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ABSTRACT 

This paper presents a software package for the simulation 
and the realization of the calibration of the geometric 
parameters of robots. This package which is called 
GECARO, GEometric CAlibration of RObots, contains 
new methods which can carry out the calibration of the 
geometric parameters and the gain transmission ratios of 
serial robots without the need of external sensors. It 
contains also classical methods which are based on 
measuring the position and the orientation of the terminal 
link using external sensors.   

I. INTRODUCTION 

The absolute accuracy of a robot depends to a large extent 
on the calibration of its geometric parameters. Geometric 
calibration of robots is the process by which the 
parameters defining the base parameters, link parameters 
and tool parameters are precisely identified. Classically, 
the geometric calibration is carried out by solving a 
system of linear or non-linear equations which is a 
function of the end-effector pose measurements and of 
the joint positions [1,...,4]. Recently, some papers have 
proposed autonomous calibration methods which do not 
need an external sensor ;  

-in [5,6,7,8] the observation matrix and the error vector 
have been constructed using the fact that different 
configurations of the robot can give the same pose of the 
terminal effector . 

 - in [9] the observation matrix is based on calculating the 
vector product of a set of vectors in the same plane, 
which must be equal to zero. Second order terms 
appearing in the vector products are neglected, thus the 
obtained observation matrix contains more approximation 
than the classical one, and the problem of the identifiable 
parameters is not considered in this paper. 

In this paper we present a software package which can 
simulate and realize the calibration of serial robots. The 
following methods are available: 

- Position measure: which is based on using an external 
sensor giving the position of the terminal point. The 
corresponding motors positions are also needed. 

- Frame measure : which is based on using an external 
sensor giving the position and the orientation of the 

terminal link. The corresponding motors positions are 
also needed. 

- Position link : which is an autonomous method needing 
no external sensor [8]. It can be applied for robots which 
can achieve the same position of the terminal point by 
multiple configurations. The data used in the calibration 
correspond to the motor variables of some sets of robot 
configurations, where the configurations of each set 
correspond to the same Cartesian position of the terminal 
point of the tool. No external sensor is needed.  

- Frame link : which is an autonomous method needing 
no external sensor [8]. This method can be used for 
robots which can achieve the same pose (position and 
orientation) of the terminal link by multiple 
configurations, thus having at least 6 d.o.f. The data used 
in the calibration correspond to the motor variables of 
some sets of robot configurations, where the 
configurations of each set correspond to the same 
Cartesian pose. 

- Plane link: This is an autonomous method. It uses in the 
calibration a set of points in a plane. Two methods are 
available [10] : in the first, the plane coefficients are 
supposed known, while in the second, the plane 
coefficients are unknown, they will be identified as well 
as the geometric parameters.     

In all the methods, the geometric parameter are identified 
using a linearized model which is solved iteratively using 
least squares criterion and by updating the identified 
parameters and the observation matrix after each iteration. 

The software package GECARO is running on PC 
computers and developed under MATLAB, using 
numerical methods. No symbolic model is needed. 

The paper is organized as follows : The parameters 
defining the robot will be presented in section 2. Sections 
3 , 4 and 5 describe the identification methods. Section 6 
presents the organization of GECARO. Section 7 contains 
the conclusion. 

 
2.DESCRIPTION OF THE ROBOT 

Two types of parameters are used:  

The geometric parameters defining the different frames 
and the geometric of the robot and general parameters 

 



concerning the joints limits, offset, gain rations, and the 
coupling between the motor and joints variables.  

 

2.1 Description of the geometric parameters 

We consider serial robots consisting of n joints and n+1 
links. Link 0 is the base and link n is the terminal link, 
frame j is defined fixed on link j. We denote : 
frame -1 : the fixed reference frame, 
frame n+1: the tool frame. 

The end-effector pose can be calculated with respect to 
the reference frame by the direct  geometric model : 

 -1Tn+1 = -1T0 0Tn(q) nTn+1 (1) 

where iTj  is the 4x4 transformation matrix defining 
frame j with respect to frame i. 
The definition of the link frames will be carried out by 
Khalil and Kleinfinger notation [11]. Frame j is defined 
such that zj is along the axis of joint j, and xj is 
perpendicular to zj  and zj+1. Frame j is defined with 

respect to frame j-1 by the matrix j-1Tj , function of the 

four parameters (j, dj, j, rj) .   

