep it unconstrained. The variable b is the nondimensional version of the shear rate γ.

We state in Section 3 the main results of this paper whose Section 4, Section 5 and Section 6 serve as proof. In Section 4 we solve the dierential equation [START_REF] Ben | Probabilistic approximation of a nonlinear parabolic equation occurring in rheology[END_REF] with conditions (2) that we see as a coupled system of a linear dierential equation and a nonlinear implicit equation

0 = -λb∂ σ p -Deh(σ)p + DeΓδ 0 (σ) + µDeΓ∂ 2 σ p (3) 
Γ = Γ(p). (4) 
But what we are really interested in is the total stress in the material τ = σpdσ as a function of γ and, in particular, its behaviour at low shear that is to say when the shear rate γ tends to 0. In order to obtain such behaviour we need to obtain rst the behaviour as y tends to 0 of the uidity which is only given implicitly by [START_REF] Cancès | Convergence to equilibrium of a multiscale model for suspensions[END_REF] in Section 4.3. This behaviour depends on µ, as we shall see in Section 5. We then turn to the main result of this paper, the asymptotic behaviour of τ in Section 6. Those two sections are fairly dierent since in 5 we try to compute the asymptotic of an implicitly dened function whereas in 6 we want to know if we can use this asymptotic to nd the behaviour of a two variables function τ alongside a curve. [START_REF] Cancès | Mathematical analysis of a nonlinear parabolic equation arising in the modelling of non-Newtonian ows[END_REF] Hébraud-Lequeux Model

In this section we rapidly describe the rheological model that we use afterwards.

To study a material at a continuous level we have to give a constitutive equation that links the stress with the deformation rate. For newtonian uids this relation is simply expressing a linear relation between the stress and the deformation rate. For non newtonian (or complex) uids there exists a wide variety of nonlinear laws. For example we have Bingham uids or more generally Herschel-Bulkley uids.

For the Hébraud-Lequeux (HL) model we go down to the mesoscopic scale, a scale where we can still consider the material continuous but where we can describe some heterogeneities in the material. The principle of this model is that a block of material at a mesoscopic level is not in a single stress state anymore but is described by a density of probability p over the stress space. In a way, the block carries all possible stresses with a coecient described by the density of probability p. The Hébraud-Lequeux equation describes the evolution of this density p over time. In the following equation, G 0 and T 0 are physical constants, γ is the shear rate, and σ c is the relaxation threshold. We note Γ(q) = 1 T0 H(|σ| -σ c )q(σ)dσ and D = αΓ for a physical constant α. We then have

   ∂ t p = -G 0 γ∂ σ p + D(p)∂ 2 σ p - 1 T 0 H(|σ| -σ c )p + Γ(p(t))δ 0 (σ), p(0, σ) = p 0 (σ). (5) 
The solution must also verify the following conditions:

p ∈ L 2 t (H 1 σ (R)) and ∀t p(t, .) ≥ 0, R p(t, σ)dσ = 1. (6) 
The quantity of interest for the physicist is the total stress or macroscopic stress since it is the one that can actually be measured in a rheometer ( [7] for example). In the case of the HL model, the total stress τ at time t is linked to the density of probability p(t, .) via the formula τ (p(t)) = σ∈R σp(t, σ)dσ.

We refer to Hébraud and Lequeux in [START_REF] Hébraud | Mode-coupling theory for the pasty rheology of soft glassy materials[END_REF] for details on the physical interpretation of this equation. What is important to note for this paper, is that the control parameter in the system is α and the critical value at which the transition takes place is σ 2 c /2. This equation has been studied from a mathematical point of view by É. Cancès, I. Catto and Y. Gati in [START_REF] Cancès | Mathematical analysis of a nonlinear parabolic equation arising in the modelling of non-Newtonian ows[END_REF]. They have addressed the question of wellposedness of ( 5)- [START_REF] Hébraud | Mode-coupling theory for the pasty rheology of soft glassy materials[END_REF]. For other mathematical studies on the time-dependent HL model we refer to the work of É. Cancès, I. Catto, Y. Gati and C. Le Bris in [START_REF] Cancès | Wellposedness of a multiscale model for concentrated suspensions[END_REF] for the study of a micro-macro coupling of a Hébraud-Lequeux equation with a macroscopic velocity eld which aims at describing the ow of a material in a Couette cell. These studies rely upon PDE methods. Another approach is a probabilistic approach via the theory of stochastic processes and martingales for which we refer to the work of M. Ben Alaya and B. Jourdain in [START_REF] Ben | Probabilistic approximation of a nonlinear parabolic equation occurring in rheology[END_REF].

É. Cancès et al. also looked at the stationary solutions of the equation, proving existence by giving the solution and its form (8) and stating uniqueness via the growth of a function. Since the uniqueness part was not so clear to us and because we work with dierent notations (some of the nondimensional constants that appear here where set to 1 in their paper) we give a proof of uniqueness in appendix A. The stationary solution solves an ODE in σ which we obtain by formally removing the term ∂ t p in [START_REF] Gati | Analyse mathématique et simulations numériques d'un modèle de uides complexes[END_REF]. This is the starting point of our study. We shall actually work on the nondimensional version (1) which we give again below for convenience.

What we study in the following are the ow curves given by the model, that is to say the relation between a given shear rate γ and the corresponding macroscopic stress which is τ (p) with p the stationary solution corresponding to γ. The transition we observe is in the behaviour as γ → 0 of the ow curve.

Let us now explain how we obtain the nondimensional system (1) we use in the rest of this work. We take the same notations as Y. Gati in her PHD thesis [START_REF] Gati | Analyse mathématique et simulations numériques d'un modèle de uides complexes[END_REF]. We have to choose a time scale T which is the duration of the physical experimentation (thus the material may not have the same properties if you observe it for a long or a short time); the stress scale is given by σ c then all of the quantities appearing in (5) become:

t = t/T, σ = σ/σ c , b = T γ and p (t , σ ) = σ c p(T t , σ c σ ), Γ (p (t )) = |σ |>1 p (t , σ )dσ = T 0 Γ(p(T t )).
and the following nondimensional constants appear in the system

De =T /T 0 µ =α/σ 2 c λ =G 0 /σ c (7) 
We nd here De the so-called Deborah number.

