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Generic Nonlinear Model of Reduced Scale UAVs

T. Cheviron, A. Chriette, F. Plestan

Abstract— This paper proposes, through a survey of models
of several UAV-Structures, a generic nonlinear model for
reduced scale aerial robotic vehicles (6 DOF)1. Dynamics of an
aircraft and some VTOL UAV (quadricopter, ducted fan and
classical helicopter) are illustrated. This generic model focuses
only on the key physical efforts acting on the dynamics in order
to be sufficiently simple to design a controller. The Small Body
Forces expression which can introduce a zero dynamics is then
discussed.

I. INTRODUCTION

Usually, UAVs can be classified into close, short and

long ranges according to their areas of mission. There exist

numerous types of UAVs to fit for various demands about

altitude, range and duration, in the same way than payload

capability, volume capability and control capability.

With a range of applications in both civilian and military

scenarios, the development of automated aerial robots are an

increasingly important field of robotics research. Such vehi-

cles have strong commercial potential in remote surveillance

applications such as monitoring traffic congestion, regular

inspection of infrastructure such as bridges, dam walls and

power cables or investigation of hazardous environments, to

name but a few of the possibilities. The development of such

robotic vehicles states a number of problems in sensoring and

control. A key challenge is to develop light aerial vehicles

able of autonomous navigation.

To develop the flight control systems for maneuverable

autonomous reduced scale aerial vehicles, dynamic models

that are accurate for their flight envelope are needed. For

example, in the case of a standard helicopter, dynamic

models explicitly must take into account the effects such

that the rotor/fuselage coupling. However, in order to de-

sign nonlinear control law, minimal complexity models are

prefered.

The main difficulties (at a theoretical level) for design

stable feedback controllers for such vehicles come from

nonlinearities and couplings (for the solid mechanics part)

and from the fact that inputs are not torques nor forces but

displacements of some elements which enter the dynamics

through aerodynamical forces/torques.
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1Terms ‘light’ and ‘reduced scale’ implie that the flight range of aerial
vehicles under interest is lower than 30mn.

Design, modeling and control of autonomous flying sys-

tems have now become very challenging areas of research,

as shown by a large literature since 90’s decade [20], [6],

[8], [18], [1], [2], [12], [16], [18] for small-size helicopter

and [25][13][27] for nonlinear full-scale rotorcraft models.

However, there is no work that has been made on the

design of a general (generic) aerodynamic model valid for

all autonomous flying system.

The main contribution of this paper is to present a generic

nonlinear model of reduced scale UAVs. A panorama of

dynamics of an aircraft and some VTOL UAV (quadricopter,

ducted fan and classical helicopter) is then presented. A

generic model focuses only on the key physical efforts acting

on the dynamics in order to be simple sufficiently enough

to design a controller. In addition, the Small Body Forces

expression which can introduce a zero dynamics is then

discussed in this general case.

The outline of the paper is as follows. Section II is

dedicated to the Background of the study. In Section III

different UAV structures are reviewed. The Generic 6DOF

State Model and Control Strategy are the subjects of section

IV. Finally, we present the conclusion of this work in section

V.

II. PROBLEM STATEMENT

In this section, analytic expressions for the forces and mo-

ments on the rigid body are derived. The forces and moments

are referred to a system of body-fixed axes, centered at the

center of gravity.

There are in general two approaches in deriving equations

of motion. One is to apply Newton’s law and Euler’s law

which can give some physical insight through the derivation.

The other one is more complicated, it provides the linkage

between the classical framework and the Lagrangian or

Hamiltonian framework.

In this paper, applying Newton’s laws of motion relating

the applied forces and moments to the resulting translational

and rotational accelerations assembles the equations of mo-

tion for the 6 degrees of freedom.

We will make in the sequel some simplifying assumptions

: the vehicle is rigid and the earth fixed reference frame is

inertial, the gravitational field is constant, the aerial vehicle

is supposed to be a rigid body, the density of air is supposed

to be uniform.

A. Rigid body dynamics

We begin by define the reference frames are considered in

the derivation of the kinematics and dynamical equations of



motion2.

