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COMPARISON STUDY OF THE GEOMETRIC PARAMETER
CALIBRATION METHODS

W. Khalil,* S. Besnard,* and P. Lemoine*

Abstract

This paper presents a comparison study on the methods of geometric
parameter calibration of robots. The study takes into consideration
classical methods, which require measuring the position or location
(position and orientation) of the terminal link using external sensors,
and self calibration methods, which carry out the calibration of the
geometric parameters using only the joint position sensors. This
comparison focuses on the identifiable parameters, condition number
of the observation matrix, and on the convergence rate of the
solution. This study is carried out by simulating the Puma Stanford
robots, but general conclusions are derived.
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1. Introduction

The absolute accuracy of a robot depends to a large extent
on the accuracy of the numerical values of the geometric
parameters used in the direct and inverse kinematic models.
Geometric calibration of robots is the process by which the
geometric parameters are precisely identified. In general,
the geometric calibration is carried out by solving a system
of linear or nonlinear equations, which are a function of the
geometric parameters, the joint positions, and the location
(position and orientation) of the end-effector frame.

A large variety of methods have been proposed for the
calibration of the geometric parameters. They vary by the
type of endpoint sensing, the endpoint constraints, and
by the number of equations. In this paper the following
methods have been used in the comparison:

e (Classical Open Loop Method: this method is based
on using a set of configurations for which the joint
positions and the corresponding Cartesian coordinates
of the terminal frame position or location are given
[1-4].

e Relative Location Measure: the calibration is carried
out using the joint positions and the relative Cartesian
location between each couple of configurations.
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e Distance Measure: this method uses the joint posi-
tions of a set of configurations and the distance between
the terminal points of each couple of configurations.

e Frame (or position) Link: this autonomous method
needs only the joint positions: no external sensor is
needed. It can be applied for redundant robots or non-
redundant robots, which can achieve the same location
(or position in the case of position link) of the terminal
frame by multiple configurations. The data used in the
calibration correspond to the joint variables of some
sets of robot configurations, giving the same Cartesian
location (or position) of the terminal link of the robot
[5-8].

e Plane Link: in this case, the calibration is carried out
using the joint positions of a set of configuration whose
terminal points are in the same plane [9-13].

This paper focuses primarily on the identifiable pa-
rameters of these methods and on their convergence rate.
The geometric parameters are estimated using a linearized
model, which is solved iteratively using a least squares cri-
terion, and by updating the identified parameters and the
observation matrix after each iteration. Simulations show
that even in the case of large errors in the parameters, such
techniques work very well.

The paper is organized as follows: the parameters
defining the robot are presented in Section 2. Section 3
describes the calibration methods. Section 4 presents the
simulation of the calibration methods on the Puma and
Stanford robots as well as the comparison of the different
methods. Section 5 is the conclusion.

2. Description of the Geometric Parameters

The geometric parameters are the constant parameters and
the offsets of the joint positions that are used to calculate
the location of the end-effector of the robot with respect
to the fixed world frame.
We consider serial robots consisting of n joints and
n + 1 links. Link 0 is the base and link n is the terminal
link, frame j is defined fixed on link j, we denote:
e frame -1: the fixed reference frame
e frame n + 1: the end-effector frame
The end-effector location can be computed with re-
spect to the reference frame by the direct geometric model:

T =TT, (¢) " Ty (1)



where ‘T is the 4 x 4 transformation matrix defining frame
7 relative to frame ¢ and ¢ is the vector of joint variables.

The definition of the link frames used here follows the
notations of the modified Denavit and Hartenberg method
proposed by Khalil and Kleinfinger [14, 15]. Frame j is
defined such that z; is along the axis of joint j, and z; is
perpendicular to z; and z;41. Frame j is defined relative
to frame j — 1 by the matrix /=T, which is a function of
the four parameters (a;, d;, 8; and r;) as shown in Fig. 1.
The joint variable g; is equal to §; if joint j is revolute and
r; if joint j is translational.

Figure 1. The geometric parameters of a serial robot.

Although frames ~'Ty and "T,y; can be arbitrarily
defined, it has been shown that the calculation of ~!'T,,
can be obtained as a function of the geometric parameters
of n 4+ 2 frames represented by four parameters for each
frame (o, d;, 0;, and ;) for j =0,... ,n+ 1, except for
the first frame for which ap = 0, dg = 0 [15, 16].

