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ABSTRACT
Three-degree-of-freedom planar parallel robots are increasingly being used in
applications where precision is of the utmost importance. Clearly, methods for
evaluating the accuracy of these robots are therefore needed. The accuracy of well
designed, manufactured, and calibrated parallel robots depends mostly on the input
errors (sensor and control errors). Dexterity and other similar performance indices have
often been used to evaluate indirectly the influence of input errors. However, industry
needs a precise knowledge of the maximum orientation and position output errors at a
given nominal configuration. An interval analysis method that can be adapted for this
purpose has been proposed in the literature, but gives no kinematic insight into the
problem of optimal design. In this paper, a simpler method is proposed based on a
detailed error analysis of 3-DOF planar parallel robots that brings valuable
understanding of the problem of error amplification.
Keywords: parallel mechanisms, accuracy, dexterity, performance evaluation, error

analysis.



I. INTRODUCTION
Parallel robots are increasingly being used for precision positioning, and a
number of them are used as 3-degree-of-freedom (DOF) planar alignment stages.
Clearly, in such industrial applications, accuracy is of the utmost importance. Therefore,
simple and fast methods for computing the accuracy of a given robot design are needed
in order to use them in design optimization procedures that look for maximum accuracy.
Errors in the position and orientation of a parallel robot are due to several
factors:
- manufacturing errors, which can however be taken into account through
calibration;
- backlash, which can be eliminated through proper choice of mechanical
components;
- compliance, which can also be eliminated through the use of more rigid
structures (though this would increase inertia and decrease operating speed);
- active-joint errors, coming from the finite resolution of the encoders, sensor
errors, and control errors.
Therefore, as pointed out by Merlet [1], active-joint errors (input errors) are the most
significant source of errors in a properly designed, manufactured, and calibrated parallel
robot. In this paper, we address the problem of computing the accuracy of a parallel
robot in the presence of active-joint errors only. In the balance of the paper, the term
“accuracy” will therefore refer to the position and orientation errors of a parallel robot
that is subjected to active-joint errors only.
The classical approach consists in considering the first order approximation that

maps the input error to the output error:



dp =Jdq 1)
where 8q represents the vector of the active-joint (input) errors, dp the vector of output
errors and J is the Jacobian matrix of the robot. However, this method will give only an
approximation of the output maximum error. Indeed, as we will prove in this paper,
given a nominal configuration and some uncertainty ranges for the active-joint
variables, a local maximum position error and a local maximum orientation error not
only occur at different sets of active-joint variables in general, but these active-joint
variables are not necessarily all at the limits of their uncertainty ranges.

Several performance indices have been developed and used to roughly evaluate
the accuracy of serial and parallel robots. A recent study [2] reviewed most of these
performance indices and discussed their inconsistencies when applied to parallel robots
with translational and rotational degrees of freedom. The most common performance
indices used to indirectly optimize the accuracy of parallel robots are the dexterity index
[3], the condition numbers, and the global conditioning index [4]. However, in a recent
study of the accuracy of a class of 3-DOF planar parallel robots [5], it was demonstrated
that dexterity has little to do with robot accuracy, as we define it.

Obviously, the best accuracy measure for an industrial parallel robot would be
the maximum position and maximum orientation errors over a given portion of the
workspace [1,5] or at a given nominal configuration, given actuator inaccuracies. A
general method based on interval analysis for calculating close approximations of the
maximum output error over a given portion of the workspace was proposed recently in
[1]. Obviously, the maximum output error over a given portion of the workspace is the
most important information for a designer. However, this method is relatively difficult

to implement, gives no information on the evolution of the accuracy of the manipulator



within its workspace and gives no kinematic insight into the problem of optimal design.
In contrast, a very simple geometric method for computing the exact value of the
accuracy of 3-DOF 3-PRP planar parallel robots was described in [5] (in this paper, P
and R stand for passive prismatic and revolute joins, respectively, while P and R stand
for actuated prismatic and revolute joins, respectively). This method proposes to replace
the existing dexterity maps by maximum position error maps and maximum orientation
error maps. While this method covers three of the most promising designs for precision
parallel robots (one of which is commercialized and the other two built into laboratory
prototypes), it does not always work for other 3-DOF planar parallel robots.