• Let I = {ei
1
, ei

2
, ei

3
} denote the frame attached to the

earth can be assumed inertial. ei
3

denotes the downwards

vertical direction and ei
1

points to the magnetic north.

• Let B = {eb
1
, eb

2
, eb

3
} be a body-fixed frame whose

center coincides with the center of mass of the mobile.

• Let A = {ea
1
, ea

2
, ea

3
} denote the air-frame3 attached to

the body fixed frame, as the previous frame, its center

coincides with the center of mass of the mobile.

• The attitude of the body-fixed frame is represented by

a rotation matrix R : B → I. Let R̄ : A → B denote

the rotation matrix made up the angle of attack α and

the sideslip angle β. The set of all rotation matrices is

termed the Special Orthogonal group and denoted by

SO(3).

Let ξi, vi, R and Ωb denote respectively the linear position

and velocity of the center of mass, the attitude and the

angular velocity of the aerial vehicle, i.e

ξi = [x y z]T

vi = [vx vy vz]
T

R =





cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθcψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ





Ωb = [p q r]T

(1)

with η = [φ θ ψ]T is the Euler angles vector and cχ, sχ
denoting, respectively, cosχ and sinχ .

Let m and J be the mass and the inertia matrix of

the rigid object assumed to be constant. The motion of a

rigid body subjected to forces and torques is then described

by the Newton-Euler equations [7]

ξ̇i = vi

mv̇i = mgei
3

+RF b

Ṙ = Rsk(Ωb)

JΩ̇b = −sk(Ωb)JΩ + Cb

(2)

where g ≈ 9.81 [m.s−2] the gravitational acceleration, F b

and Cb the resulting forces (excluding the gravity force)

and torques acting on the rigid body.

The notation sk(Ω) denotes the skew-symmetric matrix

such that sk(Ω)v = Ω × v for the vector cross-product and

any vector v ∈ R.

The expressions of F b and Cb are detailed in the

next section for some classical UAV’s architecture.

III. EXAMPLES OF UAV’S DYNAMICS

The complexity of a state model essentially depends on the

expression of aerodynamic forces and torques.

2In the sequel of the paper, a vector denoted w∗ means that w is expressed
in {e∗

1
, e∗

2
, e∗

3
} frame with ∗ ∈ {i, a, b}

3Also called Aerodynamic Reference Frame.

A. A reduced scale aircraft (Fig. 1)

In this case, the force F b is composed by F bA (produced by

the airframe) and F bT (produced by the propeller thrust)

F b = F bA + F bT

The propeller thrust F bT = Fte
b
1
, Ft > 0 generates a

sufficient airspeed Vt. The displacement of a streamlined

surface in the air generates lift and drag forces. Assuming

small angle of attack α and sideslip angle β, linearized

aerodynamic forces F bA can be expressed as (with coefficients

dimensioless C∗)[19]

F bA = q̄SR̄





CX0 + CXαα+ CXββ

CY ββ

CZ0 + CZαα



 + ΣΓ

Σ =





CXδa
CXδe

CXδr

CY δa
CY δe

CY δr

CZδa
CZδe

CZδr





(3)

with CZ lift coefficient, CX and CY logitudinal and lateral

drag coefficients, q̄ = 1

2
ρV 2

t the dynamic pressure (ρ is

the air density), S the wing surface and Γ = [δa δe δr]
T

the control-surface deflection vector (aileron, elevator and

rudder) used to generate the torque which turns the airplane

the desired way.

The torque Cb is composed by the gyroscopic torque

CbP gyros induced by the propeller and the aerodynamic

torque CbA
Cb = CbP gyros + CbA

The gyroscopic torque induced by the propeller is expressed

by

CbP gyros = −JPωP sk(Ω
b)eb

1
(4)

with JP the inertia matrix of the propeller and ωP its angular

velocity. As the aerodynamical force F bA, the aerodynamical

torque CbA can be linearized which gives [19]

CbA = q̄S





CLββ + CLpp̂+ CLr r̂

CM0 + CMαα+ CMq q̂

CNββ + CNr r̂



 +KΓ

K =





CLδa
0 0

0 CLδe 0
0 0 CLδr





(5)

where :

p̂ =
bp

2V̄t
, q̂ =

c̄q

2V̄t
, r̂ =

br

2V̄t
(6)

with : b the wingspan (the distance from the left wingtip to

the right wingtip), c the mean chord of wing.