In the calibration process, we have to identify the
deviation of the real parameters from the nominal values,
thus to identify: A6y, Arg and Aa;, Ad;, Ab;, Ar; (for
j=1,...,n+1).

If the axis of joint j is parallel to the axis of joint j — 1,
an additional parameter A3;, which is called the Hayati
parameter, must be considered [17]. The nominal value of
B; is equal to zero such that:

J’*lTj _

Rot(y, 8;).Trans(x, d;) Rot(z, a—j).Trans(z, ;) .Rot(z, §;)
(2)

Using the same procedure, one can also identify the
errors on the joint angle gains giving the joint positions
from the position sensor readings. They will be denoted
by AK; (for j=1,...,n) [4].

The geometric parameters of the Puma manipulator
are given in Table 1 and those of the Stanford arm are
listed in Table 2. We have supposed the same ~'Ty and
"Ty4+1 for both robots. Beside the parameters §;, a;, dj,
6;, and r; we see the following parameters:

e 0;: which defines the type of the frame
o; = 01if joint j is revolute
o; = 11if joint j is prismatic
o; = 2 if frame j is fixed

e K;: the joint angle gain of joint j , for j =1,... ,n
Figure 2. Puma manipulator.

Figure 3. Stanford manipulator.

Table 1
The Geometric Parameters of the Puma (6R) Robot

jloj  aj d; 0; i B K;
02 0 0 =x/2 05 0 0
110 0.1 0 01 0 0 1
210 —7/2 0 02 0.1491 0 1
3]0 0 04318 65 0 0 1
410 =w/2 -0.0203 6, 0.4331 0 1
500 —m/2 0 05 0 0 1
6|0 /2 0 06 032 0 1
712 1.3 02 x/2 01 0 0

Units are given in meters for the distances and radians

for the angles.

Table 2
The Geometric Parameters of the Stanford (RRPRRR)
Robot
jlojg oy dj 05 i B K;
02 0 0 n/2 05 0 0
110 01 0 6 0 O 1
210 —7/2 0 62 02 0 1
31 «/2 0 0 r3 O 1
410 0 0 6, 0 O 1
500 —7/2 0 65 0 0 1
6|0 7/2 0 65 03" 0 1
712 13 02x/2 01 0 0

Units are given in meters for the distances and radians
for the angles.
I ¢ is not equal to zero because of the supposed

terminal frame.

3. Calibration Methods

The calibration methods studied in this paper differ ac-
cording to the variables used in the calibration model and
the type of measuring device. A unified approach can be
formulated using the framework suggested in [18]. Accord-
ing to this formulation, the kinematic calibration equation
can be written in the general form:

0= flg,zn) (3)

with
e r as the Cartesian variables giving the position and
orientation of the terminal frame
e ¢ as the (n x 1) joint variables vector
e 7, as the (Np x 1) vector of the real (unknown) values
of the geometric parameters



Each method can be classified by a calibration index
giving the number of equations of the function f [19].

The nonlinear calibration equation (3) can be lin-
earized to get the differential equation:

Ay(g, z,m) = V(g n)-An (4)
with
e Anp =7, —n, defining the vector of the errors on the
geometric parameters
e 7 as the vector of the nominal values of the geometric

parameters
To estimate An, (4) will be applied using a sufficient
number of configurations Q = ¢!, ...¢™ to obtain an over-

constrained system of equations:

AY(Q,X,n) = W(Q,n).An (5)
with

Ay(g*, 2t n) U(q',n)
AY = : W =

Ay™(g™, 2™, n) (g™, n)
where W is the (r X Np) observation matrix with » > Np,
X=z'... 2™

It can be seen that if some columns of W are depen-
dent, and W is of rank b < Np, then relation (5) can be
reduced to [20]:

AY(Q, X, n) = Wp(Q,n).Am (6)

where Wy, contains arbitrarily b independent columns of
‘W, the corresponding parameters are called the identifiable
(or base) parameters. They will be denoted by the vector
Ar]b.

The determination of the identifiable parameters Amny,
must be done before the identification process. They can
be obtained numerically using the QR decomposition of
a matrix W similar to that defined in (5), but obtained
using random configurations satisfying the constraints of
the calibration method. The outline of this method is given
in Appendix A.