It have been seen that, the calculation of -1Tn+1 can be 

obtained as a function of the geometric parameters of n+2 
frames represented by four parameters for each frame (j, 

dj, j, rj) , except the first frame which is represented by 

only two parameters different than zero [8,12]. The joint 
variable qj is equal to j if joint j is rotational and rj if 

joint j is prismatic. 

In the calibration process, we have to identify the 
deviation of the real parameters from the nominal values, 
thus to identify :  ∆j, ∆dj, ∆j, ∆rj (for j = 0, n+1). 

If the axis of joint j is parallel to the axis of joint j-1, an 
additional  parameter j must be considered, the 

nominal value of j is equal to zero [13].  
Using the same procedure, one can identify also the error 
in the transmission gain of the joints ∆Kj (for j = 1, nj) 

[4].  

In GECARO the geometric parameters of the base frame, 
the robot links, and the tool frame will be represented by 
a unique table where each row, for j=1,…,nf, represents a 
frame as given in table 1.  Beside the parameters j, j, 

dj, j, rj, we see the following parameters : 

 . j : which defines the type of the frame, 

       j = 0 for j rotational,  j = 1 for j prismatic, and  j 
= 2 if frame j is fixed. 

 . Kj : the transmission gain ratio for joint j (not frame j), 
for j=1,...,nj, with nj is the number of joints.  

The number of frames is denoted nf. The difference (nf-
nj) gives the number of rows representing fixed frames.  

2.2 Definition of general parameters 

The following parameters are also needed in the 
calibration of the geometric parameters : 

a- Offset: a vector of nf components, containing the 
nominal values of the Offset of joint variables, for a fixed 
frame the Offset is equal to zero. 

b- Qmax and Qmin: the vectors of joint limits, for a 
fixed frame the corresponding elements are equal to zero. 

c- Com: the (njxnj) coupling matrix of motor variables, 

d- Coa: the (nfxnf) coupling matrix of joint variables, 

e- K: the vector of gain transmission,  

The joint variables are calculated as a function of motor 
variables using the following relation : 

 q = Coa*G(K)*Com*qm + Offset (2) 

where : 

  q is the (nfx1) joint variables vector, for a fixed frame 
the joint variable is equal to zero,  

  qm is the (njx1) vector of motor variables ,  

G(K) is a (nfxnj) matrix, equal to :   






diag (K)

0(nf-nj)xnj
   

   where 0ixj is the zero matrix of dimension ixj . 

f- The (nfx6) priority matrix. This matrix defines the 
order of priority of the geometric parameters. Columns 
1,...,6 correspond to the parameters , d,, r, , K 
respectively. The elements of row j give the priority of 
the parameters of frame j, for instance the element (3,4) 
defines the priority of the parameter r3. During the 
calculation of the identifiable parameters or the execution 
of the identification algorithm, the parameters will be 
arranged as function of the corresponding priority 
number, the first parameters will be those having the 
highest priority number. If the elements of the priority 
matrix are all equal, for instance equal to 1, then the 
parameters will be arranged in the following order :  

(1), ...,(nf), d(1),..., d(nf), (1),…, (nf), r(1),…, r(nf), 
(1),…, (nf), K(1),…K(nj). The importance of this 
matrix comes from the fact that we construct the base of 
identifiable parameters as those corresponding to the first 
independent columns.  

 

 



 j j j dj j rj j Kj 

 1 1 1 d1 1 r1 1 K1 

 … … … … … … … … 

 nj nj nj dnj nj rnj nj Knj 

 nf nf nf dnf nf rnf nf 0 

 Table 1. Definition of the robot parameters 
 

 

 

3. CLASSICAL CALIBRATION METHODS  
 

The end-effector pose can be calculated with respect to 
the reference frame by the direct  geometric model 
(DGM) as given in equation (1). 

