
HAL Id: hal-00362543
https://hal.science/hal-00362543

Submitted on 20 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On-line drilling process monitoring by Marginalized
Particle Filter

Amadou Ba, Nazih Mechbal, Michel Vergé, Slim Hbaieb

To cite this version:
Amadou Ba, Nazih Mechbal, Michel Vergé, Slim Hbaieb. On-line drilling process monitoring by
Marginalized Particle Filter. 2009 IEEE Aerospace Conference, 2009, Montana, United States.
�10.1109/AERO.2009.4839475�. �hal-00362543�

https://hal.science/hal-00362543
https://hal.archives-ouvertes.fr


On-Line Drilling Process Monitoring by Marginalized 
Particle Filter 

1-2A. BA, 1N. Mechbal, 1M. Vergé,  2S. Hbaieb, 
1Laboratoire de Mécanique des Systèmes et des Procédés  (UMR-CNRS),  

Ecole Nationale Supérieure d’Arts et Métiers, 151, Boulevard de l’hôpital, Paris, France  
2Schlumberger Riboud Product Centre, 1, rue Henri Becquerel, 92142 Clamart, Cedex, France 

331-45-37-70-87 
aba2@slb.com 

Abstract—Real-time monitoring of a drilling process is an 
essential task in improving their performances. 12Faults that 
might occur have to be detected as soon as possible in order 
to preserve drilling efficiency. In this paper, drilling process 
monitoring by identifying time varying parameters through 
Marginalized Particle Filter (MPF) is treated. The idea 
consists in enhancing the tracking ability of parameters 
change by integrating into the process model a part that 
represents the faulty process and another when the process 
is safe. The efficiency of the developed approach is 
highlighted through simulated and experimental data 
obtained from tests campaign. 
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1. INTRODUCTION

Drilling process performances are adversely affected when 
a fault occurs. For this reason, a system for the faults 
detection (FD) plays a vital role. It may enable to be able to 
safeguard some of the process performances by taking 
efficient corrective action, in case of early diagnosis. 
Drilling processes are very widespread in several fields and 
their efficiencies are more and more required, owing to the 
hostile environments that they are confronted and to the 
expense of maintenance procedure. As an example, oilfield 
industry necessitates to have an efficient drilling process 
(Fig.1(a)) in order to drill in a more challenging context, 
such as high temperature, high pressure, heterogeneous 
rock, among others problematic cases. Aerospace domain 
(Fig.1(b)) uses a robot that integrates a drill bit for planetary 
exploration, potentially to look for evidence of possible life 

[1]. All these cases require an efficient diagnosis system to 
detect in real time faults that might occur. This paper deals 
with a monitoring strategy to detect poor performances of 
the drill bit. When this scenario happens, the drilling 
operation cannot be achieved as expected. In this paper, the 
FD strategy investigated concerns a drilling process used in 
oilfield industry. Nevertheless, the developed approach can 
be experimented for other drilling processes, especially 
those used in aerospace technology. Indeed, there is no 
doubt that the differences in processes lead to the 
discrepancies in their dynamics. But, the principle of the bit 
rock interaction in both cases shows great similarities. Any 
of these processes requires, at the bit, two forces to grind 
the rock: the Weight On Bit (WOB) and the Torque On Bit 
(TOB). In this study, the fault to detect is characterized by 
the change in the drill bit properties, consequently in forces 
values for a constant Rate Of Penetration (ROP). It is 
interesting to make clear that the change in rock properties, 
for example, moving from slight to hard rock, provides 
similar behavior in measurement compared with those 
viewed in the case where the drill bit is faulty. Here, the 
question is how to dissociate these two phenomena? To 
provide an answer to this question it is developed in [2] a 
model of bit rock interaction. This model gives the 
possibility to express forces between them without 
involving the rock properties. When a fault occurs on the 
drill bit, the coefficients which characterize these 
relationships will change. The idea is to monitor these 
coefficients and to detect their possible modification. To 
achieve this task, we propose to investigate MPF in order to 
detect faults might occurs in the bit. The FD approach 
proposed is based on the principle which consists in 
defining two functioning modes, one corresponding to the 
case where the process is safe and another when it is faulty. 
Each of the defined functioning modes is modeled by a state 
space representation system. Through this approach, the 
classic identification methods provide poor performances. 
For this reason, we investigate the MPF. Its specificity 
comes from the possibility to be able to combine the 
features of the Kalman Filter (KF) [3] and those provided 
by the Particle Filter (PF) [4]. The role of the KF is to treat 
each of the defined state space representation whereas the 
PF is dedicated to select the one to be treated. The FD 
strategy is achieved through two linear regressions obtained 
by using MPF approach and the detection is made when the 
process model move from the model which corresponds to 
the process when it is safe to the faulty case. In this paper, 
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our study is restricted to two possible classes in which the 
process can evolve, but the  