Equation (6) will be solved to get the least squares
error solution to the current parameter estimate. This
procedure is iterated until the vector An, is sufficiently
small. After each iteration, the geometric parameters will
be updated in Wy, and AY'. In the following we will use the
standard pseudo-inverse to estimate An,. Other methods
using statistical solutions are given in [18]. The condition
number of Wy, gives an index measure for the observability
of the parameters in the calibration system of equations.
To get good results the condition number must be close
to one [16]. Other indices of the observability using the
product of the singular values can be also used [21]. It has
been shown that the condition number is more sensitive
[22].

The elements of An, have different units: meters (for
distances) radians (for angles) or even no units (gain coeffi-
cients). The effect of this heterogeneity can be reduced by

a column normalization of the matrix Wy, [19, 23]. Thus,
(6) becomes:

[l

where w; is the jth column of the matrix Wi,.
It is to be noted that since the columns of Wy, corre-
spond only to the identifiable parameters, w; # 0.

b
W
AY =Y A || (7)
j=1

3.1 Classical Calibration Method

This method needs external sensors to measure the location
of the terminal frame with respect to the world reference
frame.

The nonlinear equation of the calibration is given as:

_lTn+1(Qa M) — _1Tn+1(x) =0 (8)

The linear differential model defining the deviation of

the end-effector location due to the differential error in the
geometric parameters can be obtained as [7, 16]:

Ax(q,n) = J(g,n).-An (9)
with

e Ax represents the (6 x 1) vector of the position and
orientation errors (representing the difference between
measured and computed ~1T,, ;1)

e J is the (6 x Np) Jacobian matrix of frame (n + 1)
with respect to the geometric parameters. Its columns
can be calculated directly using the elements of the
transformation matrices ~'T; as given in Appendix B.
The calibration index of this method is equal to 6. If

the external sensor gives only the position of the endpoint,
only the first three equations of (9) will be used and the
calibration index will be equal to 3.

3.2 Calibration Using Relative Location Measure

In this method we need an external sensor giving the
relative location of the end-effector frame when moving
from configuration ¢® to ¢®. Let the (4 x 4) matrix °F,
denote this measure, thus:

[_1Tn+1(qaanr)]_1~_1Tn+1(qb7nT) = an (10)

The nonlinear calibration relation is given by:

71Tn+1(qb77]7') - 71Tn+1(qaa nr)'an =0 (11)

The differential model of the first-order development
is given as:

[J(g*,n) — I2(q", m, “Fu)].An = Az(q®, ¢, n, °F,  (12)

J(g% n) is obtained as given in Appendix B, while
J2(q¢% n,*Fp, can be obtained from the expressions of
J(q%,n) after replacing the vector ~'P,,,1(¢%,n) by the dis-
placement vector of the transformation ~'T,,11(q%, 7).°Fp.
The right-hand side of (12) is the differential error vector
between the frames ~!'T,,11(¢%,7) and ~1T,,41(q¢% 1).°Fy.

The calibration index of the method is equal to 6.



3.3 Calibration Using Distance Measure

This method handles the calibration of the geometric pa-
rameters of robots if the Cartesian distance of the endpoint
can be measured using an external sensor when moving
from configuration g% to ¢®.

Suppose two configurations, ¢ and ¢, where the
Cartesian distance between the position of their endpoints
is Dr, the nonlinear calibration equation is given as:

[Pa(q”,n;) — Pa(q,ne)]* + [Py(a”,nr) — Py(a®, )]
+[Pz(q", 1) — Pz(¢%,n,))* = Dr? (13)
The first-order differential model is given by:

{2.[Px(¢") — Px(q")).[T2(¢") — J(q®)]
+2.[Py(q") — Py(¢)).[Ty(¢") — Jy(q®)]

+2.[Pz(¢") = Pz(¢")].[J2(¢") = J=(¢")]} An = Dr? — D*
(14)
where:

e D is the distance between the endpoints of configura-
tions ¢® and ¢°, using the nominal parameters and the
geometric model

e Jz, Jy, and Jz denote respectively, the first, second,
and third row of the Jacobian matrix defined in (9).
The calibration index of this method is equal to 1.