This paper generalizes the method proposed in [5] by following a detailed
mathematical proof which gives us important insight into the accuracy of planar parallel
robots. The present study considers only 3-DOF three-legged planar parallel robots with
prismatic and/or revolute joints, one actuated joint per leg, and at most one passive
prismatic joint in a leg. The method is illustrated on two practical designs:

1. A 3-RPR planar parallel robot. This robot is the planar projection of the
PAMINSA robot [6] and the design parameters are those of the prototype
manufactured at INSA of Rennes, France.

2. A planar 3-PRR robot [7]. A precision parallel robot based on this design has
been developed in the Technical University of Braunscheig, in Germany [8].

The remainder of this paper is organized as follows. Section Il briefly outlines
the mathematical theorems used in this paper. Section Il presents the method used for
the analysis of the orientation and position errors. Finally, Section IV covers several

numerical examples, and conclusions are given in the last section.



Il. MATHEMATICAL BACKGROUND
Analyzing the (local) maximum position error and the (local) maximum
orientation error of a parallel robot, induced by bounded errors in the active-joint
variables, is basically studying, on a set of closed intervals, the maxima of functions AX

and A¢, defined as:

AX = (X =%,)? + (Y= Yo)? | 2)

Ap=\(¢=4)" . ©)
where Xo, Yo and ¢y are the Cartesian coordinates corresponding to the nominal (desired)
platform pose (position and orientation) of the studied parallel robot, and x, y and ¢ are
the actual platform coordinates.

In the case of a 3-DOF planar fully-parallel robot, AX and A¢gare functions of
three variables: the active-joint variables of the robot (the inputs), which will be denoted
by q; (in this paper, i = 1, 2, 3). Thus, we have to find the maxima of AX and A¢on the

set of intervals q, €[q,-¢,0,+&], where g are the active-joint variables

corresponding to the nominal pose (Xo, Yo, ¢b) Of the platform (in the selected working
mode, i.e., the selected solution to the inverse kinematics) and ¢ is the error bound on
the active-joint variables (Fig. 1).

To simplify our error analysis, we will make the practical assumption that the
nominal configuration is sufficiently far from (Type 1 and Type 2) singularities. Type 1
singularities [9] are configurations where a parallel robot loses its desired functionality
— it loses one or more degrees of freedom. These are the internal and the external
boundaries of workspace. For this reason, the usable workspace of an industrial parallel

robot will be away from these singularities. Similarly, Type 2 singularities [9] are



another kind of configurations where a parallel robot loses its desired functionality —
this time it loses control of the mobile platform. Furthermore, near these configurations,
the output error increases exponentially. For these reasons, industrial parallel robots are
designed to exclude such singularities. Therefore, we will obviously perform our error
analysis only for configurations that are sufficiently far from singularities, i.e., for
nominal configurations from which the robot cannot enter into singularity while the
active-joint variables stay within their error-bounded intervals.

Once we have made this practical assumption, we address the problem of finding
the global maxima of AX and A¢. It is well known that the maximum of a continuous
multivariable function, f, over a given set of intervals can be found by analysing the

Hessian matrix, H:
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Using this Hessian matrix, the set of variables (Qum, Q2m, Qsm), Where

A, €[04 — .0,y +£], leads to a maximum of f if%(qlm,qu,qu):O and H is

negative definite. If such a point exists (gim, 0zm, qam), We will call it a maximum of the
first kind.

