
HAL Id: hal-00362643
https://hal.science/hal-00362643v2

Preprint submitted on 20 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Online Multi-task Learning with Hard Constraints
Gabor Lugosi, Omiros Papaspiliopoulos, Gilles Stoltz

To cite this version:
Gabor Lugosi, Omiros Papaspiliopoulos, Gilles Stoltz. Online Multi-task Learning with Hard Con-
straints. 2009. �hal-00362643v2�

https://hal.science/hal-00362643v2
https://hal.archives-ouvertes.fr

Online Multi-task Learning with Hard Constraints

Gábor Lugosi∗

ICREA and Universitat Pompeu Fabra
Barcelona, Spain
lugosi@upf.es

Omiros Papaspiliopoulos†

Universitat Pompeu Fabra
Barcelona, Spain

omiros.papaspiliopoulos@upf.edu

Gilles Stoltz‡

Ecole Normale Supérieure, CNRS
Paris, France

HEC Paris, CNRS,
Jouy-en-Josas, France
gilles.stoltz@ens.fr

Abstract

We discuss multi-task online learning when a de-
cision maker has to deal simultaneously withM
tasks. The tasks are related, which is modeled
by imposing that theM–tuple of actions taken by
the decision maker needs to satisfy certain con-
straints. We give natural examples of such restric-
tions and then discuss a general class of tractable
constraints, for which we introduce computation-
ally efficient ways of selecting actions, essentially
by reducing to an on-line shortest path problem.
We briefly discuss “tracking” and “bandit” versions
of the problem and extend the model in various
ways, including non-additive global losses and un-
countably infinite sets of tasks.

1 Introduction

Multi-task learning has recently received considerable atten-
tion, see [DLS07, ABR07, Men07, CCBG08]. In multi-task
learning problems, one simultaneously learns several tasks
that are related in some sense. The relationship of the tasks
has been modeled in different ways in the literature. In our
setting, a decision maker chooses an action simultaneously
for each ofM given tasks, in a repeated manner. (To each
of these tasks corresponds a game, and we will use inter-
changeably the concepts of game and task.) The relatedness
is accounted for by putting some hard constraints on these
simultaneous actions.

As a motivating example, consider a distance-selling com-
pany that designs several commercial offers for its numerous
customers, and the customers are ordered (say) by age. The
company has to choose whom to send which offer. A loss
of earnings is suffered whenever a customer does not receive

∗Supported by the Spanish Ministry of Science and Technology
grant MTM2006-05650 and by the PASCAL Network of Excel-
lence under EC grant no. 506778

†Supported by the Spanish Ministry of Science and Technology
under a “Ramon y Cajal” scholarship

‡Supported by the French National Research Agency (ANR)
under grants JCJC06-137444 “From applications to theory in
learning and adaptive statistics” and 08-COSI-004 “Exploration–
exploitation for efficient resource allocation”, and by thePASCAL
Network of Excellence under EC grant no. 506778

the commercial offer that would have been best for him. Ba-
sic marketing considerations suggest that offers given to cus-
tomers with similar age should not be very different, so the
company selects a batch of offers that satisfy such a con-
straint. Additional budget constraint may limit further the
set of batches from which the company may select. After the
offers are sent out, the customers’ responses are observed
(at least partially) and new offers are selected and sent. We
model such situations by playing many repeated games si-
multaneously with the restriction that the vector of actions
that can be selected at a time needs to belong to a previously
given set. This set in determined beforehand by the budget
and marketing constraints discussed above. The goal of the
decision maker is to minimize the total accumulated regret
(across the many games and through time), that is, perform,
on the long run, almost as well as the best constant vector of
actions satisfying the constraint.

The problem of playing repeatedly several games simul-
taneously has been considered by [Men07] who studies con-
vergence to Nash equilibria but does not address the issue
of computational feasibility when a large number of games
is played. On-line multi-task learning problems were also
studied by [ABR07] and [DLS07]. As the latter reference,
we consider minimizing regret simultaneously in parallel,by
enforcing however some hard constraints. As [ABR07], we
measure the total loss as the sum of the losses suffered in
each game but assume that all tasks have to be performed at
each round. (This assumption is, however relaxed in Sec-
tion 8, where we consider global losses more general than
the sums of losses.) The main additional difficulty we face
is the requirement that the decision maker chooses from a
restricted subset of vectors of actions. In previous models
restrictions were only considered on the comparison class,
but not on the way the decision maker plays.

We formulate the problem in the framework of on-line re-
gret minimization, see [CBL06] for a survey. The main chal-
lenge is to construct a strategy for playing the many games
simultaneously with small regret such that the strategy has
a manageable computational complexity. We show that in
various natural examples the computational problem may be
reduced to an online shortest path problem in an associated
graph for which well-known efficient algorithms exist. (We
however propose a specific scheme for implementation that
is slightly more effective.)

The results can be extended easily to the “tracking” case

in which the goal of the decision maker is to perform as
well as the best strategy that can change the vector of ac-
tions (taken from the restricted set) at a limited number of
times. We also consider the “bandit” version of the problem
when the decision maker, instead of observing the losses of
all actions in all games, only learns the sum of the losses of
the chosen actions.

Finally, we also consider cases when there are infinitely
many tasks, indexed by real numbers. In such cases the deci-
sion maker chooses a function from a certain restricted class
of functions. We show examples that are natural extensions
of the cases we consider for finitely many tasks and discuss
the computational issues that are closely related to the theory
of exact simulation of continuous-time Markov chains.

We concentrate on exponentially weighted average fore-
casters because, when compared to its most likely competi-
tors, that is, follow-the-leader-typealgorithms, they have bet-
ter performance guarantees, especially in the case of bandit
feedback. Besides, the two families of forecasters, as pointed
out by [ABR07], usually have implementation complexities
of the same order.

2 Setup and notation

In the simplest model studied in this paper, a decision maker
deals simultaneously withM tasks, indexed byj = 1, . . . ,M .
For simplicity, we assume that all games share the same fi-
nite action spaceX = {x1, . . . , xN} ⊂ R. (Here, we do
not identify actions with integers but with real numbers, for
reasons that will be clear in Section 3.)