Fig.1(a) Oilfield  drilling process      Fig.1 (b) Robot with drilling process    

study can be extended to other classes. Before the use of 
MPF for linear regression and FD, we briefly present the 
model of bit-rock interaction as developed in [2].   

2. BIT ROCK INTERACTION MODEL

The model of bit rock interaction has been subject of 
intensive researches activities and interesting results are 
reported in [2]. These models account for the cutting action 
of a single cutter. Cutting action of each cutter is 
represented by two independent processes, the cutting 
process and the friction process. The forces TOB and WOB 
are defined by:  

fc TOBTOBTOB +=  ,  fc WOBWOBWOB +=

where: 

2
  

2

c
DOCaaTOB ⋅⋅= ε  , DOCaWOB ⋅⋅⋅= εξ c
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⋅⋅⋅
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Ω
⋅⋅= ROPDOC π

The subscripts c and f denote cutting and friction 
respectively. The cutting components cTOB  and cWOB  
correspond to the forces transmitted by the cutting face of 
each cutter and the friction components fTOB  and fWOB  
correspond to the other contacts obtained from bit-rock 
interaction. The response of the bit is obtained by 
combining the cutting and frictional process [2]: 

DOCa
WOB

DOCa
TOB

⋅
⋅⋅+⋅−=

⋅
⋅ γμεβ )1(2
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with: 
ζγμβ ⋅⋅=  

The specific energy which corresponds to the necessary 
energy to grind a given volume of rock is defined in [2] by: 

SEE ⋅⋅+= γμ0 (2) 

where: 
εβ ⋅−= )1(0E  

Through (1) and (2) the following relations have been 
obtained: 

DOCa
WOBS
⋅

=  , 
DOCa

TOBE
⋅

= 2

The relationship (2) shows that the slope of E as a function 
of S is only dependent on the bit shape factor and the 
friction coefficient. Hence, the rock properties are not 
involved. 
When a change occurs on the bit, for example the bit wear 
or break, these two parameters will be affected. 
Consequently, the fault detection approach developed in this 
study is based on the detection of a change in μ  and / or γ . 
That leads to the change in the slope of E as a function of S 
as indicated in (2). Here, the model (2) is exploited in order 
to monitor the drill bit. For this reason, MPF algorithm is 
used in order to identify the parameters corresponding to the 
two slopes, before and after the change, as well as the time 
from which the change occurs. 

TABLE I 
VARIABLES USED 

Symbol Quantity Unity

a  Bit radius m 
DOC Depth of cut m 

E Specific energy Mpa 
S Drilling strength Mpa 

TOB Torque on bit Nm 

cTOB Torque on bit, cut Nm 

f
TOB Torque on bit, friction Nm 

WOB Weight on bit N 

cWOB Weight on bit, cut N 

fWOB Weight on bit, friction N 

ε  Intrinsic specific energy Mpa 
ROP Rate of penetration (ROP) m/h 

Ω Bit angular velocity rad/s 
μ  Friction coefficient 
ξ  Coefficient characterizing cutting force 
γ  Bit shape factor 