B. VTOL vehicles

Different rotorcraft structures exist to perform hover or

vertical take-off and landing. All these structures have, at

least, one rotor such that its thrust directly confronts gravity

force. By supposing that the vehicle has k rotors, the thrust

induced by a rotor j (1 6 j 6 k) may be written [25]

FTj = ρ
(

CMj (θTj − αTj ) − CDj

)

ω2

j = bjω
2

j (7)



Fig. 1. SIG Rascal 110.

with ωj the angular velocity of the rotor, θTj the collective

angle, αTj the angle of attack of blades and the coefficient

CDi
the drag of the rotor. The constant CMj

= 1

4
R3

jnj c̄j
depends on the radius, the number and the mean chord of

blades. Besides, the rotor induces a torque Cbairj
due to the

air resistance and proportional to ω2

j .

To develop the flight control systems for maneuverable

autonomous miniature helicopter, dynamic models that are

accurate for their flight envelope are needed. However, in

order to design nonlinear control law, minimal complexity

models are preferred. This models, developped by using

linear system identification for example, are only valid in the

vicinity of the nominal operating point, for example at hover.

• Classical helicopter (Fig. 2): longitudinal and lateral

cyclic angles control the main rotor flapping dynamics.

When this dynamics tends to equilibrium, the total lift

of the main rotor is tilted in comparison to the motor

shaft [25]

F bTm
= FTm

ebTm

ebTm
= [−a1s b1s − 1]T

(8)

with a1s and b1s the longitudinal and lateral flapping

angles assumed to be small. Under quasi-stationary

flying conditions, these angles depend algebraically on

cyclic angles (i.e.: mechanical control inputs) [25], [17].

The main rotor induces a torque Cbmot acting on the

fuselage which is compensated by the tail rotor. This

smaller rotor controls the yaw motion which yields

F bTt
= FTte

b
2

(9)

From (8) and (9), one gets the expression of F b (Equa-

tion. 2).

The resulting torque is composed by

– the propulsion momentum

CbT = FTm
sk(lbTm

)ebTm
+ FTt

sk(lbTt
)eb

2

induced by the lever arms lbTm(/t)
=

[l1Tm(/t)
l2Tm(/t)

l3Tm(/t)
]T of the two rotors,

– the air resistance torque Cbair = Cairme
b
3
+Cairte

b
2
,

– the damping torque Cbdamp = −κTmsk(e
b
Tm

)eb
3

which resists the rotor disk distortion (κTm
> 0

denote the elasticity constant of the main rotor)

[26],

– the gyroscopic torque induced by the two rotors

expressed by

CbT gyros = −JTm
ωTm

sk(Ωb)eb
3
−JTt

ωTt
sk(Ωb)eb

2

(10)

with JTm and JTt , respectively, the inertia matrix of

the main and the tail rotor, ωTm and ωTt , respectively,

its angular velocity.

By introducing Γ = [−FTm
a1s FTm

b1s FTt
]T as control

input vector, Fb and Cb may be written [6]

Fb = −FTm
eb
3

+ ΣΓ

Cb = Cbair + Cbdamp + Cbmot + FTm
Kb

0
+KΓ

Σ = LK−1 (11)

with L =





1 0 0
0 1 1
0 0 0



, Kb
0

= [l2Tm
− l1Tm

0]T and

K =





0 −l3Tm
−l3Tt

l3Tm
0 0

−l2Tm
l1Tm

l1Tt



,

li =
∑

3

k=1
lki E

a
k (i stands for m, t) represents

the distance between the center of gravity and the

application point of the force.

Fig. 2. VARIO Benzin Helicopter.