3.4 Frame Link and Position Link Calibration
Methods

The main problem of the previous methods is the need
to have an accurate, fast, and inexpensive external sensor
to measure the Cartesian variables. The frame link (or
position link) method can be used for robots (redundant
or not), where for a given location (or position) of the
terminal effector, multiple configurations can be obtained
from the inverse kinematic model. Let ¢® and ¢® represent
two configurations giving the same location of the terminal
link, then the nonlinear calibration model is given as:

_1Tn+1(qa7777") = _1Tn+1(qb7nT) (15)

The first-order differential model gives:

[J(¢".n) = I(q",m)] .An = Ax(q*,¢",n)  (16)

where J is the Jacobian matrix of frame (n+1) with respect
to the geometric parameter variations, as defined in (9).

Az is the differential position and orientation
vector between the tool locations ~'T,.1(¢%n) and
(g’ m).

The calculation of the identifiable parameters can be
carried out, as demonstrated in Appendix A, by studying
the QR decomposition of an observation matrix W calcu-
lated from (16) using a sufficient random couple of config-
urations, which give the same tool location. Such couple
of configurations are obtained by supposing a random con-
figuration ¢%, then computing the terminal frame location
“1T,,1(¢%). Finally ¢ is obtained using the solution of

the inverse geometric model for ~!T,, ;1 (¢%) and such that
b a
¢ #q"

In the case of the position link method, we take
g® and ¢® giving the same terminal position such that
P, 11(¢% ) — “'Ppsr(gP,,). Thus, we use only the
first three equations of (16).

The calibration index, in the case of frame link, is
equal to 6. It will be reduced to 3 in the case of position
link.

3.5 Planar Calibration Methods

In this case the calibration will be carried out using the
values of the joint positions of a set of configurations of
the robot whose endpoints are in the same plane. Differ-
ent methods based on this technique have been proposed
previously [9-13].

Two methods are used in our study.

3.5.1 The First Method: Calibration Using Plane
FEquation

The general nonlinear equation of the calibration is:

a.Px(q,n) + b.Py(q,n,) + c.Pz(q,n:) +1=0  (17)

where

a, b, and c represent the plane coefficients

Pzx, Py, and Pz represent the position coordinates of
the terminal point in the world frame

Using a first-order development, the differential model
is obtained as:

[Pz(q,n) Py(q,n) Pz(q,n) a.Jz(g,n)

+b.Jy(q,n) + c.Jz(q,n)] .

= —a.Px(q,n) — b.Py(q,n) — c.Pz(g,n) — 1 (18)

where:

Jx, Jy, and Jz are respectively, the first, second, and
third row of the Jacobian matrix defined in (9).

Pu(q, ), for u = x,y, z represent the u coordinate of
the terminal point position at configuration q.

The coefficients of the plane are initialized by calculat-
ing the equation of the nearest plane to the terminal points
of the given configurations.

If the coefficients of the plane are known, the parame-
ters a, b, and ¢ will be not identified. The corresponding
columns and unknowns in (18) will be eliminated.

The calibration index of this method is equal to 1.



3.5.2 Second Method: Calibration using Normal Coor-
dinates

In this method, we make use of the fact that the scalar
product of the coordinates of the vector normal to the
plane and of any vector between two points (i and j) in
the plane is equal to zero [9, 12]. The main advantage of
this procedure is that the coordinates of the normal can be
obtained easily using inclinometers.

The system equation is thus:

a. {Px(¢’,n.) — Px(q",n)r) }+b. { Py(¢’ ;) — Py(q’,mr) }

+c.{Pz(¢’,n;) — Pz(¢',my)} =0 (19)

Using a first-order development for n and assuming
that the normal coordinates are known, we obtain:

{a.[Ja(¢?) — Jx(q")] +b. [Jy(¢?) — Jy(q")]
+c. [Jz(qj) — Jz(qi)]} An = —a. [P:E(qj) — Px(qi)]

—b. [Py(¢’) — Py(q")] — c. [P2(¢") — Pz(q")]  (20)

The calibration index of this method is equal to 1.
4. Evaluation of the Calibration Methods

In this section we study the previous methods on both
the Puma and Stanford robots, and obtain some general
conclusions.

The comparison focuses on: the identifiable parame-
ters, the condition number of random data, the conver-
gence to the real parameters, and the number of iterations
to achieve convergence.