Then the nondimensional stationary Hébraud-Lequeux equation we have obtained is (we have dropped the primes for the sake of clarity):

-λb∂ σ p -Deh(σ)p + DeΓ(p)δ 0 (σ) + µDeΓ(p)∂ 2 σ p = 0.
The conditions on p read the same as in the time-dependent case, namely:

p ∈ H 1 (R), p ≥ 0, R p(σ)dσ = 1.
A related topic to the study of stationary solutions of the HL model is the question of long-time behaviour of the solution to the time-dependent equation. This has been addressed in some cases by É. Cancès and C. Le Bris in [START_REF] Cancès | Convergence to equilibrium of a multiscale model for suspensions[END_REF] by an entropy-decay method.

Presentation of the Main Results

For the sake of self-containment, before we state the main result of this paper we give again the existence and uniqueness theorem we rely upon:

Proposition 1. For all given b > 0 there exists a unique solution p(b) to equation [START_REF] Ben | Probabilistic approximation of a nonlinear parabolic equation occurring in rheology[END_REF] with conditions (2).

This proposition is stated in more detail (with the actual form of p(b)) and proved in Section 4 (See also Appendix A for details on the uniqueness part which requires a special care). As a byproduct of the proof of this theorem we have that there exists a function φ µ such that Γ(p(b)) = |σ|>1 p(b, σ)dσ = φ µ (λb/De)/µ with the following behaviour: Corollary 1. For every µ there exists a non negative constant c(µ) such that, as y decreases to 0, we have: These behaviours can be seen on Figure 1. The denition of c(µ) in each case is given alongside the proof of this corollary in Section 5. We can now state (in physical variables) the main result of this paper: Theorem 1. We note η c = G 0 T 0 . Let p( γ, σ) be the unique solution given by Proposition 1 at shear rate γ. Then we have the following behaviours for the function τ ( γ) = σ∈R σp( γ, σ)dσ at γ → 0:

if µ > 1/2, φ µ (y) → c(µ), if µ < 1/2, φ µ (y) ∼ c(µ)y, if µ = 1/2, φ 1/2 (y) ∼ c(1/2)y 4/5 .
If α > σ 2
c /2 the uid behaves like a newtonian uid with an apparent viscosity η(α/σ 2 c ). Let us rst dene η * (µ) via the formula

η * (µ) = 1 + 3µ -1 + 1/2(4µ -1) 3/2 24µ(µ -1/2) 2
We then have

τ ( γ) ∼ η(α/σ 2 c ) γ
where the apparent viscosity η is given by η

(α/σ 2 c ) = η * (α/σ 2 c )η c . If α < σ 2
c /2 the uid presents a stress threshold τ 0 . We rst dene c to be the unique positive root of the following equation:

c(cosh(1/c) -1) sinh(1/c) = α σ 2 c
and τ * by the formula

τ * = α 2σ 2 c -1 c.
We the have

τ ( γ) → τ 0 (α/σ 2 c )
with τ 0 given by τ This theorem is important because it describes a transition that is one of the characteristic features of glassy materials. Figure 2 shows the dierent kind of behaviour one may nd. These asymptotic results can be found without proof in Hébraud's PHD thesis and subsequently on several other Physics paper. But this is actually the rst time that a mathematical proof of this theorem is given. We were also able to give the numerical constants in the asymptotic for all µ whereas only the cases µ → 1/2 had been given. The following corollary might be useful too:

0 (α/σ 2 c ) = τ * (α/σ 2 c )σ c .
Corollary 2. When µ = α/σ 2 c is close to 1/2 we have: if µ > 1/2, η * (µ) ∼ 1 12 (µ -1 2 ) -2 if µ < 1/2, τ * (µ) ∼ 1 √ 6 ( 1 2 -µ) 1/2 4

Construction of the Solution

In this section we want to prove the following proposition (which is only a more detailed restatement of Proposition 1):

(2) which is of the form:

p(σ, b) =          α + exp(β + (σ + 1)) if σ ≤ -1 α + (1 -ρβ + + ρβ + exp((σ + 1)/ρ)) if -1 < σ ≤ 0 α -(1 -ρβ -+ ρβ -exp((σ -1)/ρ)) if 0 < σ ≤ 1 α -exp(β -(σ -1)) if 1 < σ (8)
where α + and α -depend on b and a variable Γ. There also exists a function g such that we have g(µΓ, λb/De) = µ (we give it in section 4.3). Actually we have Γ = Γ(p). Moreover, since ∂ x g(x, y) > 0 for all x and y non negative then there exists a function φ µ globally dened that gives Γ = φ µ (λb/De)/µ.

The constants ρ, β + , β -will be dened in the following in terms of the physical constants.

To prove this proposition we will in fact, only expand the computations of [START_REF] Cancès | Mathematical analysis of a nonlinear parabolic equation arising in the modelling of non-Newtonian ows[END_REF], in our own framework (mainly we have dierent notations) only for the sake of self-containment. The idea is pretty simple. First of all, the nonlinear differential equation is decoupled as a linear dierential equation and a nonlinear consistency equation. If not for the Dirac measure (which is zero almost everywhere anyway) the linear dierential equation could be easily solved by means of the characteristic polynomial of the equation. We thus treat here the Dirac as zero and solve the equation on R * . This will leave us three degree of freedom (but one will be taken care of by the consistency equation) and we x the other two by imposing the constraint on regularity and integral. Finally we verify that the function we construct is a solution to the initial problem.

We work under the assumption that b is non negative. The equation ( 1) is nonlinear because of the coecient Γ(p). To alleviate this diculty we simply rewrite (1) as ( 3)-( 4)

-λb∂ σ p -Deh(σ)p + DeΓδ 0 (σ) + µDeΓ∂ 2 σ p = 0 Γ = Γ(p)
To proceed further we attack the rst equation considering that Γ is a given non negative constant and we afterwards x Γ using the second equation of the above system. We solve (3) rst in D (R * ) which amounts to say that we turn the Dirac to 0 namely we are looking at the equation:

0 = -λb∂ σ p -Deh(σ)p + µDeΓ∂ 2 σ p on R * . It can easily be solved on each open interval ] -∞, -1[,] -1, 0[,]0, 1[ and ]1, ∞[
and since the equation is of order two on each interval, we have two degrees of freedom to tune the solution on each interval. On the unbounded interval we set one of the constant to 0 in order to suppress an exponential growth that would prevent the solution from being in L 1 . Next we x the constant on the other interval by enforcing C 1 regularity at -1 and 1. Now one could wonder why C 1 while we are looking for solution in H 1 (R) which are merely continuous on the real line. It is because if there were jumps in the derivative of p at -1 or 1, this would induce Dirac measures at these points in the second order derivative and we have nothing in the equation that would compensate these Dirac measures.