To each tasksj = 1, . . . ,M there is an associated out-
come spaceYj and a loss functionℓ(j) : X × Yj → [0, 1].
We denote byx =

(

xk1 , . . . , xkM

)

the elements ofXM

and call them vectors of simultaneous actions. The tasks
are played repeatedly and at each roundt = 1, 2, . . ., the
decision maker chooses a vectorXt = (X1,t . . . , XM,t) ∈
XM of simultaneous actions. (That is, he chooses indexes
K1,t, . . . ,KM,t ∈ {1, . . . , N} andXj,t = xKj,t

for all
j = 1, . . . ,M .) We assume that the choice ofXt can be
made at random, according to a probability distribution over
XN which will usually be denoted bypt. The behavior of
the opponent player among all tasks is described by the vec-
tor of outcomesyt = (y1,t, . . . , yM,t).

We are interested in the loss suffered by the decision
maker and we do not assume any specific probabilistic or
strategic behavior of the environment. In fact, the outcome
vectorsyt, for t = 1, 2, . . ., can be completely arbitrary and
we measure the performance of the decision maker by com-
paring it to the best of a class of reference strategies. The
total loss suffered by the decision maker at timet is just the
sum of the losses over tasks:

ℓ(Xt,yt) =
M
∑

j=1

ℓ(j)(Xj,t, yj,t) .

The important point is that the decision maker has some re-
strictions to be obeyed in each round, which we also call
hard constraints. They are modeled by a subsetA of the set
of possible simultaneous actionsXM ; the forecaster is only
allowed to play vectorsXt in A. This subsetA captures the
relatedness among the tasks.

The decision maker aims at minimizing his regret, de-
fined by the difference of his cumulative loss with respect to
the cumulative loss of the best constant vector of actions, de-
termined in hindsight, among the set of allowed vectorsA.
Formally, the regret is defined by

Rn =

n
∑

t=1

ℓ(Xt,yt) − min
x∈A

n
∑

t=1

ℓ(x,yt) .

In the basic,full information, version of the problem the de-
cision maker, after choosingXt, observes the vector of out-
comesyt. In thebanditsetting, only the total lossℓ(Xt,yt)
becomes available to the decision maker.

Observe that in the case ofM = 1 task, the problem
reduces to the well-studied problem of “on-line prediction
with expert advice” or “sequential regret minimization,” see
[CBL06] for the history and basic results. This is also the
case whenM > 2 butA = XM , since the decision maker
could then treat each task independently from others and
maintainM parallel forecasting schemes, at least in the full-
information setting. Under the bandit assumption the prob-
lem becomes the “multi-task bandit problem” discussed in
[CBL09], which is also easy to solve by available techniques.
However, whenA is a proper subset ofXM , interesting com-
putational problems arise. The efficient implementation we
propose requires a condition the setA of restrictions needs to
satisfy. This structural condition, satisfied in several natural
examples discussed below, permits us to reduce the problem
to the well-studied problem of predicting as well as the best
path between two fixed vertices of a graph.

In order to make the model meaningful, just like in the
most basic versions of the problem, we allow the decision
maker to randomize its decision in each period. More for-
mally, at each round of the repeated game, the decision maker
determines a distribution onXM (restricted to the setA) and
draws the action vectorXt according to this distribution. Be-
fore determining the outcomes, the opponent may have ac-
cess to the probability distribution the decision maker uses
but not to the realizations of the random variables.

Structure of the paper

We start by stating some natural examples on which the pro-
posed techniques will be illustrated. We then study the full-
information version of the problem (when the decision maker
observes all past outcomes before determining his proba-
bility distribution) by proposing first a hypothetical scheme
with good performance and then stating an efficient imple-
mentation of it.

We also consider various extensions. One of them is the
bandit setting, when only the sum of losses of the chosen
simultaneous actions are observed. Another extension is the
“tracking” problem when, instead of competing with the best
constant vector of actions, the decision maker intends to per-
form as well as the best strategy that is allowed to switch a
certain limited number of times (but always satisfying the re-
strictions). We also consider alternative global loss functions
that do not necessarily sum the losses over the tasks. Finally,
we describe a setting in which there are infinitely many tasks
indexed by an interval. This is a natural extension of the
main examples we work with and the algorithmic problem

has some interesting connections with exact simulation of
continuous-time discrete Markov chains.

3 Motivating examples

We start by describing four examples that we will be able
to handle with the proposed machinery. The examples are
defined by their corresponding setsA ⊂ XM of permitted
simultaneous actions.

Example 1 (Internal coherence)Assume that tasks are lin-
early ordered and any two consecutive tasks, though differ-
ent, share some similarity. Therefore, it is a natural require-
ment that the actions taken in two consecutive games be not
too far away from each other. One may also interpret this as a
matter of internal coherence of the decision maker. To model
this, we assume that the actions are ranked in the action setX
according to some logic and impose some maximal dissim-
ilarity γ > 0 between the actions of two consecutive tasks,
that is,

A =
{

(

xk1 , . . . , xkM

)

: ∀ j 6 M−1,
∣

∣xkj
−xkj+1

∣

∣ 6 γ
}

.

Example 2 (Escalation constraint) Once again we assume
that the tasks are linearly ordered and the actions are ranked.
Imagine that tasks correspond to consumers and that the higher
the index of the task, the more favorable the conditions for
the consumer (and the higher the loss of earnings of the
seller, who is the decision maker). The constraint decision
maker has to satisfy is that higher-ranked costumers need to
receive better conditions, at least within the same round of
play. That is, the simultaneous actions must form a non-
decreasing sequence in the following sense,

A =
{

(

xk1 , . . . , xkM

)

: ∀ j 6 M − 1, kj 6 kj+1

}

.

Example 3 (Constancy constraint)Assume that tasks are
ordered and that the decision maker should not vary its ac-
tion too often. This is measured by the fact that the decision
maker must stick to an action for several consecutive tasks
and that he can shift to a new action only at a limited number
m of tasks, which we model by

A =







(

xk1 , . . . , xkM

)

:

M−1
∑

j=1

I{kj 6=kj+1} 6 m







.

Example 4 (Budget constraint) Here we assume that the
numberxkj

associated to actionk in task j represents the
cost of choosing this action. The freedom of the decision
maker is limited by a budget constraint. For example, one
may face a situation when the decision maker has a constant
budgetB to be used at each round, that is,

A =







(

xk1 , . . . , xkM

)

:
M
∑

j=1

xkj
6 B







.

To make things more concrete, we assume, in this example
only, thatxk = k. One should then take forB as an integer
betweenM andNM . For smaller valuesA becomes empty
and for larger valuesA = XN .

4 Exponentially weighted averages

By considering each element ofA as a (meta-)expert, we
can reduce the problem to the usual single-task setting and
exhibit a forecaster with a good performance bound that, in
its straightforward implementation, has a computational cost
proportional to the cardinality ofA.