4.1 Identifiable Parameters

Tables 3 and 4 give the identifiable parameters of the two
robots. The parameters indicated by ‘0’ are not identifiable
and they have no effect on the identification model. The
parameters indicated by ‘n’ are not identified because they
have been regrouped to some other parameters. The re-
grouped relations can be obtained as given in Appendix A.
From Tables 3 and 4, the following general remarks are
deduced:

1. The location measure method can identify the maxi-
mum number of parameters (36 parameters for a Puma
robot and 34 for a Stanford robot), which corresponds
to the following general relation, in agreement with
that given in [24, 25]:

Number of Identifiable Parameters = 4(n + 1) + 2 —

2np + n.

This number can be interpreted as:

(a) 4 parameters for frames 1,... ,n+1

(b) 2 parameters for frame 0

(¢) —2np because two parameters are not identifiable
for each prismatic joint

(d) n parameters of joint angle gains

. The parameters of frames 0 and 1 have no effect on

the model and cannot be identified when using the
following methods: relative location measure, distance
measure, point link and frame link.

. Most of the parameters of frame n and n + 1 are not

identifiable in the frame link method.

. Most of the parameters of frames 0, 1, and 7 are not

identifiable in the planar methods. Some of them have
been regrouped to other parameters.

. The effect of the errors on the non-identifiable pa-

rameters will be calibrated through the parameters on
which they have been regrouped.

. The parameter 3; is not identifiable when o; # 0, that

is to say, when the axis j is not parallel to the axis
j—1

. The offsets of the joint variables 2,...,n — 1 and

all the gains K; are identifiable in all the methods.
qn, however, is not identifiable in frame link method,
whereas ¢ is not identifiable for the following methods:
relative location measure, distance measure, point link,
frame link, and unknown planar methods.

. The parameter rg is not identifiable in the point link

and plane link methods for the two robots; it represents
the scale factor of those closed-loop methods. In the
frame link method, the parameter r¢ has no effect and
the scale factor is given by r4 for the Puma manipulator
and r9 for the Stanford arm. It is to be noted that
in the case of Stanford arm, the scale factor could be
the prismatic variable r3 (instead of rg or rs) if we
suppose that the joint gain K3 is known and has not
been identified.

. The parameters a7, 07, and 7 are not identifiable in

the case of the position measure method because the
effector is just a point defined by rg, 6¢, and d;. For
the same reason they are not identifiable for point link
and plane link methods.



Table 3
Identifiable Parameters of the Puma Robot

Relative Plane Link 1| Plane Link 1 | Plane Link 2 | Plane Link 2
Position | Location | Location | Distance | Point | Frame | (Known (Unknown (Known (Unknown
Parameter | Measure | Measure | Measure | Measure | Link | Link Plane) Plane) Plane) Plane)

00 0 0 0 0 n n n n
r0 0 0 0 0 n 0 0
al 0 0 0 0 n n
dl 0 0 0 0 n n 0 0
01 0 0 0 0 n n
rl 0 0 0 0 n n 0 0
61 n n 0 0 0 0 n n n n
a2

d2

62

72

(2 n n n n n n n n n n
a3

d3

03

r3 n n n n n n n n n n
83

o4

d4

04

r4 n

64 n n n n n n n n n n
ad

db

05

75

85 n n n n n n n n n n
b

d6

06 0

r6 n 0 n n n n
056 n n n n n 0 n n n n
o’ n n n 0 n n n n
dv7 0




Relative Plane Link 1| Plane Link 1| Plane Link 2 | Plane Link 2
Position | Location | Location | Distance | Point | Frame| (Known (Unknown (Known (Unknown
Parameter | Measure | Measure | Measure | Measure | Link | Link Plane) Plane) Plane) Plane)
07 0 0 0 0 0 0 0 0
r7 n n n 0 n n n n
67 n n n n n 0 n n n n
K1
K2
K3
K4
K5
K6
Total 33 36 30 27 26 23 29 26 28 26 *

n: non-identifiable parameter, its effect is regrouped on some other parameters

0: non-identifiable parameter having no effect on the model

* in this method the coefficient ¢ of the normal to the plane is not identifiable




Table 4
Identifiable Parameters of the Stanford Robot

Relative Plane Link 1| Plane Link 1 | Plane Link 2 | Plane Link 2
Position | Location | Location | Distance | Point | Frame | (Known (Unknown (Known (Unknown
Parameter | Measure | Measure | Measure | Measure | Link | Link Plane) Plane) Plane) Plane)