Expression of the Solution of (3). The functions p which solve (3) in the sense of distribution on R * and which are in C 1 (R * ) and verify

R * p 2 + R * (∂ σ p) 2 < ∞
are given by the following formulae:

p(σ) =          α + exp(β + (σ + 1)) if σ ≤ -1 α + (1 -ρβ + + ρβ + exp( 1 ρ (σ + 1))) if -1 < σ ≤ 0 α -(1 -ρβ -+ ρβ -exp( 1 ρ (σ -1))) if 0 < σ ≤ 1 α -exp(β -(σ -1)) if 1 < σ (9) 
where β + , β -are the roots (respectively non negative and non positive) of the equation

µDeΓX 2 -λbX -De = 0 ( 10 
)
and ρ is µDeΓ/(λb) = 1/(β + + β -). By the denition of β ± and ρ we remark that we have:

1 -ρβ± = ρβ ∓ . (11) 
The degrees of freedom are now α + and α -.

Determination of the α ± used in (8). To x α + and α -we impose continuity at σ = 0 (because as we said, we are interested in solutions in H 1 (R) thus continuous) and p = 1. These two conditions give us the following system on α + ,α -:

               0 = 1 -ρβ + + ρβ + e 1/ρ α + -1 -ρβ -+ ρβ -e -1/ρ α - 1 = 1 β + + (1 -ρβ + ) + ρ 2 β + e 1/ρ -1 α + + -1 β - + (1 -ρβ -) + ρ 2 β -1 -e -1/ρ α - (12) 
Existence of α ± . Provided that the determinant of this system is not zero we have xed a unique couple (α + , α -). Let us check that this is the case by computing this determinant:

∆ =2 -ρ 2 β + β -cosh 1 ρ -1 + cosh 1 ρ + - 1 ρβ + β - + 3ρ sinh 1 ρ + (β + -β -) ρ 2 cosh 1 ρ -1 + ρ sinh 1 ρ - 1 β + β - cosh 1 ρ . (13) 
We see that in fact ∆ > 0 (remember that β + > 0, β -< 0 and since b > 0, 1/ρ > 0).

Positivity of α ± . At this point let us also check that α ± > 0. We have by Cramer's rule for linear systems:

∆α + = 1 -ρβ -+ ρβ -e -1/ρ and ∆α -= 1 -ρβ + + ρβ + e 1/ρ . ( 14 
)
Using Remark (11), we have 1 -ρβ -+ ρβ -e -1/ρ equal to ρ(β + + β -e -1/ρ ). But since β -< 0 and ρ > 0 we have e -1/ρ < 1 and β -e -1/ρ > β -and thus β + + β -e -1/ρ > β + + β -> 0. Consequently, α + > 0 and the same holds true for α -. Returning to equation (8) we see that the positivity of α ± gives the positivity of the function p on ] -∞, -1[ and ]1, +∞[. But since α + , β + and ρ are non negative, it turns out that p is increasing on the interval ] -1, 0[ and since its value at -1 is by construction α + > 0, p remains non negative on ] -1, 0[. Again the same holds true on ]0, 1[. Note that from (13)-( 14), α ± depend on ρ and β ± which in turn depend on b and Γ.

4.2

Solving the nonlinear problem ( 3)-( 4)

Fixing Γ using (4). Let us sum up what we have obtained so far. We have now a function p which lies in H 1 (R) that solve (3) in the space D (R * ) that is to say in the sense of distribution but with test functions identically zero in a neighbourhood of zero. We also have that p > 0 and p = 1, the second constraint being exactly the second equation of system (12) and we have so, for every non negative Γ. We now adjust Γ, so that ( 4) is satised. To do this we integrate p for |σ| > 1 using (8). In terms of α ± , (4) amounts to:

α + β + - α - β - = Γ. ( 15 
)
This is a nonlinear implicit equation on Γ because as we mentionned before α ± and β ± depend on Γ. Let us admit for the moment that this equation has a unique solution which means that as long as we give a non negative b we can nd a unique non negative Γ that satises (15). Let us see now that we have found a solution to [START_REF] Ben | Probabilistic approximation of a nonlinear parabolic equation occurring in rheology[END_REF].

Proof that p solves [START_REF] Ben | Probabilistic approximation of a nonlinear parabolic equation occurring in rheology[END_REF] in D (R). We now show that p veries in fact (1) on the whole real line. We note that p is continous on the real line and dierentiable except at σ = 0. Its derivative in D (R) is thus its derivative almost everywhere. The derivative ∂ σ p being continous except at σ = 0 and dierentiable except at σ ∈ {0, -1, 1} its derivative is its derivative almost everywhere plus the jump at 0, [∂ σ p] 0 δ 0 (σ). Since p veries (1) almost everywhere, it is only left to show that:

-µDeΓ[∂ σ p] 0 + DeΓ = µDeΓ(α -β -e -1/ρ -α + β + e 1/ρ ) + DeΓ = 0 which becomes α + β + e 1/ρ -α -β -e -1/ρ = 1/µ. ( 16 
)
We multiply (16) by ∆ and use (14) to obtain:

β + e 1/ρ (1 -ρβ -+ ρβ -e -1/ρ ) -β -e -1/ρ (1 -ρβ + + ρβ + e 1/ρ ) = ∆/µ
which is equivalent to

β + e 1/ρ (1 -ρβ -) -β -e -1/ρ (1 -ρβ + ) = ∆/µ
and then to ρ(β 2 + e 1/ρ -β 2 -e -1/ρ ) = ∆/µ. That's what we want to prove.

We now use (15) to obtain:

α + β + - α - β - = Γ ⇔ α + β --α -β + = Γβ + β -.
Recalling that β ± are roots of equation ( 10), we have β + β -= -1/µΓ and therefore α + β --α -β + = -1/µ. We multiply by -∆ this equality and use ( 14) to obtain:

∆ µ = β + (∆α -) -β -(∆α + ) = β + (1 -ρβ + + ρβ + e 1/ρ ) -β -(1 -ρβ -+ ρβ -e -1/ρ ) = β + (ρβ -+ ρβ + e 1/ρ ) -β -(ρβ + + ρβ -e -1/ρ ) = ρ(β 2 + e 1/ρ -β 2 -e -1/ρ ).
The jump condition is thus veried. We can see in fact that ( 16) is equivalent to (15). Thus the only solution in D(R) of ( 3) are in fact solutions of (1). This is not that surprising since if one integrates equation (3) over the real line you obtain a priori that Γ = Γ(p).