More precisely, for each roundn > 1, we denote by

Ln(x) =

n
∑

t=1

ℓ(x,yt)

the cumulative loss of the simultaneous actionsx ∈ X , and
define an instance of the exponentially weighted average fore-
caster on these cumulative losses. That is, at roundt = 1, the
decision maker draws an elementX1 uniformly at random in
A and for each roundt > 2, drawsXt at random according
to the distributionpt onA which puts the following mass on
eachx ∈ A,

pt(x) =
exp
(

−ηLt−1(x)
)

∑

a∈A exp
(

−ηLt−1(a)
) , (1)

whereη > 0 is a parameter to be tuned. The bound follows
from a direct application of well-known results, see, for in-
stance, [CBL06, Corollary 4.2].

Proposition 1 For all n > 1, the above instance of the ex-
ponentially weighted average forecaster, when run withη =
(1/M)

√

8(lnN)/n, ensures that for allδ > 0, its regret is
bounded, with probability at most1 − δ, as

Rn 6 M

(
√

n ln |A|
2

+

√

n

2
ln

1

δ

)

where|A| denotes the cardinality ofA.

The computational complexity of this forecaster, in its
naive implementation, is proportional to|A|, which is pro-
hibitive in all examples of Section 3 since the cardinality of
A is exponentially large. For example, in Example 1, if we
denote by

ρ = min

{

∣

∣

∣

{

x′ ∈ X : |x− x′| 6 γ
}

∣

∣

∣
: x ∈ X

}

a common lower bound on the number ofγ–close actions to
any action inX , then

|A| > NρM−1 .

In Example 2, by first choosing them actions to be used (in
increasing order) and them − 1 corresponding shift points,
one gets

|A| =

N
∑

m=1

(

N
m

)(

M +m− 1
m− 1

)

>

N
∑

m=1

(

N
m

)

Mm−1

(m− 1)!
>

(M + 1)N

(N − 1)!
.

In the case of at mostm shifts in the simultaneous actions,
discussed in Example 3, we have

|A| >

(

M +m
m

)

N(N − 1)m

(where the lower bound is obtained by considering only the
simultaneous actions with exactlym shifts). That is,|A| is of
the order of(MN)m/m!. Finally, with the budget constraint
of Example 4, the typical size ofA is exponential inM , as

|A| > ρM

whereρ = ⌊B/M⌋ is the lower integer part ofB/M .

5 Efficient implementation with online
shortest path

In this section we show how the computational problem of
drawing a random vector of actionsXt ∈ A according to the
exponentially weighted average distribution can be reduced
to the well-studied online shortest path problem. Recall that
in the online shortest path problem (see, e.g., [TW04, GLL04,
GLL05]) the decision maker selects, at each round of the
game, a path between two given vertices (thesourceand the
sink) in a given graph. A loss is assigned to each edge of the
graph in every round of the game and the loss of a path is
the sum of the losses of the edges. A path can be selected ac-
cording to the exponentially weighted average distribution in
a computationally efficient way by a dynamic programming-
type algorithm, see [TW04] or [CBL06, Section 5.4]. The
algorithm has complexityO(|E|) whereE is the set of edges
of the graph.

We first explain how the problem of drawing a joint ac-
tion in the multi-task problem can be reduced to an online
shortest path problem in all the examples presented above
and then indicate how to efficiently sample from the distri-
butionpt defined in (1).

5.1 A Markovian description of the constraints

In order to define the corresponding graph in which the on-
line shortest path problem is equivalent with our hard-con-
strained multi-task problem, we introduce a setS of hidden
states. The value of the hidden state controls that the hard
constraints are satisfied along the sequence of simultaneous
actions. To this end, denote byS the state function, which,
given a vector of actions (of length6 M), outputs the corre-
sponding state inS.

We also consider an additional state⋆ meaning that the
hard constraint is not satisfied. We denoteS⋆ = S ∪{⋆}. By
definition,

A =
{

x ∈ XM : S(x) 6= ⋆
}

.

To make things more concrete we now describeS andS on
all four examples introduced in Section 3.

The first two examples are the simplest as all the infor-
mation is contained in the current action; their hidden state
spaceS is reduced to a single stateOK. For Example 1, for all
sequences

(

xk1 , . . . , xkj

)

of length1 6 j 6 M , one defines

S
(

(

xk1 , . . . , xkj

)

)

=

{

OK if for all i 6 j − 1,
∣

∣xki
− xki+1

∣

∣ 6 γ,
⋆ otherwise,

whereas for Example 2,

S
(

(

xk1 , . . . , xkj

)

)

=

{

OK if for all i 6 j − 1, xki
6 xki+1 ,

⋆ otherwise.

In Example 3 the underlying hidden state counts the num-
ber of shifts seen so far in the sequence of actions, soS =
{0, . . . ,m} and for all sequences

(

xk1 , . . . , xkj

)

of length
less or equal toM , we first define

S′
(

(

xk1 , . . . , xkj

)

)

=

M−1
∑

j=1

I{kj 6=kj+1}

and then

S
(

(

xk1 , . . . , xkj

)

)

=

{

S′
(

(

xk1 , . . . , xkj

)

)

if S′
(

(

xk1 , . . . , xkj

)

)

6 m,

⋆ otherwise.

Finally, in Example 4, the hidden state monitors the budget
spent so far, that is,S = {0, . . . , B},

S′
(

(

xk1 , . . . , xkj

)

)

=

j
∑

i=1

xki
,

and

S
(

(

xk1 , . . . , xkj

)

)

=

{

S′
(

(

xk1 , . . . , xkj

)

)

if S′
(

(

xk1 , . . . , xkj

)

)

6 B,

⋆ otherwise.

In view of these examples, the following assumption on
S is natural.

Assumption 1 The state function is Markovian in the fol-
lowing sense. For allj > 2 and all vectors

(

xk1 , . . . , xkj

)

,

the stateS
(

(

xk1 , . . . , xkj

)

)

only depends on the value of

xkj
and on the stateS

(

(

xk1 , . . . , xkj−1

)

)

.

We further assume that there exists a transition function
T that, to each pair(x, s) (corresponding to some taskj)
formed by an actionx ∈ X and a hidden states ∈ S⋆,
associates pairs(x′, s′) ∈ X × S (to be used in taskj + 1).
Put differently,T

(

(x, s)
)

is a subset ofX ×S⋆ that indicates
all legal transitions. We impose that when the prefix of a
sequence is already in the dead end states = ⋆, the whole
sequence stays in⋆, that is, for allx ∈ X ,

T
(

(x, ⋆)
)

= X × {⋆} .
Once again, to make things more concrete, we describeT for
the four examples introduced in Section 3.