00 0 0 0 0 n n n n
r0 0 0 0 0 n 0 0
al 0 0 0 0 n n
dl 0 0 0 0 n n 0 0
01 0 0 0 0 n n
rl 0 0 0 0 n n 0 0
betal n n 0 0 0 0 n n n n
a2

d2

62

72 n

(2 n n n n n n n n n n
a3

d3

03 n n n n n n n n n n
r3

063 n n n n n n n n n n
o4

d4 n n n n n n n n n n
04

r4 n n n n n n n n n n
B4

ad

db

05

75

85 n n n n n n n n n n
b

d6

06 0

r6 n 0 n n n n
056 n n n n n 0 n n n n
o’ n n n 0 n n n n
dv7 0




Relative Plane Link 1| Plane Link 1| Plane Link 2 | Plane Link 2
Position | Location | Location | Distance | Point | Frame| (Known (Unknown (Known (Unknown
Parameter | Measure | Measure | Measure | Measure | Link | Link Plane) Plane) Plane) Plane)
07 0 0 0 0 0 0 0 0
r7 n n n 0 n n n n
67 n n n n n 0 n n n n
K1
K2
K3
K4
K5
K6
Total 31 34 28 25 24 21 27 24 26 24 *

n: non-identifiable parameter, its effect is regrouped on some other parameters

0: non-identifiable parameter having no effect on the model

* in this method the coefficient ¢ of the normal to the plane is not identifiable




4.2 Simulation Results

The following errors are supposed on the parameters of the
Puma robot:

Aas : —0.05 Aas : +0.05 Ads : +0.05 Ads : —0.05
Ary : —0.05 Ars: 4+0.05 A6 : +0.05 Afb,: +0.05
Afs : —0.05 AK;:+0.050 AK3:—0.050 AKg: +0.05

The following errors are supposed on the parameters
of the Stanford robot:

Aasg : +0.05 Aas : —0.05  Ads : +0.05 Ads : +0.05
Ars 1 +0.05 Ars: +0.05 Afy 1 —0.05 Ab4 : +0.05
Abs : —0.05 AK —1:+40.1 AK35:-0.1 AKg:—0.05

These errors give about 30 cm errors on the endpoint
position for each robot. This error is very large with
respect to the performance of industrial robots. Even in
this extreme case, the standard pseudo-inverse works very
well.

It is to be noted that these errors are identifiable in all
the methods. The unknown vector Az contains all of the
identifiable parameters of the corresponding method.

The calculation of the precision of the robots after
the calibration is done with a set of 200 configurations,
randomly distributed in the workspace of the robot, which
are not used in the calibration process.

To get reliable results, each method has been tested
using 10 different random sets of data. The number of
configurations used for each method is taken so that we
obtain 120 equations for the calibration, which is about
four times the number of parameters.

4.3 Simulation without Noise

In this case we assumed exact measuring of ¢, and X and
exact constraint links. The estimation process has been
converged to the exact values of the geometric parameters
in all the methods in about 5-8 iterations. The accuracy of
the robot after calibration is seen to be 10~'4 meters for
the position and 10~'* radians for the orientation, which
correspond to the numerical precision.

4.8.1 Simulation with Noise

In order to simulate a realistic calibration process, noisy
data have been considered. The noise on the joint po-
sitions is randomly generated as equal to half a step of
the encoders: we consider an encoder with 100,000 points
for each joint, which corresponds to 6.6E-5 radians for a
step. In the same way, we add normally zero mean dis-
tributed noise on the Cartesian measures and on all the
virtual links in the autonomous methods with a variance
of 0.1 millimeter on the position and 0.1 milliradians on
the orientation.

10

It is to be noted that in the case of exact geometric
parameters, the error on the position of the endpoint due
to the imprecision on the joint position values is about
0.3 mm for the Puma robot and 0.2 mm for the Stanford
robot.

Tables 5 and 6 give the identification results for the
Puma and Stanford arms respectively. In all the meth-
ods, the convergence of the estimation of the geometric
parameters has taken place within 6-13 iterations.