Using a first order Taylor development of the parameters 
errors, a linear differential model  defining the deviation 
of the end effector pose due to the differential error in the 
geometric parameters can be obtained as [8,12] : 

  y  = J (q) X  (3) 
with 
 X = Xr - X 

y represents the (6x1) vector of the position and 
orientation error. 
J is a (6xNp) matrix,   
Np = number of the parameters to be calibrated.   
X defines the (Npx1) vector of the errors of the 
geometric parameters. 
Xr is the vector of the real unknown values of the 
geometric parameters, 
X  is the vector of the nominal values of the geometric 
parameters, 
 
The expressions of the columns of J are calculated as 
given in appendix A [8,12].  

To identify X, equation (3) will be applied for a 

sufficient number of configurations q1,…,qm, the 

corresponding poses will be measured and the yi will be 
calculated. The resulting linear system of equations will 
be represented by : 

  Y = W  X (4) 

Equation (4) will be solved iteratively to get the least 
squares errors solution. After each iteration the geometric 
parameters will be updated.  

If the orientation of the terminal link is not measurable, 
only the equations corresponding to the position error 

will be taken into account (the first three equations of 
Eq.(3)).   

It can be seen that if some columns of J are dependent in 
all configurations. Relation (3) can be reduced to  [14]:  

  y = Jb (q) Xb  (5) 

where Jb (q) contains the b independent columns of J, 
the corresponding parameters are known as identifiable 
parameters or base parameters they will be denoted by 
the vector  Xb.  

The determination of the identifiable parameters Xb 
must be done before the identification process. They can 
be obtained numerically using the QR decomposition of a 
matrix W similar to that defined in equation (4) but 
obtained using random configurations [14].    

 

4. POSITION LINK AND FRAME LINK 
CALIBRATION METHODS  

The main problem in the classical calibration methods, is 
the need to have an accurate, fast and not expensive 
equipment to measure the real end-effector pose. Many 
sensors have been proposed in the literature but neither 
fulfill these three conditions.  
The position (frame) link method can be applied for 
robots which can achieve the same position (frame) by 

more than one configuration [8]. Thus, if  qa and qb 

represent two different configurations giving the same 
pose of the tool then: 

-1Tn+1(qa, Xr) = -1Tn+1(qb, Xr)  (6) 

If the values of the geometric parameters in the model X 
are different from the real values Xr, then using a first 

order development and by considering only the position 
equations, to facilitate the presentation, we obtain :  

 

[Jt(q
b)-Jt(q

a)]∆X = [-1Pn+1(qa,X)--1Pn+1(qb,X)] (7) 

 
where Jt  is the position Jacobian, represented by the first 
three rows of J. 

Eq.(7) relates the deviation in the geometric parameters to 

the position error between qa and qb. 
To estimate the vector ∆X we have to repeat this process 
for sufficient number of couple of configurations. 
If multiple configurations can be obtained for a given 
position and orientation of the tool, the system (7) will be 
replaced by : 

 



[J(qb)-J(qa)]∆X =  
 







[-1Pn+1(qa,X) - -1Pn+1(qb,

 
X)]

a,b
      (8) 

where a,b is the differential rotation between the 

orientation of the tool in the configurations qa and qb.   

The calculation of the identifiable parameters can be 
carried out as given in Appendix B, by studying the QR 
decomposition of a matrix W calculated from (7) or (8) 

using sufficient random couple of configurations qa(j) 

and qb(j).  

5. THE PLANAR CALIBRATION [10] 

The methods, presented in this section, will be carried 
out using a set of configurations of the robot, where the 
terminal point of the robot is in the same plane. 

The general equation of a plane is supposed as : 

 a x + b y + c z + 1 = 0 (9) 

where a, b, c represent the plane coefficients, 

As the terminal point of the robot is in the plane, then : 

     a Px(q) + b Py(q) + c Pz(q) + 1 = 0 (10) 

where Px, Py, Pz represent the coordinates of the 
position of the terminal point in the world frame. 

Two methods are developed. 

5.1 The first method 

Assuming the coefficients of the plane are known. Using 
a first order development for  X in equation (10), we 
obtain :  

[a Jx(q) +  b Jy(q) +  c Jz(q) ] ∆X =  

 - a Px(q) - b Py(q) - c Pz(q) - 1 (11) 

where : 

Jx is the first row of the Jacobian matrix defined in (3), 
Jy is the second row of the Jacobian matrix ,  
Jz is the third row of the Jacobian matrix,  

Equation (11) gives a linear equation in ∆X, for each 
configuration.   