3. PARTICLES FILTER

In this paper it is not intended to provide a detail regarding 
the theory of PF. The interested reader is refereed to [5]. To 
make easy the understanding of the MPF approach we 
present the idea of PF. The PF is a statistic tool which 
approximates a probability density function trough 
simulation. To achieve this aim, the PF algorithm requires a 
large number of samples called particles in order to 
represent accurately the real state of the process. At each 
time, the samples generation is needed. When a 
measurement becomes available weights are assigned to the 
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probable state. It can be considered as the degree of 
confidence that we need to have on the particles in their 
representation of the true state of the process. The weight 
values depend on how they fit the measurements as well as 
the sequence of the past measurements. Only, the most 
likely particles to represent the true states are maintained 
onto the next step and the other are discarded through the 
resampling algorithm. As an extension of the PF, the MPF 
algorithm [6-8] is applicable to the case where the 
dependencies within the states variables can be analytically 
used. To illustrate that, let us consider the case where two 
process models can be defined, one representing the process 
when it is safe whereas the other when it is faulty, and each 
of the model having a linear state space representation. It is 
obviously clear that the two models cannot be exploited at 
the same time; as a result one of them is selected when it is 
considered as the most probable scenario by the PF. In this 
context, the standard KF is used for the two linear state 
space models, and the PF to select the one to be involved. 
To formalize this situation we consider the following state 
space representation: 

kk
2
kkk

kk
2
kk

2
1k

HxCy

GxAx

υ
ω

⋅+⋅=

⋅+⋅=+
(3) 

Where 2
kx  is considered to model the evolution of the 

process. As suggested in [9], it is important to make clear 
that the model can possess one or more of the 
matrices kA , kG , kC and kH  evolving possibly under non-
linear, non-Gaussian conditions. The variables kυ  and kω
are considered zero mean and Gaussian. As matrices in this 
system can change according to the state in which the 
process progress, solving the problem requires to achieve 
another set of variables, describing the evolutions of these 
parameters. This context brings us to define by 1

k
x as this set 

of parameters. Thereby, the aims becomes the use of the 
MPF for the overall state: { }21

kkk xxx = . In order to achieve 
this requirement, it is essential to define the transition 
probability )( 1

1
1

−kk xxP  between these two states and to have 

a priori knowledge concerning the variable 1
k

x . At last, to 

generate samples from )( 1
1

1
−kk xxP . It can be noticed that the 

KF only do not enables to solve this kind of problem. 
Therefore, there is necessity to have, at each time an 
algorithm estimating 1

k
x to serve the KF to run 2

k
x . To 

accomplish this objective, a set of N particles is generated at 
every time step, maintained and updated. As an example at 
the time k, the ith particle is defined as { })()(,2)(,1 ;; i

k
i

k
i

k Kxx

where )(i
kK corresponds to the covariance of )(,2 i

kx  given the 

set { }k
r

i
r

i
k xX 0

)(,1)(,1
==  . For each iteration, )(,1 i

kx corresponds 

to a unique )(i
kA , )(i

kG , )(i
kC and )(i

kH .  

4. LINEAR REGRESION AND FD BY MPF

The objective of this study is to perform a FD task by using 
MPF. The FD approach developed here is based on 
parameter estimation technique particularly on linear 
regression method. The aim is to detect a change, which 
corresponds to the fault apparition, in the slope progress. To 
perform the MPF approach we define two slopes where one 
represents the process in the case where it is safe and 
another when it is faulty. We model these two slopes by two 
state space representations, the algorithm switch from one 
model to another through a variable which evolves under PF 
principles. For the reason of clarity, we redefine the model 
(3) under classic state space linear regression form. That is, 
we replace 2

k
x byθ , 1

k
x by kz , kA  by identity matrix and 

kC by T
kϕ . Thus we get the following state space 

representation: 

k
)i(

kkk
)i(

k
T
kk

k
)i(

kkk1k

1kkk

)z(H)z(y

)z(G

)zz(p~z
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ωθθ
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⋅+=+

− (4) 

Where { }zk nz ,,1∈ denotes the unknown state: Here the 
safe state is considered when 1=kz and the faulty state 

when 2=kz . θθ nℜ∈ is the parameter vector, yny ℜ∈ is 
the measurement vector. kω and kυ  are respectively the 
process noise and the measurement noise, considered to be 
known, independent and identically distributed (i.i.d). T

kϕ is 
the regressor vector, (i) is the particle associated to the 
model, kG  and kH are the matrices associated to the noises. 
As said above, two states of the process are defined, thus 

{ }2,1)( ∈i
kz  According to the )i(

kz  value one of the models 
is involved. Notice that the purpose of the MPF approach is 
to estimate the following probability density function:  