4.83.2 Remarks

From the foregoing simulations, the following remarks are
given:

e In general, random data give good condition numbers
for all methods, except plane link methods. Therefore,
for planar points the user may need to select the
location of the plane and the robot configurations by
an optimization procedure.

e The normalization of the columns of the matrix Wb
reduces its condition number.

e The condition number range is larger for the Stanford
robot than for the Puma robot in the case of frame
link. This can be explained by the fact that the
inverse kinematic model of the Stanford arm has only
four solutions, which limits the distribution of the
configurations in the workspace.

e In general, the number of iterations increases when
the condition number increases. This can be especially
seen with the plane link methods, which have slower
convergence than the other methods.

e In the case of joint angle noise, bias errors may result
on the identified parameters, but the accuracy of the
robot after calibration will be in the same order as the
errors. For instance, in the case of the Puma robot,
the joint noises give an error on the terminal point of
about 0.3, which is in the same range as the errors
due to the errors on the identified parameters after
calibration in all the methods except in the case of
some simulations concerning the plane link methods.

e We can observe that the final calibration accuracy of
the robot using plane link identification methods with
noisy data is less efficient than the other methods.

e When the level of noise is as given here, which is higher
than typical values on industrial robots, the pseudo-
inverse method works very well. If needed, statistical
methods can take as initial conditions the solution
obtained by the standard pseudo-inverse method.

5. Conclusion

This paper presents a comparison study on the geometric
parameter calibration methods of robots. The study is
carried out on the Puma and Stanford robots. Comparison
of the methods focused on the identifiable parameters, the
condition number, the convergence rate, and the precision.
Noisy data have been also considered.



Table 5

Calibration of the Geometric Parameters of the Puma Robot with Noise

Interval of

Interval of

maximum maximum
position error orientation error |Convergence:| Interval of Interval of
on the terminal on the terminal Interval of |non-normalized | normalized
point (m) point (rad) number condition condition
After calibration After calibration |of interations number number
Position
Measure 1.62E-04 : 3.19E-04 | 4.01E-04 : 5.90E-04 6:6 10.8 : 13.2 6.6:9.0
Location
Measure 1.69E-04 : 2.74E-04 | 1.70E-04 : 2.64E-04 6:6 10.5: 14.9 8.3:10.1
Relative
Location Measure | 1.08E-04 : 2.44E-04 | 1.33E-04 : 2.48E-04 6:6 9.9:12.3 6.9:10.7
Distance
Measure 1.72E-04 : 3.22E-04 | 3.30E-04 : 6.03E-04 6:7 17.1: 23.6 6.9:9.1
Point Link 1.26E-04 : 2.63E-04 | 3.19E-04 : 6.29E-04 6:6 9.9: 125 6.1:8.0
Frame Link 6.89E-05 : 3.92E-04 | 1.23E-04 : 4.98E-04 6:6 9.6: 164 6.9:10.7
Plane Link 1
(known plane) |2.61E-04 : 7.81E-04 | 4.48E-04 : 1.07E-03 6:7 12.5: 1971 | 8.7:31.3
Plane Link 1
(unknown plane) |2.56E-04 : 7.22E-04 | 4.29E-04 : 1.12E-03 7:9 18.6 : 472.4 9.4:37.9
Plane Link 2
(known normal) |3.14E-04 : 1.19E-03|5.79E-04 : 1.65E-03 6:7 14.2: 41.7 9.0:27.2
Plane Link 2
(unknown normal) | 2.73E-04 : 1.21E-03 | 4.99E-04 : 1.71E-03 7:13 32.4:4272.2 | 89:279
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Table 6