Example 1 relies onS = {OK} and the transitions

T
(

(x, OK)
)

=
(

X ∩ [x− γ, x+ γ]
)

× {OK}

for all x ∈ X . Example 2 can be modeled withS = {OK}
and the transitions

T
(

(x, OK)
)

= [x, xN] × {OK} .
for all x ∈ X .

For Example 3, the transition function is given by

T
(

(x, s)
)

= {(x, s)} ∪
(

(

X \ {x}
)

× {s+ 1}
)

for all s = 0, . . . ,m− 1 and

T
(

(x,m)
)

= {(x,m)} ∪
(

(

X \ {x}
)

× {⋆}
)

for s = m.
Finally, the one of Example 4 is given by

T
(

(x, s)
)

=

{

X × {s+ x} if s+ x 6 B,
X × {⋆} if s+ x > B.

5.2 Reduction to an online shortest path problem

We are now ready to describe the graph by which a con-
strained multi-task problem can be reduced to an online short-
est path problem. Assume thatA is such that there is a
corresponding state spaceS, a state functionS satisfying
Assumption 1, and a transition functionT . We define the
cumulative lossesL(j)

n suffered in each taskj = 1, . . . ,M
between roundst = 1 andn as follows. For allx ∈ X ,

L(j)
n (x) =

n
∑

t=1

ℓ(j)(x, yj,t) .

Of course, with the notation above, for alln > 1 and all
x =

(

xk1 , . . . , xkj

)

,

Ln(x) =

M
∑

j=1

L(j)
n

(

xkj

)

.

In the sequel, we extend the notation by convention ton = 0,
byL0 ≡ 0 andL(j)

0 ≡ 0 for all j.
Then, for each roundt = 1, . . . , n, we define a directed

acyclic graph with at mostMN |S| vertices. Each vertex
corresponds to task-action-state triple(j, xk, s), wherej =
1, . . . ,M , k = 1, . . . , N , ands ∈ S. Two verticesv =
(j, xk, s) andv′ = (j′, xk′ , s′) are connected with a directed
edge if and only ifj′ = j + 1, and(xk′ , s′) ∈ T (xk, s),
that is,(xk, s) → (xk′ , s′) is a legal transition between tasks
j and j + 1. The loss associated to such an edge equals

L
(j′)
t−1(xk′), the cumulative loss of actionxk′ in task j′ in

the previous time rounds. We also add two vertices, the
“source” nodeu0 and the “sink”u1 as follows. There is
a directed edge betweenu0 and every vertex of the form
(1, xk, s) with k = 1, . . . , N ands 6= ⋆. Its associated losses

equalL(1)
t−1(xk). Finally, every vertex of the form(M,xk, s)

with k = 1, . . . , N ands 6= ⋆ is connected to the sinku1

with edge loss0.
In the graph defined above, choosing a path between the

source and the sink is equivalent to choosing a legalM–tuple
of actions in the multi-task problem. (Note that there is no
path betweenu0 andu1 containing a vertex withs = ⋆.)
The sum of the losses over the edges of a path is just the

cumulative loss of the correspondingM–tuple of actions.
Generating a legal randomM–tuple according to the expo-
nentially weighted average distribution is thus equivalent to
generating a random path in this graph according to the ex-
ponentially weighted average distribution. This can be done
with a computational complexity of the order of the number
of edges defined above, see, e.g., [CBL06, Section 5.4]. In
our case, since edges only connect two consecutive tasks, the
number of edges is at most1 +MN2|S|2. In Section 5.3.1
we discuss the number of edges and the related complexity
on the examples of Section 3.

Since edges only exist between consecutive tasks, the
above implementation by reduction to an online shortest path
problem takes a simple form, which we detail below for con-
creteness. It will be useful to have it for Section 8.2.

5.3 Brief recall of the way the efficient implementation
goes

In order to generate a randomM–tuple of actions according
to the distributionpt, we first rewrite the probability distri-
butionpt in terms of the state functionS and the cumulative
lossesL(j)

t−1 suffered in each taskj. To do so, we denote by
δx the Dirac mass onx =

(

xk1 , . . . , xkM

)

, that is, the prob-
ability distribution overX that puts all probability mass on
x. The definition (1) then rewrites as

pt =

∑

x∈XN

I{S(x) 6=⋆} exp
(

−η
∑M

j=1 L
(j)
t−1

(

xkj

)

)

∑

a∈XN I{S(a) 6=⋆} exp
(

−η∑M
j=1 L

(j)
t−1

(

akj

)

) δx .

(2)

Before proceeding with the random generation of vectors
Xt according topt, we introduce an auxiliary sequence of
weights and explain how to maintain it. For all roundst > 0,
tasksj ∈ {1, . . . ,M}, actionsx ∈ X , and statess ∈ S, we
define

wt,j,x,s =

∑

xk1
,...,xkj−1

∈X
exp

(

−η
(

L
(j)
t (x) +

j−1
∑

i=1

L
(i)
t

(

xki

)

))

×I{
S(ik1

,...,ikj−1
,x)=s

} .

Note that we do not consider the state⋆ here.
Now, for all roundst > 0, actionsx ∈ X , and states

s ∈ S, one simply has

wt,1,x,s = exp
(

−ηL(1)
t (x)

)

I{S(x)=s} .

Then, an induction (onj) using Assumption 1 shows that for
all 1 6 j 6 M − 1, actionsx′ ∈ X , and statess′ ∈ S,

wt,j+1,x′,s′ =
∑

x∈X , s∈S
wt,j,x,s I{(x′,s′)∈T ((x,s))} exp

(

−ηL(j+1)
t (x′)

)

.

(3)

We now show how to use these weights to sample from
the desired distributionpt, for t > 1. We proceed in a back-
wards manner, drawing firstXM,t, then, conditionally to the
value ofXM,t, generatingXM−1,t, and so on, tillX1,t.

To drawXM,t, we note that equation (2) shows that the
M–th marginal induced bypt is the distribution overX that
puts a probability mass proportional to

∑

s∈S
wt−1,M,k,s

on each actionx ∈ X . It is therefore easy to generate a
random elementXM,t with the appropriate distribution. We
actually need to draw a pair(XM,t, SM,t) ∈ X × S dis-
tributed according to the distribution onX × S proportional
to thewt−1,M,k,s.