• Quadricopter (Fig.3): This architecture composed by

four identical rotors has some advantages with respect to

conventional helicopters. In fact, gyroscopic effects and

air resistance torques tend to cancel in trimmed flight

because front and rear motors rotate counterclockwise

while the other two rotate clockwise. Besides, the

collective angle is constant because of the small radius

of blades, the thrust of each rotor being then simply

controlled by their angular velocities. The collective

input is the sum of the thrusts of each rotor. Pitch motion

is obtained by increasing (reducing) the speed of the

rear motor while reducing (increasing) the speed of the

front motor. Roll motion is obtained by a similar way

by the lateral motors. The yaw movement is obtained

by increasing (decreasing) the speed of the front and

rear motors while decreasing (increasing) the speed of

the lateral motors. This attitude motion is performed

while keeping the total thrust constant. From this control



principle, control input vector reads as [3], [2], [9]








FT
Γ1

Γ2

Γ3









= P









ω2

1

ω2

2

ω2

3

ω2

4









P =









b0 b0 b0 b0
0 db0 0 −db0
db0 0 −db0 0
Cair0 −Cair0 Cair0 −Cair0









(12)

with d the distance between the rotor shaft and the

center of mass. Given the parameters d, b and Cair0 ,

P is a full rank matrix. The gyroscopic torque induced

by the four rotors reads as

CbT gyros = −
4

∑

i=1

JTωisk(Ω
b)eb

3
(13)

with JT the inertia matrix of a rotor and ωi the angular

velocity of the rotor i. Consequently, Fb and Cb of

system (2) may be written as [3], [2], [9]:

F b = −FT e
b
3

Cb = Γ + CbT gyros

(14)

Theoretically, translational and rotational dynamics

(i.e.: ΣΓ = 03×1, Σ = 03×3) are decoupled.

Fig. 3. Dragonflyer V TI-RC.

• Ducted fan (Fig.4): This UAV is composed by two

counter-rotary rotor in order to eliminate the tail rotor

and the gyroscopic effect induced by the rotor. Four

control surfaces located at a distance d of the center

of mass induce a control torque Γ by deflecting the air

flow in order to control the attitude of the vehicle (see:

Hovereye (Bertin Technology), Kestrel (Honeywell) or

ISTAR (Allied Aerospace)). Payload, on board electron-

ics and batteries are located above this ducted fan in

an axi-symmetrical fuselage. Consequently, Fb and Cb
reads as [23]

F b = −FT e
b
3
− 1

d
sk(eb

3
)Γ

Cb = Γ
(15)

Fig. 4. HoverEye (Berthin Technology c©).

IV. GENERIC 6DOF STATE MODEL

From the previous expressions of resulting forces and

torques Fb et Cb, a generic nonlinear 6DOF state model

is proposed covering a large class of reduced scale UAVs,

i.e from aircraft to rotorcraft under quasi-stationary flight

conditions.

A. Nonlinear model

Equation (2) describing the motion of a rigid body can be

developped as follows

ξ̇i = vi

mv̇i = R
(

FT e
b
T +mgRT ei

3
+ F bair + ΣΓ + δF b

)

Ṙ = Rsk(Ωb)

JΩ̇b = −sk(Ωb)JΩ + Cbinter + Cbair + CbT gyros+

KΓ + δCb

(16)

with FT the resulting thrust, ebT the thrust direction, F bair
the aerodynamic force, ΣΓ the Small Body Force induced

by the torque control input Γ, δF b the disturbance force,

Cbinter the interaction torque between the different part of

the vehicle, Cbair the aerodynamic torque, CbT gyros the

gyroscopic torque induced by the rotor, K the efficiency

matrix of the torque control input Γ and δCb the disturbance

torque. In appendix, the expression of each term on previous

platforms is described.

Fig. 5. Scheme of UAV’s dynamics.