The global maximum of f could also be on the faces of the input error bounding
box shown in Fig. 1. This time, we have to study the maxima of six functions of two

variables each, defined as:
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If such points exist, we will call them maxima of the second kind.
The global maximum of f could also be on the edges of the input error bounding

box. This time, we have to study the maxima of twelve univariate functions:

hi: 0, = T(Q,, 00 +&,05 + &), hy: d, = (g +£,0,,05 — ),
ho: 0, = T(0y, 0 + €,050 — &), he: 0, = (G —£,0,, 05 — ),
hs: 0, — (0, Gz — .0 + ), h: 0y = f (G + &, 0z +£,05),
ha: 0, = T(0y, 0 —&,050 — &), hio: Gg = f(dy + .0y — £,05),
hs: a4, = T(Qy +£,0,,05 + ), hi1: 05 = (0 —&,050 +£,05),
he: 4, = (0 —£,0,,05 +&), hi2 0y = (G —&,0p — £,03)-

If such points exist, we will call them maxima of the third kind.

Finally, the global maximum of f could also be on one of the eight corners of the
input error bounding box. These eight points will be referred to as extrema of the fourth
kind.

Finding the global maxima of functions AX and A¢ is equivalent to finding the
maxima of functions AX2 and A¢. In the next section, we will study the extrema of the

functions AX? and A ¢#.

Il. ANALYSIS OF THE ORIENTATION AND POSITION ERRORS
A. Maximum Orientation Error

The partial derivatives of A¢ are given as
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These derivatives are equal to zero if d¢/0q, =0or if ¢ —¢@, =0. Obviously, however,
a maximum can exist only if 6¢/0q, =0.

For a 3-DOF planar parallel robot, two different situations correspond to the
condition d¢/0q; =0:

- The robot is at a Type 1 singularity. However, we already assumed that the robot
cannot enter a Type 1 singularity within the interval studied.

- The twist of the mobile platform, when legs jand k (jk =1, 2, 3, i# j#k) are
fixed, is a pure translation. Figure 2 represents the mobile platform of a robot
linked to three actuated legs, through revolute joints (these could be prismatic
joints as well). Each leg applies a wrench R; on the mobile platform, whose
center is denoted by P. The intersection point O3 of the wrenches R; and R,

represents the instantaneous rotation centre of the mobile platform when

actuators 1 and 2 are fixed and the third actuator is moving. Thus, if X =[x, y]T :

vector 0X/éq,, defined as o0X/aq, =[ox/dq, dyloq,], represents the
instantaneous displacement of the platform under the action of the third actuator
only, where. For the twist of the platform to be a pure translation, wrenches Ry
and R, need to be parallel (Fig. 3). When such a configuration is inside the
interval studied, the corresponding orientation error is a local extemum.

Therefore, a maximum of the first kind exists if and only if R,//R,and

R,//R,and R,//R, (Fig. 4). However, such a configuration corresponds to a Type 2



singularity, and we already assumed that there are no Type 2 singularities for the set of

intervals studied.

A maximum of the second kind exists if R; //R;and R;//IR, (i, ], k=1, 2, 3),
i # ] =k . This, however, is equivalent to the previous case and is therefore impossible.
A maximum of the third kind exists if R, //R; (i, j =1, 2, 3). If such a

configuration is possible, it has to be tested to determine its nature.

Finally, extrema of the fourth kind will always exist and should always be tested.

Thus, in the analysis of the orientation error, only maxima of the third and fourth
kind might appear. Maxima of the third kind are very difficult to compute analytically
even for simple 3-DOF planar parallel robots. Therefore, we are confident that the best
way to proceed, in areas of the workspace where one feels that the robot might be in
configurations in which two wrenches are parallel and this could be a local maximum
(rather than a minimum) for the orientation angle, is to discretize the edges of the input
error bounding box (Fig. 1), compute A¢g at each discrete point, and retain the maximum
value. Obviously, such a discretization will be somewhat time-consuming and less
accurate, but our approach will still produce much more meaningful results than a
simple dexterity plot. Note, however, that in most cases it will be obvious that such
configurations cannot occur. For these cases, one must only compute A¢ at each corner
of the input error bounding box and retain the maximal value. This will be the exact

local orientation error.