Sufficient number of configurations must be used to 
obtain a system of equations similar to (4) which will be 
solved iteratively to identify ∆X, the geometric 
parameters will be updated after each iteration. 

The calculation of the identifiable parameters can be 
carried out numerically, by studying the QR 
decomposition of a matrix W calculated from Eq.(11) 
using sufficient random points in a given plane.  

5.2 The second method 

Assuming that the coefficients of the plane are unknown, 
from Eq. (10) the following relation can be obtained :  

[Px(q)   Py(q)   Pz(q)   aJx(q)+bJy(q)+cJz(q)]









∆a

∆b
∆c
∆X

  

 = -aPx(q)-bPy(q)-cPz(q)-1 (12) 

using sufficient number of configurations we can get a 
linear system as in the standard form (4).    

The coefficients of the plane are initialized by calculating 
the equation of the nearest plane to the terminal points of 
the given configurations. The Cartesian coordinates of 
the terminal point  are calculated using the direct 
geometric model of the robot. The solution of the 
following equation gives the initial values of a, b, c :  







-1

-1
-1

  = 






Px1  Py1 Pz1

… … …

 Pxm  Pym Pzm
 





a

b
c

  (13) 

with Pxj , Pyj , Pzj  are the coordinates of the terminal 
point calculated by the DGM for the configuration q(j). 

The calculation of the identifiable parameters can be 
carried out numerically, by studying the QR 
decomposition of a matrix W calculated from (12) using 
sufficient random points in a given plane. 

  

6. DESCRIPTION OF GECARO 

The following menus are available :  

Robot, Position measure, Frame measure, Point link, 
Frame link, Plane link, Help 

 

Robot menu is used to define or select the robot to be 
treated. The following functions are available as sub-
menus : 

        New, Open, Save, Save as, Quit, Help 

The other functions correspond to a given calibration 
method. Each of them has the following three principal 
sub-menus 

a- Identifiable parameters :  Calculation of the 
identifiable geometric parameters (base parameters).   

The identifiable parameters can be obtained from the 
classical parameters by eliminating those which have no 
effect on the observation matrix or those whose 
corresponding elements in the priority matrix are equal 
to zero, and by regrouping some others (whose 
corresponding columns in the observation matrix are not 
independent). These parameters are calculated using QR 

 



decomposition of an observation matrix which can be 
calculated using either random values, or by using a real 
experimental data file. This function can also be used to 
test if some experimental data are sufficiently exciting 
(giving a good condition number for the observation 
matrix, and giving the same identifiable parameters as 
the random values). 

It is to be noted that the identifiable parameters are not 
unique. It is more practical to identify, if possible, the 
parameters which can be updated easily in the control 
system without changing the symbolic direct and inverse 
geometric models of the robot. Therefore we use the 
following rules to define default priorities as input to this 
function (the user can define arbitrarily his input priority 
matrix) : 

-the highest is equal to 6 correspond to joint offsets and 
motor transmission gains. 

- the distances R, and D which are not equal to zero take 
priority 5, 

- the angles which are not equal to ±k*pi/2, with k 
integer, will take the priority 4, 

- the parameters of the base location or the tool frames, 
will get the priority 2, 

- the rest of parameters will get the priority 1, 

The user  can  put equal to zero the elements of the 
priority matrix corresponding to the parameters which he 
does not like to identify, either because their values are 
known accurately, or because he cannot make use of 
their identified values.  

The output of this function is the regrouping relations of 
the identifiable parameters and a new priority matrix 
which is similar to the input one, but the non identifiable 
parameters priorities are put equal to zero. 

b- Points generation :  this function generates a file 
which can be used to test and simulate the functions of 
the corresponding method, the generated file contains 
two matrices : 

Qm : of dimension (nptxnj). Each row contains the 
motor variables of a random robot configuration. 

X : contains the Cartesian pose of dimension nptX3 if 
the position only is needed or of dimension 3nptx4 if the 
position and orientation are needed.  