What is left now is to understand how we can use (15) to x Γ and be sure that, as we claimed, there exists a unique Γ that ts the consistency equation.

Implicit relations that link Γ and b

To obtain an explicit function that gives implicitly Γ we just have to use (15) and use the value of α ± given by ( 13) and ( 14) . It is easier to use new variables dened by x = µΓ and y = λb/De. Actually x is the nondimensional diusion coecient in stress space while y = γ/ γc with γc = G 0 T 0 /σ c the critical shear rate in the system. Let us begin by rewriting ∆ with these variables:

∆(x, y) = 2x y 2 cosh y x -1 + cosh y x + 3x y + y sinh y x + y x 2 + 4 x 1/2
x y

2 cosh y x -1 + x y sinh y x + x cosh y x . (17) 
Now using the consistency equation (15) we nd that

∆Γ =(2ρ -1/(ρβ + β -)) sinh(1/ρ) -(β + -β -)/(β + β -) cosh(1/ρ)
which we write in the (x,y) variables using the actual values of β ± in terms of the coecient of (10)

1 µ ∆(x, y)x = x y x 2 + 4 x 1/2 cosh y x + 2 x y + y sinh y x . ( 18 
)
We now have the desired implicit function linking Γ and b:

f µ (x, y) = 1 µ 2x 2 y 2 cosh y x -1 + x cosh y x + 3x 2 y + xy sinh y x + y 2 + 4x x 2 y 2 cosh y x -1 + x y sinh y x + x cosh y x -y 2 + 4x cosh y x - 2x y + y sinh y x . (19) 
and we want f µ (x, y) = 0. Interestingly enough, this function depends on the nondimensional control parameter. On the open quarter plane{x > 0, y > 0} , f µ (x, y) = 0 is equivalent to g(x, y) = µ with: It is easy to check that for a given y > 0 the function x → g(x, y) tends to 0 as x tends to 0 and tends to innity as x tends to innity. Since it is obviously continuous, this guarantees that there exists at least one Γ that solves the consistency equation and we have at least one solution to our problem. In fact we can show that ∂ x g(x, y) > 0 for all x and y non negative. This gives us at the same time the uniqueness we claimed and the regularity of the function giving x in terms of y. We now introduce φ µ the implicit function satisfying

g(x, y) = 2x 2 y 2 cosh y x -1 + x cosh y x + 3x 2 y +
∀y > 0 ∀µ > 0 f µ (x, y) = 0 ⇔ g(x, y) = µ ⇔ x = φ µ (y).
We refer to Appendix A for some details on the computations that are needed to show ∂ x g(x, y) > 0.

5 Asymptotic Behaviour of φ µ (y) at y → 0

As we have seen, it is easier to think of the solution to (1) as depending of two parameters x and y and when looking for y dependent behaviour to remember that x and y are linked via x = φ µ (y). Before we can turn to the main point of

F µ (X, Y ) =(f µ • T -1 )(X, Y ) = 1 µ 2(cosh(Y ) -1) Y 2 + X cosh(Y ) + (3 X Y + X 2 Y ) sinh(Y ) -( 2 Y + Y X) sinh(Y ) + Y 2 X 2 + 4X× 1 µ cosh(Y ) -1 Y 2 + sinh(Y ) Y + X cosh(Y ) -cosh(Y ) .
Let us note that this function does not have a singularity at Y = 0. In the µ < 1/2 case we wish to show that (X, Y ) = T (φ µ (y), y) tends to (0, 1/c(µ)) with c(µ) > 0 and in the µ = 1/2 case we wish to show that (X, Y ) tends to (0, 0). We thus need to study F µ in a neighborhood of the axis X = 0. Indeed, F µ can be continuously continued at {X = 0}. However, due to the square root, the derivatives of F µ tends to +∞ as X tends to 0. It is, thus, not possible to continue F µ with a C 1 regularity on a neighbourhood of the axis {X = 0} and we will not be able to apply the implicit function theorem directly on F µ as we did on f µ for µ > 1/2.

We remark that if we note

A µ (X, Y ) = 1 µ 2(cosh(Y ) -1) Y 2 + X cosh(Y ) + (3 X Y + X 2 Y ) sinh(Y ) -( 2 Y + Y X) sinh(Y ) B(X, Y ) =Y 2 X 2 + 4X C µ (X, Y ) = 1 µ cosh(Y ) -1 Y 2 + sinh(Y ) Y + X cosh(Y ) -cosh(Y )
F µ is in reality of the form

F µ (X, Y ) = A µ (X, Y ) + B(X, Y )C µ (X, Y ).
We want to remove the square root to remove the problem of the continuity of the derivative. We thus introduce the function

G µ dened by G µ (X, Y ) = A µ (X, Y ) 2 -B(X, Y )C µ (X, Y ) 2 . The relation F µ (X, Y ) = 0 clearly implies G µ (X, Y ) = 0.
But we are interested in the reverse implication and pay attention to the signs of the terms in the equation. We have in fact that F µ (X, Y ) = 0 is equivalent to: 

F µ (X, Y ) = 0 ⇔ G µ (X, Y ) = 0.
The curves are dened on the whole plane even if only the part X > 0 is physically relevant.

B(X, Y )

= 0 A µ (X, Y ) = 0 or      B(X, Y ) > 0 A µ (X, Y ) = 0 C µ (X, Y ) = 0 or      B(X, Y ) > 0 A µ (X, Y )C µ (X, Y ) < 0 A µ (X, Y ) 2 -B(X, Y )C µ (X, Y ) 2 = 0 (21)
We have plotted on Figures 3 and4 the curves {A µ = 0}, {B = 0} and {C µ = 0} along with the parts of the (X, Y ) plane where we have equivalence between the relations F µ = 0 and G µ = 0. Finally, let us note that G µ is analytic in the whole plane (X, Y ).