Calibration of the Geometric Parameters of the Stanford Robot with Noise

Interval of

Interval of

maximum maximum
position error orientation error |Convergence:| Interval of Interval of
on the terminal on the terminal Interval of |non-normalized | normalized
point (m) point (rad) number condition condition
After calibration After calibration |of interations number number
Position
Measure 1.69E-04 : 3.06E-04 | 3.60E-04 : 7.14E-04 6:7 11.0: 14.0 6.6:8.2
Location
Measure 1.46E-04 : 3.51E-04 | 1.27E-04 : 2.59E-04 6:6 14.0 : 20.6 10.6 : 16.6
Relative
Location Measure | 1.01E-04 : 2.52E-04 | 6.36E-05 : 1.82E-04 6:6 14.6: 224 |10.1: 16.2
Distance
Measure 1.79E-04 : 3.80E-04 | 3.25E-04 : 7.07E-04 6:7 19.0 : 26.1 9.6 : 13.7
Point Link 1.10E-04 : 2.14E-04 | 1.76E-04 : 5.74E-04 6:6 9.2:11.6 6.2:79
Frame Link 1.75E-04 : 7.82E-04 | 1.26E-04 : 3.63E-04 6:7 50.6 : 98.6 15.6 : 36.4
Plane Link 1
(known plane) |2.26E-04 : 6.26E-03 | 3.69E-04 : 6.66E-03 6:9 20.8 : 685.7 | 10.1: 60.0
Plane Link 1
(unknown plane) |2.22E-04 : 1.85E-03 | 3.80E-04 : 2.16E-03 6: 10 18.8 : 204.8 9.4:59.5
Plane Link 2
(known normal) |3.48E-04 : 1.94E-02|6.56E-04 : 1.73E-02 7:11 17.6: 871.1 9.8 : 45.7
Plane Link 2
(unknown normal) | 2.31E-04 : 1.60E-03 | 5.93E-04 : 1.54E-03 7:11 21.8: 316.8 | 9.7:46.0
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The identifiable parameters are determined for all of
the methods using a numerical method based on QR de-
composition, while the estimation of the geometric param-
eters is carried out using linearized iterative techniques.
General conclusions have been obtained concerning the
identifiable parameters of the different methods. It has
been shown that the iterative-pseudo inverse method with
column normalization works very well even in the case of
noisy data and large initial errors in the geometric param-
eters.
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Appendix A: Calculation of the Identifiable Param-
eters

Let us consider the following overconstrained system of
linear equations:

AY = W.Ap (21)

where W is (r X ¢) matrix with r > ¢. If b is the rank of
W, we can write:

Am
AY = [W; W). (22)
Anp
where:
e W, represents b independent columns of W
e W, represents the other (¢ — b) columns of W
We can write:
W, =W;.3 (23)

with /8 as the (b x (¢ — b)) matrix with constant elements.
Using (23), (22) can be written as:

AY = W1.An, (24)

with

Any = Any + B.An

The solution of the full rank system (24) will yield Anp,
which is called the identifiable (or base) parameter vector.
The matrix (§ is not needed in the identification process.

(25)

Numerically, the study of the identifiable parameters
is equivalent to the study of the space spanned by the
columns of the matrix W.

The QR decomposition of the matrix W is given as
[26, 27]:



R
QTW =

0(r7c)><c

where:

Q is an (r X r) orthogonal matrix

R is a (¢ X ¢) upper triangular matrix

0;x; is the (i x j) matrix of zeros

Theoretically, the non-identifiable parameters are
those whose corresponding elements on the diagonal of the
matrix R are equal to zero. Assuming 7 is the numerical
zero, if |R;;| representing the absolute value of the (i,1%)
element of R is less than 7, the corresponding parameter
An; is not identifiable. The numerical zero 7 can be taken
as [26]:
(27)

T = c.e. max.|R;|
where € is the machine precision.

To calculate the identifiable (base) parameters as a
function of the standard parameters, let us permute the
columns of W such that the first b columns are indepen-
dent:

[W.P] = [W; W] (28)

where:
e P is a permutation matrix
e W, represent b independent columns of W
o Wy, represent the other (¢ — b) columns of W.
The QR decomposition of (W.P) gives:

Ri R,
W Ws] =[Q; Q2. 0

where Ry is a (b x b) regular matrix. Then it becomes:

W, =W . R 'R, (29)
Thus from (23) and (29) we get:
B=R;'R, (30)

Appendix B: Calculation of the Jacobian Matrix

Assuming the (4 x 4) transformation matrix defining frame
j relative to the fixed frame as:

s; nj a; Pj

0001

oI = (31)

The calculation of the columns of the matrix J can be
done as follows [4, 15, 16]:

Ta Sj-1 X Lj_ 1011 7d 851
Sj—1 0(3x1)
a; X L, a;
Jo; = | T T = | (32)
a; O3x1)
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Jﬂj: ka:qu'.i

nj_1 X Lj_1n41 0q
ok,

nj—1

where:
e x denotes the vector product

® L; 41 is the (3 x 1) displacement vector between the
origin of frame j and the origin of frame n 4 1 equal to
Poy1 — P

® O(3x1) is the (3 x 1) zero vector

e Jg; is equal to JO; if joint j is revolute or Jr; if joint
7 is prismatic
All the vectors of (32) refer to the measuring fixed

frame.
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