)Yz(p)Y,z(p)Yz,(p kkkkkkkk ⋅= θθ (5) 

In the equation (5), kY  denotes the sequence of 
measurements up to time k, { }kk yyY ,,0= . From this
equation, it is clear that the PF will be used for estimating 
the probability density function )( kk Yzp , and the KF is 
employed to estimate ),( kkk Yzp θ . The model of equation 
(4) enables to define the algorithm-1. In this algorithm the 
main step are given. At the starting, N particles are drawn 
according to )(~ 0

)(
10 zpz i

− . And the KF associated with each 
parameter sample are initialized as: 
{ } { }N

i
ii PP 100
)(
10

)(
10 ,, =−− = θθ

Then weights are evaluated and normalized according to:  
),(~)),( )()(

1
)(

1
)()( i

k
i
kk

i
kk

i
kk

i
k SyNzYypq −−= where )(i

kS is the 
innovation term associated to each particles. After that, the 
particles having the highest weight are multiplied and those 
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having the lowest weight are discarded through the 
resampling algorithm defined in the algorithm-2.  
Then the particles are updated by using the KF. At the end, 
the parameter vector is estimated. In the algorithm1 

kR denotes the variance of the noise measurement kυ , kQ is 
the covariance of process noise kω . 

Algorithm: MPF for FDI 
1) for i  = 1,…,N,  Propagate samples
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end for 
2) for i = 1,…,N,
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end for 
3) Resample with replacement, (Algorithm2)
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4) Kalman filter measurements update
equation (6)

5) Compute the parameters vector
equation (7)

The equation (6) is given by: 
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In the equation (6) )i(
kK  is the Kalman gain which 

minimizes the posterior error covariance, )i(
kS  is the 

innovation matrix, kR  denotes the variance of the noise 
measurement kυ .  
Algorithm 2: Resampling algorithm 

Generate an uniformly distributed random point
]N,0[u 1

1
−∈  and let 1i = , 0q0

k =

For j=1:N

1. Let )1j(Nuu 1
1j −⋅+= −

2. If ∑∑ =

−

=
≤<

i

0l
l
kj

1i

0l
l
k quq set i

1kk
j
k xx −=

3. Otherwise go to step (3) – Algorithm1

End for

The resampling step is achieved according to the algorithm-
2, during this stage the particles having the highest weight 
are multiplied and those having the lowest weight are 
discarded. 

5. LINEAR REGRESION AND FD BY MPF AND
SIMULATED DATA

In the past sections we described the MPF approach and the 
use of this technique for FD task. The proposed FD strategy 
uses the model selection approach, where a PF choose 
between two defined models, one representing the process 
running in normal operation and other for the faulty 
process. The advantage of such approach compared with the 
classical identification technique comes from the fact that 
the fault is detected by a discrete state as soon as possible. 
Here we are concerned to detect the change in the slope 
which characterizes a fault apparition by using MPF. We 
start by appraising this approach, in its ability to be able to 
detect fault, by using simulated data: Let us take two 
equations as defined in (7) and (8). We consider that ones 
corresponds to the case where there is no fault (7) and the 
other when the process is faulty (8). To these equations it is 
added the measurements noises, denoted by e:  

randxy ++⋅= 103.01 (7) 

randxy ++⋅= 12015.02 (8) 

These equations can be rewritten as: 

randxy +⎥⎦
⎤

⎢⎣
⎡⋅= 1

03.0]1[1 randxy +⎥⎦
⎤

⎢⎣
⎡⋅= 12

015.0]1[2

In general term, we get for each model the following state 
space representation: 
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The MPF allows to define one general model for both cases: 

k
i

kkk
i

k
T
kk

k
i

kkkk

zHzy

zG

υθϕ
ωθθ

⋅+⋅=

⋅+=+

)()(

)(
)()(

)(
1

Where )(i
kz allows to move from one model to another 

through the transition matrix given by )( 1
1

1
−kk xxP . The aim 

is to use the presented algorithm in order to identify the 
slopes defined in (7) and (8) as well as to detect the faults. 
For reliable FD, robustness against measurement noise and 
other possible disturbance is required. For this reason we 
choose reasonable amplitude of rand. The Fig. 3 presents 
the slope obtained by using the proposed approach. Notice 
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that when the fault occurs the MPF model for normal 
operation is substituted by the MPF model considering that 
fault is active. In the first example, the number of particles 
is equal to 50.  
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Fig.3. Estimated slope data (50 particles) 