5.3

The case µ < 1/2

In this case, we are interested in the points (0, 1/c), for which B vanishes. Consequently, G µ vanishes at (0, 1/c) if, and only if F µ vanishes and if, and only if, A µ vanishes. We have:

A µ (0, 1/c) = 2c 2 (cosh( 1 c ) -1) µ -2c sinh 1 c
The function χ : c → c(cosh(1/c) -1)/ sinh(1/c) is strictly increasing, tends to 0 when c tends to 0 and tends to 1/2 when c tends to +∞. Then for all µ < 1/2, there exists a unique c(µ) > 0, such that A µ (0, 1/c) = 0. We remark that we have the following property:

∂G µ (X, Y ) = 2A(X, Y )∂A(X, Y ) -∂B(X, Y )C(X, Y ) 2 -2B(X, Y )C(X, Y )∂C(X, Y ).
where ∂ denotes a derivative with respect to either

X or Y Now B(X, Y ) = Y 2 X 2 + 4X so we have ∂ X B(0, 1/c(µ)) = 4. Consequently, ∂ X G(0, 1/c(µ)) is equal to -4C(0, 1/c(µ)) 2 which is not zero (on the contrary, ∂ Y G(0, 1/c(µ)) is clearly zero) because we can check that C µ (0, 1/c(µ)) = c 2 sinh(1/c) + c > 0. We then have ψ a smooth function (at least C ∞ ) such that ψ(1/c(µ)) = 0 and G µ (ψ(Y ), Y ) = 0 for Y in a neighbourhood of 1/c(µ). Moreover we have ∂ Y ψ(1/c(µ)) = 0 because ∂ Y G(0, 1/c(µ)) = 0.
We now have to check if the part Y = 0 of the curve Y → (ψ(Y ), Y ), is really the curve F µ (X, Y ) = 0 so we have to check the signs of A µ (ψ(Y ), Y ), B(ψ(Y ), Y ) and C µ (ψ(Y ), Y ) and verify if we are in one of the cases of Equivalence (21). We show that we are in the third case.

We said that we have C µ (0, 1/c(µ)) > 0. Then by continuity, for Y not too far from 1/c(µ), C µ (ψ(Y ), Y ) is non negative. We now check the sign of Y → B(ψ(Y ), Y ). At 1/c(µ) this function is zero and one can check that its rst derivative also vanishes. Its second derivative however is 4ψ ( 1

/c(µ)) = ∂ Y A µ (0, 1/c(µ)) 2 /(2C µ (0, 1/c(µ)) 2 ).
On the other hand Y → A µ (ψ(Y ), Y ) vanishes at 1/c(µ) and its rst derivative is ∂ Y A µ (0, 1/c(µ)). We are then going to show that ∂ Y A µ (0, 1/c(µ)) < 0, which will allow us to conclude that for Y > 1/c(µ), A µ (ψ(Y ), Y ) < 0, C µ (ψ(Y ), Y ) > 0 and B(ψ(Y ), Y ) > 0 and that F µ (ψ(Y ), Y ) = 0. We note c instead of c(µ) for the sake of simplicity. We now compute ∂ Y A µ (0, 1/c(µ)):

∂ Y A µ (0, 1/c)) = 2 µ (c 2 sinh(1/c) -2c 3 (cosh(1/c) -1)) -2(c cosh(1/c) -c 2 sinh(1/c)) = 2c 2 µ sinh(1/c) -2c cosh(1/c) - 2c 3 µ (cosh(1/c) -1) because (2c 3 (cosh(1/c) -1))/µ -2c 2 sinh (1/c) = 0 by denition of c(µ).
Let us now consider the function

α : t → 2t 2 sinh(1/t) 2 t(cosh(1/t) -1) -2t cosh(1/t) we have that α(c(µ)) -2c 3 µ (cosh(1/c) -1) = ∂ Y A µ (0, 1/c) and that α(t) = -2t. We can thus conclude that ∂ Y A µ (0, 1/c) < 0. The relation F µ (ψ(Y ), Y ) = 0 leads to f µ (ψ(Y ), Y ψ(Y ))
= 0 and the uniqueness property we have for φ µ allows us to write ψ(Y ) = φ µ (Y ψ(Y )), for all Y > 1/c(µ). By letting Y going to 1/c(µ) we see that we must have φ µ (y) → 0 as y → 0. In the same manner we have

φµ(Y ψ(Y )) Y ψ(Y ) = 1
Y from which we can conclude that φ µ (y)/y → c(µ). We have then shown that φ µ (y) ∼ c(µ)y The curve G 1/2 (X, Y ) = 0 needs to start at (0, 0) and we see that the behaviour of A and C at this point impose a stronger order of annulation for ψ in a neighbourhood of y = 0 for µ < 1/2. In this case we pose φ app µ (y) = c(µ)y. As in the case µ > 1/2 we look for more information on the expansion of φ µ (y). We use the relation φ µ (y) = ψ(y/φ µ (y)) and use that 2 . We can conclude after some computation that

ψ(Y ) = 1/2ψ (1/c)(Y -1/c) 2 + o(Y -1/c)
|φ µ (y) -φ app µ (y)| ∼ c 5 /ψ (1/c)y 3/2 (22) 
as y goes to 0. Interestingly enough, we do not have a second term of the expansion since we do not know the sign of the dierence.

5.4

The case µ = 1/2

We can treat the case µ = 1/2 in the same way that we did for µ < 1/2 by studying the function G 1/2 . Firstly we notice that G 1/2 (0, 0) = 0. What's more we have ∂ X G 1/2 (0, 0) = -16 which allows us to use the implicit function theorem (only in this case it is simpler since we do not have constants that depend on µ). We still note ψ the function depending on Y such that ψ(0) = 0 and we have in the vicinity of (0, 0), G 1/2 (X, Y ) = 0 ⇔ X = ψ(Y ). We now check by implicit dierentiation that the rst three derivative of ψ at 0 vanish and that ψ (4) (0) = 1/24. Consequently ψ is positive in a neighbourhood of Y = 0. We have C 1/2 (0, 0) = 2 which gives us the sign of C 1/2 (ψ(Y ), Y ) for small Y and we next have to check the signs of B(ψ(Y ), Y ) and A(ψ(Y ), Y ).