The number of points denoted (npt ) is given by the user, 
this number must be chosen such that sufficient number 
of equations can be generated. 

c- Identification :  This function gives the identified 
values and the precision of the obtained solution. Two 
input files are needed : 

 - the file containing the priority matrix,  

 - the file containing Qm and X in classical methods or 
motor variables matrix Qm for autonomous methods,  
sufficient number of configurations must be given. In the 

case of position or frame link methods the number of 
configurations of each set giving the same pose will be 
given in a vector (whose dimension is equal to the 
number of sets).  

7. CONCLUSION 

This paper presents the software package GECARO, 
GEometric CAlibration of RObots. It contains new 
methods which can carry out the calibration of the 
geometric parameters and the gain transmission ratios of 
serial robots without the need of external sensors. It 
contains also classical methods which are based on 
measuring the position and the orientation of the terminal 
link using external sensors. The parameters defining the 
robot and the main menus of this package are described 
in the paper. GECARO is running on PC computers and 
developed using MATLAB, any general open loop robot 
can be treated directly.  
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APPENDIX A: CALCULATION OF J 

Assuming the matrix defining frame j with respect to the 
fixed frame as: 

 -1Tj = 



 sj nj aj Pj

0 0 0 1
  (A-1) 

The calculation of the columns of the matrix J can be 
done as follows [8,11]: 

jj = 




sj-1xLj-1,n+1

sj-1   ,  jdj =  






sj-1

0(3x1)
  , 

jj  = 






ajxLj,n+1

aj
        ,  jrj =  







aj

0(3x1)
  , 

jj = 






nj-1xLj-1,n+1

nj-1
  , 

 jkj =  jqj   
∂q
∂Kj 

     

Where : 

x denotes the vector product, 

Li,n+1 is the (3x1) position vector between the origin of 

frame i and the origin of frame n+1 equal to Pn+1 - Pi, 

0(3x1) is the (3x1) zero vector.  

jqj  is equal to jj  if j rotational or jrj if j prismatic.   

 All the vectors of equations (A-2…A-5) are referred to 
the measuring fixed frame. 

 

APPENDIX B: NUMERICAL CALCULATION OF 
THE IDENTIFIABLE PARAMETERS  

Let us rewrite the system (4) as: 

    Y =  [ W1   W2 ]    



X1

X2
  (B-1) 

 where : W1   represents b independent columns of W,   
 W2  represents (c-b) dependent columns of W. 

where c is the number of columns, and b is the number 
of independent columns of W . 

We can write: 

 W2  = W1B (B-2)

with B is  ( bx(c-b)) matrix with constant elements. 

Using (B-2) , equation (4) can be written as: 

 Y =  W1  Xb (B-3) 

with   Xb =  X1 + B X2 (B-4) 

In the identification process, equation (B-3) will be used 
instead of (4). The solution will give directly Xb which 
is called the base parameters vector. The matrix B is not 
needed in the identification process.   

Numerically, the study of the base parameters is 
equivalent to study the space spanned by the columns of 
(rxc) matrix W with  r>> c, calculated from J at m 
random configurations q1,…,qm satisfying the 
constraint of the problem (terminal point in a plane, ...)  

 Using QR decomposition the (rxc) matrix W  can be 
decomposed as [15,16]: 

QT W =  



R

0(r-c)xc
   (B-5) 

Q is a (rxr) orthogonal matrix, 
R is a (cxc) upper triangular matrix. 
0ixj is the (ixj) matrix of zeros. 

If the element  | Rii | ≤ , the corresponding parameter in  

Xi   is not identifiable.  is the numerical zero which 
can be taken as [15]: 

= c.. max. |Rii|   (B-6) 

Where  is the machine precision. 

Base Parameters as Function of the Standard Parameters 

Let us permute the columns of  W such that the first b 
columns are independent.  

[W P] =  [ ]W1 W2   (B-7) 

where: 

 P is a permutation matrix,  
 W1  represent the b independent columns of W. 
 W2  represent  the (c-b) dependent  columns of W. 

 



 

A QR decomposition of [W P] gives : 

[ ]W1 W2   = [ ]Q1 Q2 



R1 R2

0 0
  

Where R1 is a bxb regular matrix. Then it comes: 

W2 = W1 R1-1 R2  (B-8) 

thus : B = R1-1 R2 (B-9) 
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