We then aim at drawing the actions (and hidden states)
corresponding to the previous tasks according to the (con-
ditional) distributionpt

(

· |XM,t, SM,t

)

on (X × S)M−1.
Again by using the Markovian assumption onS, it turns out
that the(M − 1)–th marginal of this distribution onX × S
is proportional, for all pairs(x, s) ∈ X × S, to

wt,M−1,x,s I{(XM,t,SM,t)∈T ((x,s))} .

This procedure, based on conditioning by the future, can be
repeated to draw conditionally all the actionsX1,t, X2,t, . . . ,
XM,t and hidden state spacesS1,t, S2,t, . . . , SM,t. In partic-
ular, we use, to drawXj,t andSj,t, the distribution onX ×S
proportional to

wt,j,x,s I{(Xj+1,t,Sj+1,t)∈T ((x,s))} . (4)

The realizationXt = (X1,t, X2,t, . . . , XM,t) obtained this
way is indeed according to the distributionpt.

5.3.1 Complexity of this procedure for the considered
examples

The space complexity is of the order of at mostO
(

MN |S|
)

,
since weights have to be stored for all ask-action-state triples.
The computational complexity, at a given task, for perform-
ing the updates (3) for allx′ ands′ is bounded by the number
of pairs(x′, s′) times the maximal number of pairs(x, s) that
lead to(x′, s′). We denote byTmax this maximal number of
transitions. Then, the complexity of performing (3) for all
tasks is bounded byO

(

MN |S|Tmax

)

. The complexity of
the random generations (4) is negligible in comparison, since
it is of the order ofO

(

MN |S|
)

.
We now computeTmax for the four examples described

in Section 3 and summarize the complexity results (both for
the efficient and the naive implementations) in the table be-
low. In Example 1, in addition to the parameterρ introduced
in Section 4, we consider a common upper bound on the
number ofγ–close actions to any action inX ,

ϑ = max

{

∣

∣

∣

{

x′ ∈ X : |x− x′| 6 γ
}

∣

∣

∣
: x ∈ X

}

.

Then,Tmax = ϑ. In Example 2, the valueTmax = N is
satisfactory. In Example 3, onlyTmax = N pairs(x, s), of
the formx = x′ ands = s′ or x 6= x′ ands′ = s + 1, can
lead to(x′, s′). A similar argument shows that in the case
of Example 4, onlyTmax = N such transitions are possible
also.

Ex. Efficient Naive
1. MNϑ > NρM−1

2. MN2 > (M + 1)N/(N − 1)!
3. MN2m > (MN)m/m!
4. MN2B > (B/M)M

6 Tracking
In the problem oftracking the best expertof [HW98, Vov99],
the goal of the forecaster is, instead of competing with the
best fixed action, to compete with the best sequence of ac-
tions that can switch actions a limited number of times. We
may formulate the tracking problem in the framework of
multi-task learning with hard constraints. In this case, just
like before, at each timet, the decision maker chooses an
M–tuple of actions from the setA of legal vectors. How-
ever, now regret is measured by comparing the cumulative
loss of the forecaster

∑n
t=1 ℓ(Xt.yt) with

min
(x1,...,xn)∈ΣK(A)

n
∑

t=1

ℓ(xt,yt)

whereΣK(A) is the set of all sequences of vectors ofA that
may switch values at mostK times (i.e., the time interval
1 . . . , n can be divided into at mostK+1 intervals such that
over each interval the sameM–tuple of actions). In this case
it is well known that exponentially weighted average over the
classΣK(A) of meta-experts (see [CBL06, Sections 5.5 and
5.6] for a statement of the results and precise bibliographic
references) yields a regret

n
∑

t=1

ℓ(Xt,yt) − min
(x1,...,xn)∈ΣK(A)

n
∑

t=1

ℓ(xt,yt)

= O

(

M

√

n
(

K ln |A| +K ln
n

K

)

+M

√

n ln
1

δ

)

which holds with probability1 − δ. Moreover, the complex-
ity of the generation of theM–tuples of actions achieving
the regret bound above is bounded, at roundt, by O

(

t2 +

MN2|S|2Kt
)

.

7 Multi-task learning in bandit problems
In this section we briefly discuss a more difficult version of
the problem when the decision maker only observes the to-
tal lossℓ(Xt,yt) suffered though theM games but the se-
quenceyt of outcomes remains hidden. This may be consid-
ered as a “bandit” variant of the basic problem.

Then our problem becomes an instance of anonline lin-
ear optimizationproblem studied by [AK04, MB04, GLLO07,
DHK08, AHR08, BDH+08, CBL09]. For example, since the
dimension of the underlying space is given by the number of
edges, in number always less than1 + MN2|S|2, the re-
sults of [DHK08] imply that a variant of the exponentially
weighted average predictor achieves an expected regret of
the order

E

[

n
∑

t=1

ℓ(Xt,yt)

]

− min
x∈X

E

[

n
∑

t=1

ℓ(x,yt)

]

= O
(

M
(

M3/2N3|S|3 +N |S|
√
M ln |A|

)√
n
)

.

[BDH+08] proved that an appropriate modification of the
forecaster satisfies this regret bound with high probability.
As the predictor of [DHK08] requires exponentially weighted
averages based on appropriate estimates of the losses, it can
be implemented efficiently with the methods described in
Section 5. More precisely, it first computes, at each round
t, estimates of all lossesℓ(j)(x, yj,t), whenx ∈ S andj =
1, . . . ,M and then can use the methods described in Sec-
tion 5. The computationally most complex point is to com-
pute these estimates, which essentially relies on computing
and inverting an incidence matrix of size bounded by the
number of edges. This can be done in timeO

(

M2N4|S|4
)

.
Details are omitted.

8 Other measures of loss

In this section we study two variations of the multi-task prob-
lem in which the loss of the decision maker in a round is
computed in a way different from summing the losses over
the tasks. consisting in computing in a different manner the
total loss incurred within a round on theM tasks. [DLS07]
measure losses by different norms of the loss vector across
tasks but they do not consider the hard constraints introduced
here.

8.1 Choosing a subset of the tasks

In our first example, at every round of the game, the fore-
caster choosesm out of theM tasks and only the losses
over the chosen tasks count in the total loss. For simplic-
ity we only consider the full-information case here when the
decision maker has access to all losses (not only those that
correspond to the chosen tasks).

Formally, we add an extra action− which means that
the decision maker does not play in this task. Of course,
ℓ(j)(−, y) = 0 for all j andy ∈ Yj . We model this by

A =






(

xk1 , . . . , xkM

)

∈
(

X ∪ {−}
)M

:
M
∑

j=1

I{xkj
6=−} = m







.