We check that Y → B(ψ(Y ), Y ) has its derivatives at Y = 0 equal to zero up to order 3 included and that its fourth derivative is non negative at Y = 0. Thus B(ψ(Y ), Y ) is non negative for small Y . On the other hand, the rst derivative of Y → A 1/2 (ψ(Y ), Y ) vanishes at Y = 0 and its second derivative is -1/3. We thus have that A 1/2 (ψ(Y ), Y ) is negative for small Y . We can now conclude that F 1/2 (ψ(Y ), Y ) = 0 for Y in a neighbourhood of 0. We have again that, φ 1/2 (Y ψ(Y )) = ψ(Y ) for all Y small enough. We conclude in the same manner that φ 1/2 (y) tends to 0 at y = 0. Moreover, since we have ψ(Y ) ∼ c 0 Y 4 with c 0 = 1/24 2 , we have that φ 1/2 (y)/y 4/5 tends to c(1/2) = c 1/5 0 when y decreases to 0. We pose φ app 1/2 (y) = c(1/2)y 4/5 We now check that ψ (5) (0) = 0 and ψ (6) 

(0) = 0 from what we can conclude that φ 1/2 (y) -φ app 1/2 (y) ∼ c 1 y 6/5 (23) 6 
Transition on τ the Macroscopic Stress

Our aim is to show that there is a transition at µ = 1/2 for the total stress. The path is now straightforward: we rst compute the total stress by integrating p against σ then we try to nd the behaviour of the total stress as a function of y when y decreases to 0 using our previous results. However some care should be taken as to why the behaviour is correct.

6.1

The stress τ as a function of x and y

We rst note that if we multiply (1) by σ and integrate over the real line we nd that, |σ|>1 σp(σ)dσ = λb/De = y (this can be checked by direct computation on the form of p given by (8) but it is longer). We only have to compute |σ|≤1 σp(σ)dσ and thanks to (8) we nd that:

τ = λb De + 1 2 (-α + (1 -ρβ + ) + α -(1 -ρβ -)) + ρ 2 α + β + 1 -ρ(e 1/ρ -1) + ρ 2 α -β -1 -ρ(1 -e -1/ρ ) = I 1 + I 2 + I 3 + I 4 (24) 
This formula can be simplied using the denition of ρ, β + and β -and the system (12) dening α + and α -:

2I 2 = -α + (1 -ρβ + ) + α -(1 -ρβ -) = ρ(-α + β -+ α -β + ) using (11) = ρβ + β - α - β - - α + β + = ρ 1 µ(-Γ)
(-Γ) using ( 10) and (15)

= ρ µ (25) 
and

I 3 + I 4 = ρ 2 α + β + 1 -ρ(e 1/ρ -1) + ρ 2 α -β -1 -ρ(1 -e -1/ρ ) = ρ 2 (α + β + + α -β -) + ρ 3 (α + β + -α -β -) -ρ 3 α + β + e 1/ρ -α -β -e -1/ρ = J 1 + J 2 + J 3 (26) 
Using ( 16) we have α + β + e 1/ρ -α -β -e -1/ρ = 1/µ and thus

J 3 = -ρ 3 /µ (27) 
For J 1 and J 2 we use the values of α + and α -given by ( 14). We thus multiply J 1 by ∆ (given by ( 13)) to obtain:

∆J 1 ρ 2 = (∆α + )β + + (∆α -)β - = (ρβ + + ρβ -e -1/ρ )β + + (ρβ -+ ρβ + e 1/ρ )β - = ρ(β 2 + + β 2 -) + ρβ + β -(e 1/ρ + e -1/ρ ) = ρ(β + + β -) 2 -2ρβ + β -+ 2ρβ + β -cosh(1/ρ) = 1 ρ + 2ρβ + β -(cosh(1/ρ) -1) (28) 
because by dention of β ± and ρ, we have β + + β -= 1/ρ. Now we turn to J 2

∆J 2 ρ 3 = (∆α + )β + -(∆α -)β - = (ρβ + + ρβ -e -1/ρ )β + -(ρβ -+ ρβ + e 1/ρ )β - = ρ(β 2 + -β 2 -) -ρβ + β -(e 1/ρ -e -1/ρ ) = β + -β --2ρβ + β -sinh(1/ρ) (29)
Let us emphasize that we use Cramer's rule and equation ( 14). That means that ∆ in these expressions is the determinant of system (12) and given by equation (13). In the end, using (24) to (29) we have:

τ = λb De + ρ 2µ - ρ 3 µ + ρ 2 ∆ 1 ρ + 2ρβ + β -(cosh(1/ρ) -1) + ρ 3 ∆ (β + -β --2ρβ + β -sinh(1/ρ)) (30) 
Recall that we dened in Section 4.3 the variables x = µΓ = and y = λb/De and that by (10) we have β + β -= -1/x. Also we have ρ = x/y. We now rewrite this equality in the (x, y) variables.

τ (x, y) =y + x 2µy - x 3 µy 3 + x 2 y 3 ∆(x, y) y 2 x -2(cosh y x -1) + x 3 y 4 ∆(x, y) y y x 2 + 4 x 1/2 + 2 sinh y x (31) 6.2 
Asymptotical behaviour of τ (φ(y), y)

From the previous paragraph we are now able to compute the macroscopic stress τ attached to a given shear rate y. Theoretically, we just have to compute the corresponding x by x = φ µ (y) and then to compute the value of τ (φ µ (y), y) using (31). Now what we are really interested in is the behaviour of the one variable function y → τ (φ µ (y), y) at y = 0. Yet we do not know φ µ since it is only given implicitly by (18). However we do know the behaviour of φ µ at y = 0 given by the explicit function φ app µ that we computed in Section 5. Our hope is to draw from the behaviour of τ (φ app µ (y), y) at y = 0, the behaviour of τ (φ µ (y), y). By behaviour we mean that we want to nd the rst non zero term of the expansion of τ (φ µ (y), y).

Theoretical inequality. We rst look at the kind of inequality we are going to use. Let us forget for a moment the origin of our problem and say we are given a smooth two variable function τ that we want to study alongside a curve given by (φ(y), y). Assume φ app (y) is equivalent to φ(y). By using Taylor's formula with integral remainder on τ we get the following inequality. τ (φ(y), y) τ (φ app (y), y) -1 = τ (φ(y), y) -τ (φ app (y), y) τ (φ app (y), y) ≤ φ(y) -φ app (y) τ (φ app (y), y)

1 0 |∂ x τ (sφ(y) + (1 -s)φ app (y), y)|ds (32) 
When we see this inequality we see that we need the behaviour of |φ(y)-φ app (y)|.

Actually we need it for two reasons. Firstly we need the precise behaviour of | φ(y) -φ app (y) τ (φ app (y), y) |. Secondly if we hope to control the integral we need to have an estimation of the position of the segment [(φ(y), y), (φ app (y), y)] in the (x, y) plane which is given by a second term in the expansion of φ.