In this figure, two functioning modes can be noticed, one 
corresponding to the safe functioning and the other to the 
faulty process. Each of these two modes presents a stable 
regime. Between 2500 and 2700 samples the process is in 
transient regime. There is no fluctuation in the evolution of 
the slope that corresponds to the good performances of the 
algorithm. Here, the transient regime is achieved by the PF. 
In addition, the MPF shows good performances in terms of 
rapidity to detection, convergence to the value which 
characterizes the fault, among others. Its performances 
depend on the number of particles. When the number of 
particles is increased the duration of the transient stage is 
reduced as shown in Fig. 4. 

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

0.03

Samples

S
lo

pe

Fig.4. Slopes progress simulated data (100 particles)

6. LINEAR REGRESION AND FD BY MPF AND
EXPERIMENTAL DATA

To emphasize the possibility and to show the ability of the 
MPF algorithm to perform parameter estimation and fault 
detection scheme, an illustrative actual application is 
presented in this section. This application uses real 
experimental data. The aim is to detect a fault often 
encountered in oilfield industry. This fault concerns a head 
of a drilling process (drill bit), in other words, it occurs on 
the part of the drilling process which grinds the rock. Here, 
the objective is to detect the malfunction that might occur 
on this bit. As explained in the previous section, these 
malfunctions are described by a change in a parametric 
slope. To understand how this kind of dysfunction can 
interfere with process operation, plots of E, S and ROP over 
time are given in Fig. 5. Before sample number 1500, ROP 
was adjusted continuously to find a set of points that allows 
to construct a slope. It can be noticed that during this 
samples interval S is almost constant. It is due to the fact 
that dysfunction has not yet occurred. In this case, the mean 
value of the drilling strength comes from rock hardness. In 
spite of rock homogeneity and a constant ROP in the sample 
interval between [2450 5000] S and E increases. These 
increases come from TOB and WOB and are due to the 
change in the friction coefficient μ or/and the bit shape 
factor γ . These changes reveal a dysfunction on the bit. 
However, in real drilling conditions it is not a 
straightforward task to diagnose this kind of faults by 
looking at the progress in measurements. It is mainly caused 
by the similar behavior viewed on S and E either in case of 
changeover from slight rock to hard rock or the bit 
dysfunction. For this reason, we have developed an on-line 
identification method to determine the slope which 
characterizes E as a function of S and consequently 
detecting the dysfunction on the bit.  
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Fig. 5. Behavior of measurements in case of dysfunction on the drill bit 
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Fig.6. E as a function  of S-raw data- and linear regression by MPF
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Fig.7. Slopes progress real data (50 particles)

The Fig.6 presents an example of application of the MPF 
algorithm by using experimental data. It can be seen from 
this figure the raw measurement and the slope obtained by 
using MPF. The Fig.7 presents the temporal evolution of the 
slope in the case where the number of particles is equal to 
50. It can be seen from this figure two regimes of
functioning the first one corresponds to the absence of 
faults, in this case the mean value of the slope is equal to 
0.025 and the second corresponds to the case where there is 
fault the mean value of the slope becomes equal to 0.012. 

7. CONCLUSIONS

A FD approach based on the MPF is studied in this paper. 
The approach proposed uses two models: one represents the 
process evolution in presence of fault and another when the 
process is safe. The performances of the proposed approach 
are highlighted by using simulated and experimental data. 
This approach showed interesting results in terms of 
rapidity in detection, convergence to the final value, as well 
as robustness against noises. 

The requirement to diagnose bit dysfunction when it is 
incipient is useful concerning appropriate corrective action 
to take and that brings the process to an optimal drilling 
condition. The next step of this study is to develop a fault 

tolerant control algorithm in order to automatically adjust 
the input of the drilling process in case of bit dysfunction 
detection. Also, in the future research we will consider the 
case where several classes of faults are defined, that will 
help to detect and define the fault severity.   
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