Since an element ofA is characterized by them tasks
(out ofM) in which it takes one among theN actions ofX ,
we have

|A| =

(

M
m

)

Nm .

Here again, the bound of Proposition 1 applies and an effi-
cient implementation is possible as in Section 5, at a cost of
O
(

MN2m2
)

.
Of course, additional hard constraints could be added in

this example.

8.2 Choosing a different global loss

This paragraph is inspired by [DLS07] where a notion of
a “global loss function” is introduced. The loss measured
ℓ(Xt,yt) in a round is now a given functionψ of the losses
ℓ(j)(Xj,t, yj,t) incurred in each taskj, which may be differ-
ent from their sum,

ℓ(Xt,yt) = ψ
(

ℓ(1)(X1,t, y1,t), . . . , ℓ
(M)(XM,t, yM,t)

)

.

Examples include for instance the max-loss or the min loss,

ψ(u1, . . . , uM) = max{u1, . . . , uM}
or ψ(u1, . . . , uM) = min{u1, . . . , uM} ,

whenever one thinks in terms of the best or worst perfor-
mance.

We make a Markovian assumption on the losses. More
precisely, we assume that they can be computed recursively
as follows. There exists a functionϕ on R

2 such that, defin-
ing the sequence(v2, . . . , vM) as

v2 = ϕ(u1, u2) and vt = ϕ(vt−1, ut) for t > 3 ,

one has
vM = ψ(u1, . . . , uM) .

This means that if the valuesvt are added as a hidden state
spaceV , and if the latter is not too big, computation of the
distributionspt defined, for all roundst > 0 and all simulta-
neous actionsx ∈ A, by

pt(x) =
exp

(

−η∑t−1
s=1 ℓ(x,yt)

)

∑

a∈A exp
(

−η∑t−1
s=1 ℓ(a,yt)

) ,

can be done efficiently (a statement which we will be made
more precise below). In addition, it is immediate, by reduc-
tion to the single-task setting, that a regret bound as in Propo-
sition 1 holds, where one simply has to replaceM with the
supremum norm ofψ over the losses.

We only need to explain how and when the results of
Section 5.3 extend to the case considered above. The state
V of possible values for the possible sequences ofvt should
not bee too large and the update (3) has to be modified, in the
sense that it is unnecessary to multiply by the exponential of
the losses; the global loss will be taken care of at the last step
only, its value being tracked by the additional hidden space.
The complexity is of the order of at mostO

(

MN2|S|2|V|2
)

.
Examples of small|V| include the case when the global loss
is a max-loss or a min-loss and the case when all outcome
spacesYj and loss functionsℓ(j) are identical. In this case,
|V| = N .

Note that here, in addition to this change of the measure
of the total incurred in a round, additional hard constraints
can still be considered, since the base state spaceS is de-
signed to take care of them.

9 Multi-task learning with a continuum of
tasks and hard constraints

In this section we extend our model by considering infinitely
many tasks. We focus on the case when tasks are indexed by
the[0, 1] interval. We start by describing the setup, then pro-
pose an ideal forecaster whose exact efficient implementa-
tion remains a challenge. We propose discretization instead,
which will take us back to the previously discussed case of a
finite number of tasks.

9.1 Continuum of tasks with a constrained number of
shifts

Assume that tasks are indexed byg ∈ [0, 1]. The decision
maker has access to a finite setX = {x1, . . . , xN} of ac-
tions. Taking simultaneous actions in all games at a given

roundt is now modeled by choosing a measurable function

It : g ∈ [0, 1] 7→ It(g) ∈ X .

The opponent chooses a bounded measurable loss function
ψt : [0, 1] × X → [0, 1]. The loss incurred by the decision
maker is then given by

ℓt(It) =

∫

[0,1]

ψt

(

g, It(g)
)

dg =
∑

x∈X

∫

{It=x}
ψt(g, x) dg .

As before, we require that the action of the decision maker
satisfies a hard constraint. One case that is easy to formulate
is, thatIt must be right-continuous and the family of actions
taken simultaneously,

(

It(g)
)

g∈[0,1]

must contain at most a given numberm of shifts, where by
definition, there is a shift atg if for all ε > 0, the setIt

(

[g −
ε, g]

)

contains more than two actions. We denote byA the
set of such simultaneous actions. Actually, any element ofA
can be described by its shifts (in number at mostm), denoted
by g1, . . . , gm′ , with m′ 6 m, and the actions taken in the
intervals[gj, gj+1[for all j = 0, . . . ,m′ − 1 whereg0 = 0,
and on[gm′ , 1].

The aim of the decision maker is to minimize the cumu-
lative regret

Rn =

n
∑

t=1

ℓt(It) − inf
I∈A

n
∑

t=1

ℓt(I) ,

where theIt are picked fromA.

9.2 An ideal forecaster

We denote byµ the distribution onA induced by the uniform
distribution onXm+1×[0, 1]m via the mesurable application
(

xk1 , . . . , xkm+1 , g1, . . . , gm

)

7→ I[0,g(1)[xk1+





m
∑

j=2

I[g(j−1) ,g(j)[xkj



+I[g(m+1),1]xkm+1 ,

(5)

where we denoted by
(

g(1), . . . , g(m)

)

the order statistics of
theg1, . . . , gm. (It is useful to observe for later purposes that
if G1, . . . , Gm are i.i.d. uniform, then the vector

V (G1, . . . , Gm)

=
(

G(1), G(2) −G(1), . . . , G(m) −G(m−1), 1 −G(m)

)

(6)

is uniformly distributed over the simplex of probability dis-
tributions withm+ 1 elements.)

For all t > 1, the ideal forecaster uses probability distri-
butionspt overA, defined below, and draws the application
It giving the simultaneous actions to be taken at roundt ac-
cording topt. For t = 1, we takep1 = µ. For t > 2, we
takept as the probability distribution absolutely continuous
with respect toµ and with density

dpt(I) =
exp

(

−η∑t−1
s=1 ℓs(I)

)

∫

A exp
(

−η
∑t−1

s=1 ℓs(J)
)

dµ(J)
dµ(I) . (7)

The performance of this forecaster may be bounded as fol-
lows. Note that no assumption of continuity or convexity is
needed here.

Theorem 2 For all n > 1, the above instance of the expo-
nentially weighted average forecaster, when run with

η =

√

8(m+ 1) ln(N
√
n)

n
,

ensures that for allδ > 0, its regret is bounded, with proba-
bility at most1 − δ, as

Rn 6
√
n

(

1 +

√

(m+ 1) ln(N
√
n)

2

)

+

√

n

2
ln

1

δ
.