What we wanted to point out by this little study is that there is absolutely no guarantee that the behaviour of τ (φ(y), y) is given by τ (φ app (y), y) beforehand. We have to prove that the right hand side of (32) tends to 0 which is not obvious at all and can be false even if φ(y) ∼ φ app (y).

The problem with τ given by (31) and the introduction of τ . We now want to apply (32) to τ given by (31). As a matter of fact if we use ( 17) and (31) on the curve (φ app µ (y), y) as we planned, we fail to recover the correct behaviour for τ (φ µ (y), y) except for µ < 1/2. We can in fact compute that in case µ = 1/2,

The case µ = 1/2. What has been said should make us worry over the µ = 1/2 case. Indeed in this case, by looking back at Proposition 4, we see that we need a divergence of the integral that is strictly weaker that 1/y and it seems that we have shown that the divergence is of order 1/y when closing in to (0, 0). In reality, one should notice that M (t) tends to 0 as t tends to 0, that is to say when the half-line we are considering becomes close to the (Ox) axis. In the µ = 1/2 case, φ app 1/2 (y) = 1/24 2/5 y 4/5 which means that the (Ox) axis is tangent to the curves. The previous divergence rate does not apply here. In fact we have ∂ x τ (ty 4/5 , y)) uniformly bounded by M/y 3/5 as long as t is away from 0 which is the case in the region where [(φ(y), y),(φ app (y), y)] lies.

We will not write the full expression of ∂ x τ (ty 4/5 , y) but we will say that it can be written as the sum of 8 terms and all of them are diverging faster than y 3/5 . But all these terms can in fact be taken by pairs so as to alleviate the strong divergence. For example we have the term 1/y and the term: which happens to be equivalent to -1/y as y tends to 0 with t xed. The sum of these two terms is also equivalent to 1/y 3/5 . As in the previous paragraph this is not enough since we want some uniformity in t but it suggests that by adding and then multiplying by y 3/5 we might get what we are looking for. We rst rewrite (34) in order to suppress any obvious singularities: so that in D(t, u) we have collected all the terms that tend to 0 as u tends to 0. In fact we can even check that D(t, u)/u 2 is a countinuous function. Now we compute y 3/5 (1/y + T ) using ( 37) and (38) to see that we have:

T = - t 2 y 6/5 t -2 cosh y 1/5 t + 2 y 7/5   1 
y 3/5 (1/y + T ) = y 3/5 D(t, y 1/5 ) D(t, y 1/5 ) y + S t, y 1/5 +       1 y     sinh y 1/5 t y 1/5     2 - 1 y       2 cosh y 1/5 t - 2 
y 2/5       cosh y 1/5 t       (39) 
In this expression we have seen that all the terms have been accounted for except for the last one, which was the most problematic. One can check that in fact this last term can be seen as a continuous function of y 1/5 /t (it can even be expanded in a power series of y 1/5 /t) and thus is also bounded as long as t stays away from 0. The rest of y 3/5 ∂ x τ (ty 4/5 , y) can be treated in the same way. and can be considered a bounded function uniformly in y and t. Now thanks to the fact that by Proposition 3 for µ = 1/2 we have φ app 1/2 (y) = 1/24 2/5 y 4/5 and that by (23)|φ 1/2 (y) -φ app 1/2 (y)|/y 4/5 is bounded as y tends to 0, we have that 1 0 |∂ x τ (sφ 1/2 (y) + (1 -s)φ app 1/2 (y), y)|ds ≤ M/y 3/5 and we can conclude in this case too, using again (32) and ( 4), that τ (φ 1/2 (y), y) ∼ τ (φ app 1/2 (y), y) and we even have: τ (φ 1/2 (y), y) = c(µ)y 1/5 + O(y 2/5 )

A Proof of uniqueness in Theorem 1

We give in this section some details on the computations for the uniqueness part of Theorem 1. Remember that we have:

g(x, y) = 2x 2
y 2 cosh y x -1 + x cosh y x + 3x 2 y + xy sinh y x y 2 + 4x cosh y x + 2x y + y sinh y x + y 2 + 4x x 2 y 2 cosh y x -1 + x y sinh y x + x cosh y x y 2 + 4x cosh y x + 2x y + y sinh y x and we want to prove that ∂ x g(x, y) > 0 for any given x and y both non negative. We rst compute ∂ x g(x, y): To handle such an expression (whose sign is anything but obvious) we reduce to the same denominator and write the numerator and the denominator as polynomials of the variables x, y, c = cosh(y/x), s = sinh(y/x), and r = y 2 + 4x. We obtain: As y and x are non negative c, s and r are also non negative. So the denominator is non negative and in the numerator, a monomial is non negative if it has a plus and negative if it has a minus. The trick to show that the numerator is non negative is to combine monomial and use the fact that c -1 > 0 and s-y/x > 0. Let us give an example. The numerator contains 16x 2 y 2 c 2 +4x 2 y + 12x 3 cs -8xy 2 -12x 3 s -20x 2 yc (expression which in facts contains the negative

y 2 +
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Proposition 2. There exists a unique solution p to equation[START_REF] Ben | Probabilistic approximation of a nonlinear parabolic equation occurring in rheology[END_REF] with conditions
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this paper, that is to say the behaviour of the macroscopic stress as y decreases to 0, we will need the behaviour of φ µ as y decreases to 0 explicitly. The function φ µ has dierent behaviours with dierent values of µ which is the rst sign of the transition. We want in this section to prove that: Proposition 3. For every µ we introduce φ app µ , the rst non zero term of the expansion of φ µ at y = 0 that is to say we have φ µ (y) ∼ φ app µ (y). Then there exists a non negative constant c(µ) such that when y decreases to 0 we have:

2)y 4/5 . We now turn to the proof of this proposition 5.1

The simplest case µ > 1/2

The function f µ constructed via (18) has a very wild behaviour at the neigbourhood of (0, 0). However, it can be continued (with the same formula) with a C ∞ regularity on the domain R * + × R. We then have:

, is strictly increasing over R + and tends to 1/2 as c → 0. Consequently, for every µ > 1/2 there exists c(µ) > 0 such that ζ(c(µ)) = µ which amounts to f µ (c(µ), 0) = 0. As a matter of fact, one can excplicitly compute

On the other side, ∂ x f µ (c(µ), 0) cannot be zero. We can then apply the implicit function theorem for f µ at point (c(µ), 0) and with the uniqueness property we have made for φ µ (y) we have that ∀µ > 1/2, lim y→0 φ µ (y) = c(µ). For µ > 1/2 we pose φ app µ (y) = c(µ). As a matter of fact we will need another term in the expansion of φ µ at y = 0 which we can obtain in this case by computing the derivatives of φ µ . We nd that we have φ µ (0) = 0 and φ µ (0) = 0. Thus we have

as y goes to zero.