B. Zero dynamics

The study of PVTOL [12], [16] brings into relief that the cou-

pling matrix Σ between translational and rotational dynamics



induce the Small Body Force ΣΓ from the torque control

input Γ, which generates a zero-dynamics if Σ 6= 03×3 (Fig

5). In fact, assuming that the center of mass of the vehicle

ξi perfectly tracks the desired trajectory (ξi)d, one gets

ξi − (ξi)d = 03×1

vi − (vi)d = 03×1

v̇i − (v̇i)d = 03×1 (17)

From (17) and the two first equations of (16), one gets

ΣΓ = −FT e
b
T −mgRT ei

3
− F bair −RT δF b (18)

By multiplying the last equation of (16) by Σ̄ = ΣK−1 and

substuting ΣΓ by equation (18), yields

Σ̄JΩ̇b = Σ̄
(

−sk(Ωb)JΩb + Cbinter + Cbair
+CbT gyros + δCb

)

− FT e
b
T

−mgRT ei
3
− F bair − δF b

(19)

The attitude Rd corresponding to the equilibrium position

Ωb = 03×1, Ω̇b = 03×1 is given by

mg(Rd)T ei
3

= −Σ̄
(

Cbair + Cbinter + δCb
)

+FT e
b
T + F bair + δF b

(20)

R̃ = RTRd denotes the error rotation matrix and may be

linearized by

R̃ = Id3×3 + δαsk(∆e)

with ∆e ∈ IR3 the rotation axis and δα ∈ [0 2π] the rotation

angle. The third equation of (16) may be also linearized by

∆̇ = Ωb and (19) by Σ̄JΩ̇b = −mgsk((Rd)T ei
3
)∆ with

∆ = δα∆e. Finally, one gets

S ¨̄∆ = −A∆̄
∆̄ = V∆, A = mgU−1(Σ̄J)T sk((Rd)T ei

3
)V −1

(21)

where the matrices U , S and V correspond to the singular

value decomposition of the symmetrical matrix (Σ̄J)T (Σ̄J)
(U and V are unity matrices and S is a diagonal matrix

with nonnegative diagonal elements in decreasing order).

The matrix A depends exclusively of geometry and

inertia of the UAV. If A is non Hurwitz, then the attitude

diverges; else, the attitude periodically swings around the

equilibrium attitude Rd as illustrated for the helicopter [6].

This oscillation is not damped, undesirable but with a small

amplitude, it may also be assumed to neglect Small Body

Forces in the control design and to a posteriori verify its

robustness [12], [16].

C. Control strategy

FT ∈ IR and Γ ∈ IR3 correspond respectively to the

control inputs acting on the fuselage in order to control the

position of the center of mass and the attitude of the rigid

body. There is only one force to control the translational

dynamics and three torques for the rotational dynamics.

These vehicles may be also considered as underactuated.

• The guidance problem finally consists in the design of

a control law for the translational dynamics

ξ̇i = vi

mv̇i = R(FT e
b
T +mgRT ei

3
+ F bair + ΣΓ) + δF b

(22)

FTReT is considered as the control input so that ξi

converges to the desired position (ξi)d. A desired

attitude Rd is then deduced.

• The control problem consists in the design of a control

law for the translational dynamics:

Ṙ = Rsk(Ωb)

JΩ̇b = −sk(Ωb)JΩ + Cbinter + Cbair+
CT gyros +KΓ + δCb

(23)

Γ is then the control input.

By neglecting the Small Body Forces (assumed stable), the

state model (16) has a triangular structure adapted to the use

of Backstepping techniques for instance. A first approach is

to design a nonlinear controller with the full 4th order state

model by considering a dynamical extension of the thrust

control input (i.e.: F̈T = u) [17], [10], [6], [4]. An other

way is to separate the full order state model into a slow and

a fast timescale [14], [15]. Consequently, the translational

dynamics represents the slow timescale and determines a

desired attitude Rd to reach which is viewed constant by

the fast-timescale rotational dynamics. There is also no need

of a dynamical extension of the thrust control input and the

control design is simplified [19], [24], [9], [5]

V. CONCLUSION

The main contribution of this paper was to present a

generic nonlinear model of reduced scale UAVs in order to

be simple sufficiently enough to design a controller. After a

presentation of different architectures of some VTOL UAV

(quadricopter, ducted fan and classical helicopter), a generic

model focuses only on the key physical efforts acting on

the dynamics is then proposed. In addition, the Small Body

Forces expression, which can introduce a zero dynamics, was

also studied.
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APPENDIX

Aircraft X4
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