Proof: By the Hoeffding-Azuma inequality, since theψt

take bounded values in[0, 1], we have that with probability
at least1 − δ,

Rn 6

n
∑

t=1

∫

A
ℓt(I) dpt(I)− inf

I∈A

n
∑

t=1

ℓt(I)+

√

n

2
ln

1

δ
. (8)

We denote, for allt > 1,

Wt =

∫

A
exp

(

−η
t
∑

s=1

ℓs(I)

)

dµ(I)

(with the conventionW0 = 1). The bound on the differ-
ence in the right-hand side of (8) can be obtained by upper
bounding and lower bounding

lnWn =

n
∑

t=1

ln
Wt

Wt−1
.

The upper bound is obtained, as in [CBL06, Theorem 2.2],
by Hoeffding’s inequality,

ln
Wt

Wt−1
6 −η

∫

A
ℓt(I) dpt(I) +

η2M2

8
.

A lower bound can be proved with techniques similar to the
ones appearing in [BK97], see also [CBL06, page 49]. We
denote byI∗ the element ofA achieving the infimum in the
definition of the regret (if it does not exist, then we take an
element ofA whose cumulative loss is arbitrarily close to
the infimum). As indicated in Section 9.1,I∗ can be de-
scribed by the (ordered) shifting timesg∗1 , . . . , g

∗
m and the

corresponding actionsxk∗

1
, . . . , xk∗

m+1
. We denote byλ the

Lebesgue measure. We consider the set of the simultaneous
actionsI that differ fromI∗ on a union of intervals of total
length at mostε > 0, for some parameterε > 0,

Aε(I
∗) =

{

I : λ{I 6= I∗} 6 ε
}

.

Aε(I
∗) contains in particular theI that can be described with

the samem+1 actions asI∗ and for which the shifting times
g1, . . . , gm are such that

m
∑

j=1

∣

∣g(j) − g∗j
∣

∣ 6 ε ,

i.e., theI for which the corresponding probability distribu-
tionV (g1, . . . , gm) as defined in (6) isε–close inℓ1–distance

to V
(

g∗1 , . . . , g
∗
m

)

. Becauseµ induces by construction, via
the applicationV , the uniform distribution over the simplex
of probability distributions overm+ 1 elements, we get, by
taking also into account the choice of the fixedm+1 actions
of I∗,

µ
(

Aε(I
∗)
)

>
εm

Nm+1
.

Here, we used the same argument as in [BK97], based on ob-
serving the fact that the uniform measure of theε–neighbor-
hood of a point in the simplex of probability distributions
over d elements equalsεd−1. In addition, because theψt

take values in[0, 1], we have, for allI ∈ Aε(I
∗) and all

s > 1,

ℓs(I) 6 ℓs(I
∗) + λ{I 6= I∗} 6 ℓs(I

∗) + ε .

Putting things together, we have proved

lnWn

= ln

∫

A
exp

(

−η
n
∑

s=1

ℓs(I)

)

dµ(I)

> ln

(

µ
(

Aε(I
∗)
)

exp

(

−η
(

εn+
n
∑

s=1

ℓs(I
∗)

)))

> −η
n
∑

s=1

ℓs(I
∗) −

(

m ln
1

ε
+ (m+ 1) lnN + ηεn

)

.

Combining the upper and lower bounds onlnWn and sub-
stituting the proposed value forη concludes the proof.

Efficient implementation in this context requires exact
simulation of a step functionI according to (7), that is, from
the distribution

dpt(I) ∝ exp

(

−η
∫ 1

0

ϕt−1

(

g, I(g)
)

dg

)

dµ(I) (9)

for the functions defined, for eachx ∈ X , as

ϕt−1(· , x) =
t−1
∑

s=1

ψs(· , x) ,

which take values in[0, t − 1]. One could simulate from
(9) by rejection sampling proposing fromµ; the probability
of acceptance is bounded below by something of the order of
e−

√
t, in view of the value ofη. Therefore, the computational

cost of such an algorithm, although only linear inm andN ,
would be typically exponential int, hence unappealing.

Note that the problem (at each roundt) can be repre-
sented as a discrete-time Markov model. The Markov chain
Z is given by the pairs formed by the shifting times and
their corresponding actions,Zj =

(

G(j),Kj+1

)

, for j =
0, . . . ,m and with the conventionG(0) = 0. Let π denote
the law of this Markov chain when the timesG1, . . . , Gm are
i.i.d. uniform over[0, 1] and the action indexesK1, . . . ,Km+1

are taken i.i.d. uniform in{1, . . . , N}. Then simulatingI ac-
cording to (9) is equivalent to simulatingZ according to the
distribution

dπ̃t−1(Z) ∝
m+1
∏

j=2

wj

(

Kj−1, G(j−1), G(j)

)

dπ(Z)

where, forg 6 g′,

wj(k, g, g
′) = exp

(

−η
∫ g′

g

ϕt−1(u, xk) du

)

,

Exact simulation from̃πt−1 is feasible when the state-space
of Z is finite, and consists, e.g., in the same type of dynamic
programming approach discussed in Section 5. However,
this is not the case here, since the second component ofZj

takes values in[0, 1]. Approximating the state-space ofZ by
a grid is a possibility for an approximate implementation, but
it will be typically less efficient than the approximation we
advocate in Section 9.3.

An interesting alternative is to resort to sequential Monte
Carlo methods (broadly known as particle filters, see for ex-
ample [DdFG01] for a survey). This is a class of meth-
ods ideally suited for approximating Feynman-Kac formu-
lae; a concrete example is the computation of expectations
of bounded functions with respect to the lawsπ̃t−1 defined
above. This is achieved by generating a swarm of a given
large number of weighted particles. The generation of parti-
cles is done sequentially inj = 1, . . . ,m+ 1 by importance
sampling, and it involves interaction of the particles at each
step. This generates an interacting particle system whose sta-
bility properties are well studied (see, for instance, [DM04]).
Resampling a single element from the particle population ac-
cording to the weights gives as an approximate sample from
π̃t−1, hence from (9). The total variation distance between
the approximation and the target is typicallyC(m + 1)/K,
for some constantC depending on the range of the inte-
grands. In the most naive implementation in this context,
one might thus have thatC is exponentially small int/m.
The idea of an on-going work would be to makeC indepen-
dent oft by carefully designing the importance sampling at
each step taking into account the characteristics of theϕt−1.

Below we use a simple discretization and apply the tech-
niques of previous sections to achieve approximate sampling
from (7).