5.2

Preliminary computation for cases µ ≤ 1/2

We can note that as µ tends to 1/2, c(µ) tends to 0, leading us to believe that as µ tends to 1/2, φ µ (y) tends to 0 as y tends to 0. We thus need to make a change of variable in order to alleviate the diculty in the vicinity of (0,0). We then pose X = x and Y = y/x. The map T : (x, y)

We then get a new function:

τ (φ app µ (y), y) follows a power law with exponent 1/5 but with a dierent constant than the one given by Theorem 1 while in the case µ > 1/2, τ (φ app µ (y), y) diverges as 1/y when it should converge as y (again according to Theorem 1 written in (x, y) variables). This leaves us with the question of how to prove the theorem.

Remember that in the end what we are really interested in is the behaviour of τ (φ µ (y), y) not τ (φ app µ (y), y). We now use the implicit denition of φ µ to construct a two variables function τ such that τ (φ µ (y), y) = τ (φ µ (y), y) and that τ (φ app µ (y), y) gives the correct behaviour for φ µ that is to say that we can prove that the right hand side of (32) tends to 0.

We make the following remark: the equation ( 18) which denes implicitly φ µ can be put in an equivalent form ∆(x, y) = ∆(µ, x, y) with

and ∆ is given by equation ( 17) and is the quantity that appears in the expression of τ (x, y) given by (31). This is in fact how we found the function f µ in the rst place in section 4.3 Consequently if we dene τ by

we know that we have τ (φ µ (y), y) = τ (φ µ (y), y) and we will show that τ is the correct function to consider to study (32). Now this raises the question as to why τ works and not τ and whether this fact was predictible.

Behaviour of φ(y) -φ app (y) τ (φ app (y), y)

. To control the right hand side of (32) we see that we need the behaviour of τ µ (φ app (y), y) which we give now:

In the end these behaviours will also be the respective behaviours of τ (φ µ (y), y). Using this information and the one from φ µ -φ app µ given by equations (20), ( 22) and (23) we can say that Proposition 4. We have the following behaviours :

also behaves like y.

where we have dropped the constants for the sake of clarity. All these computations are straightforward since everything is explicit.

End of the proof: study of 1 0 |∂ x τ (sφ(y) + (1 -s)φ app (y), y)|ds

The case µ > 1/2. As usual, let us start with the simplest case µ > 1/2.

Using Proposition 3 we have that φ µ converges to a constant c > 0. The function ∂ x τ can be continued by continuity at (c, 0) when c > 0. It is then bounded in the vicinity of this point. Now we know that for y close enough to 0, [(φ µ (y), y), (φ app µ (y), y)] is in any closed ball centered at (c, 0). By compactness d x τ is bounded and thus the integral is uniformly bounded as y decreases to zero and we then have τ (φ(y), y) ∼ τ (φ app (y), y). As a matter of fact if we look at (32) what we have really proved is the following expansion:

For the other two cases the diculty is increased since we have φ µ and φ app µ closing in to 0. But the dependence in y/x of τ µ and thus of ∂ x τ leave us no hope to ever show continuity at (0, 0) and uniform boundedness of the integral. In fact we can see numerically that the function diverges. What we have to prove is that the divergence of the integral is somehow compensated by | φ(y) -φ app (y) τ (φ app (y), y) |.

The case µ < 1/2. In the µ < 1/2 case we know by Proposition 3 that for y close to 0, the curve {(φ µ (y), y)} is tangent to a ray {(c(µ)y, y)}. Now we look at the expansion of ∂ x τ (x, y) alongside a ray (y/t, y) and we nd that its rst term is of the form M (t)/y with M (t) bounded if t is in R. This suggests that the divergence of ∂ x τ (x, y) is uniformly in 1/y close to a ray. Indeed, if we check the function (t, y) → y∂ x τ (y/t, y) we can see that it can be continuously continued up to y = 0 as long as t is non negative. This means that as long as (x, y) is in a closed angular sector with its peak at (0, 0) and included in the x > 0, y > 0 open quarter plane (which means that none of its edges are axis), y∂ x τ (x, y) is bounded. Thus, we just have to check that as y decreases to 0, the segment [(φ µ (y), y), (φ app µ (y), y)] stays in such a closed angular sector, so as to have y)|ds ≤ M/y for a given constant M which does not depend on y (but can depend on µ). This is true because of Proposition 3 which states that φ µ (y)/y → c > 0|..

Since by Proposition

| is in this case of order y 3/2 , what we just show is enough to conclude that τ (φ µ (y), y) ∼ τ (φ app µ (y), y). Again we have proved slightly more than announced since we have the expansion

It would actually be interesting to now if τ (φ µ (y), y) -τ 0 (µ) ∼ √ y to know what Herschell-Bulkley uid law best ts the behaviour of a HL uid at low shear rate.

Now the denominator, which we note by

is never 0 since sinh(u)/u is bounded away from 0 and so is t. We now see that the part that is dominant in the numerator of T when taking y to 0 with t xed is cosh(y 1/5 /t)/y. We can then rewrite T as

where S contains all the terms in the numerator of T of lower order (again y tends to 0 and t is xed). It is easy to check that in fact u 3 S(t, u) is a continuous function of its arguments as long as t is bounded away from 0. In particular we have that in any rectangle [a, b] × [0, ε] for which b > a > 0 u 3 S(t, u) is bounded which means that y 3/5 S(t, y 1/5 ) is bounded. Now for the dominant part we need to reduce to a common denominator. We expand the denominator:

monomial that were the most dicult to combine to obtain a non negative quantity). One can check that in fact this expression can be written under the form 8x 2 yc(c -1) + 12x 3 (c -1)(s -y/x) + 8x 2 ys(s -y/x) which is now clearly non negative. As a result we obtain (we write t instead of y/x):

+ 8xy 3 c (c -1) + 2xy 4 s (c -1) + 6xy 3 r c 2 -1 + 4rxcsy