9.3 Approximate generation by discretization

Here we show how an approximate version of the forecaster
described above can be implemented efficiently.

The argument works by partitioning[0, 1] into intervals
G0 = [0, 1/ε[, G1 = [1/ε, 2/ε[, . . ., GMε of lengthε (ex-
cept maybe for the last interval of the partition), for some
fixed ε > 0, and using the same action for all tasks in each
Gj . Here, we aggregate all tasks within an intervalGj into
a super-taskj. We haveM = Mε = ⌈1/ε⌉ of these super-
tasks and will be able to apply the techniques of the finite
case.

More precisely, we restrict our attention to the elements
of A whose shifting times (in number less or equal tom) are
starting points of someGj , that is, are of the formj/ε for
0 6 j 6 Mε. We call them simultaneous actions compati-
ble with the partitioning and denote byBε the set formed by
them. The loss of super-taskj at timet given the simulta-
neous actions described by the elementI ∈ Bε is denoted
by

ℓ
(j)
t (I) =

∫

Gj

ψt

(

g, I(j/ε)
)

dg .

Note that these losses satisfyℓ(j)t (I) ∈ [0, ε].
By the same argument as the one used in the proof of

Theorem 2, we have

inf
I∈A

n
∑

t=1

ℓt(I) 6 inf
I∈Bε

n
∑

t=1

ℓt(I) +
mnε

2
.

This approximation argument, combined with Proposition 1
and the results of Section 5 leads to the following. (We use
here the fact that there are not more than

(

Mε

m

)

Nm
6
(

MεN)m

elements inBε.

Theorem 3 For all ε > 0, the weighted average forecaster
run on theMε super-tasks defined above, under the con-
straint of not more thanm shifts, ensures that for a proper
choice ofη and with probability at least1 − δ, the regret is
bounded as

Rn 6

√

nm ln
(

N⌈1/ε⌉
)

2
+
mnε

2
+

√

n

2
ln

1

δ

In addition, its complexity of implementation isO
(

(Nm)2/ε
)

.

The choice ofε of the order of1/
√
n yields a bound

comparable to the one of Theorem 2, for a moderate compu-
tational cost ofO

(√
n(Nm)2

)

.
These results can easily be extended to the bandit setting,

whenψt is only observed throughIt as

ℓt(It) =

∫

[0,1]

ψt

(

g, It(g)
)

dg .

This is because wheneverIt is compatible with the partition-
ing, the latter is also the sum of the losses of the actions taken
in each of the super-tasks. The techniques of Section 7 can
then be applied again.

References
[ABR07] J. Abernethy, P.L. Bartlett, and A. Rakhlin. Mul-

titask learning with expert advice. InProceed-
ings of the 20th Annual Conference on Learn-
ing Theory, pages 484–498, New-York, 2007.
Springer.

[AHR08] J. Abernethy, E. Hazan, and A. Rakhlin. Com-
peting in the dark: An efficient algorithm for
bandit linear optimization. InProceedings of
the 21st Annual Conference on Learning Theory
(COLT 2008), pages 263–274, 2008.

[AK04] B. Awerbuch and R.D. Kleinberg. Adaptive
routing with end-to-end feedback: distributed
learning and geometric approaches. InProceed-
ings of the 36th Annual ACM Symposium on
Theory of Computing, pages 45–53, New York,
2004. ACM.

[BDH+08] P. Bartlett, V. Dani, T. Hayes, S.M. Kakade,
A. Rakhlin, and A. Tewari. High-probability
regret bounds for bandit online linear optimiza-
tion. In Proceedings of the 21st Annual Confer-
ence on Learning Theory (COLT 2008), pages
335–342, 2008.

[BK97] Avrim Blum and Adam Kalai. Universal port-
folios with and without transaction costs. In
Proceedings of the 10th Annual Conference on
Learning Theory, pages 309–313. ACM Press,
1997.

[CBL06] N. Cesa-Bianchi and G. Lugosi.Prediction,
Learning, and Games. Cambridge University
Press, New-York, 2006.

[CBL09] N. Cesa-Bianchi and G. Lugosi. Combinatorial
bandits. Technical report, 2009.

[CCBG08] G. Cavallanti, N. Cesa-Bianchi, and C. Gentile.
Linear algorithms for online multitask classifi-
cation. In Omnipress, editor,Proceedings of
the 21st Annual Conference on Learning The-
ory, 2008.

[DdFG01] A. Doucet, N. de Freitas, and N. Gordon, edi-
tors. Sequential Monte Carlo Methods in Prac-
tice. Statistics for Engineering and Information
Science. Springer-Verlag, New York, 2001.

[DHK08] V. Dani, T. Hayes, and S.M. Kakade. The price
of bandit information for online optimization. In
Proceedings of NIPS 2008, 2008.

[DLS07] Ofer Dekel, Philip M. Long, and Yoram Singer.
Online learning of multiple tasks with a shared
loss. Journal of Machine Learning Research,
8:2233–2264, 2007.

[DM04] P. Del Moral.Feynman-Kac formulae. Probabil-
ity and its Applications (New York). Springer-
Verlag, New York, 2004. Genealogical and in-
teracting particle systems with applications.

[GLL04] A. György, T. Linder, and G. Lugosi. Efficient
algorithms and minimax bounds for zero-delay
lossy source coding.IEEE Transactions on Sig-
nal Processing, 52:2337–2347, 2004.

[GLL05] A. György, T. Linder, and G. Lugosi. Track-
ing the best of many experts. InProceedings of
the 18th Annual Conference on Learning The-
ory, pages 204–216, 2005.

[GLLO07] A. György, T. Linder, G. Lugosi, and Gy. Ot-
tucsák. The on-line shortest path problem under
partial monitoring.Journal of Machine Learn-
ing Research (JMLR), 8:2369–2403, 2007.

[HW98] M. Herbster and M. Warmuth. Tracking the
best expert.Machine Learning, 32(2):151–178,
1998.

[MB04] H.B. McMahan and A. Blum. Online geomet-
ric optimization in the bandit setting against an
adaptive adversary. InLearning theory, volume
3120 of Lecture Notes in Computer Sciences,
pages 109–123. Springer, Berlin, 2004.

[Men07] F. Mengel. Learning across games. Technical
report, IVIE-working paper AD 2007-05, 2007.

[TW04] E. Takimoto and M. Warmuth. Path kernels
and multiplicative updates.Journal of Machine
Learning Research, 4(5):773–818, 2004.

[Vov99] V. Vovk. Derandomizing stochastic prediction
strategies. Machine Learning, 35(3):247–282,
1999.