B. Maximum Position Error

The partial derivatives of AX? are given as
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These derivatives are equal to zero if 0X/0oq, =0, if 0X/dq; is orthogonal to X—-X, ,
or if X—-X,=0. Obviously, however, the condition X—-X, =0 corresponds to a

global minimum, and will therefore be ignored.
For a 3-DOF planar parallel robot, two different situations correspond to the

condition 0X/aoq; =0:

- The robot is at a Type 1 singularity. However, we already assumed that the robot
cannot enter in a Type 1 singularity within the interval of interest.

- The twist of the mobile platform, when legs jand k (jk =1, 2, 3, i# j#k) are
fixed, is a pure rotation. When the twist of the platform is a pure rotation, this
means that the intersection point O3 of wrenches R; and R, coincides with point
P (Fig. 5). When such a configuration is inside the interval of interest, the
corresponding position error is a local extemum.

Next, we will show geometrically that a global maximum of AX? can exist only
on the edges (including the corners) of the input error bounding box. Indeed, finding
this maximum is equivalent to finding the point from the uncertainly zone of the
platform center that is farthest from the nominal position of the mobile platform. This
uncertainty zone is basically the maximal workspace of the robot (i.e., the set of all
attainable positions of the platform centre) obtained by sweeping the active-joint

variables in their corresponding intervals, q; € [qio —&,0; +g]. Obviously, the point that

we are looking for will be on the boundary of this maximal workspace.
A geometric algorithm for computing this boundary is presented in [10], but we

will not discuss it here in detail. We only need to mention that this boundary is
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composed of segments of curves that correspond to configurations in which at least one
leg is at a Type 1 singularity (which we exclude from our study) or at an active-joint
limit (we also consider that there are no limits on the passive joints). A segment for
which only one active-joint is at a limit is a line segment (in the case of a passive
prismatic joint) or a circular arc whose radius depends on the leg lengths and platform
size (in the case of two passive revolute joints).

In error analysis, the intervals of interest are extremely small compared to the
overall dimensions of the robot, and so is the uncertainty zone for a given nominal
configuration. This means that, in practice, the radius of a circular arc that belongs to
the boundary of the uncertainty zone will be much greater than the maximum position
error. Therefore, for such a tiny arc of large radius, the point that is farthest from the
nominal position will be at one of the two extremities of the arc. This point will
therefore correspond to at least two active-joint variables at a limit.

Thus, thanks to this geometric analysis, we were able to demonstrate that the
maximum position error cannot be elsewhere but on the edges of the input error
bounding box. Next, a deeper analysis will guarantee, to a certain precision, that in
some cases, the maximum position error occurs only at one of the eight corners of the
input error bounding box.

Forlegsjandk (j,k =1, 2, 3, i # j # k), the condition for having a maximum of
the third kind on the interval [q,, —&,0,, + £] is that:

(a) &X/oq, =0;

(b) 0X/aq; is orthogonal to X—X,.

Condition (a) has already been discussed. Such a configuration has to be

examined in order to determine whether it corresponds to a global maximum or not.
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However, it is very difficult to analytically identify such configurations. Therefore, once
again, we are confident that the best way to proceed, in areas of the workspace where
one feels that the robot might be in configurations in which two leg wrenches intersect
at the center of the mobile platform, is to discretize the edges of the input error
bounding box, compute AX at each discrete point, and retain the maximum value. Note,
however, that in most cases it will be obvious that such configurations cannot occur. For
these cases, one must only consider condition (b).

Condition (b) is even more complicated to analyze. The partial derivative

0X/aq; represents the first two elements of the ith column of the Jacobian matrix of the
robot. If the direction of vectors 0X/dq; is close to a constant in the interval studied

(which is far from Type 2 singularities), then it is possible to say that on this interval,
the displacement of the robot, when legs j and k are fixed, is close to a straight line. This

can be verified approximately by computing vector 0X/aoq; at each corner of the input-
error bounding box. If the variation of the direction of the vector 0X/aq, is inferior to a
given value (for example 1 degree), then one can consider that the direction of 0X/dq,

does not change in the interval studied.

Let B be a point for which 0X/dq; is orthogonal to X—-X, (Fig. 6). Vector

u defines the direction of the allowed displacement at point B. If we represent a line
passing through point B, whose direction is defined by vector u, this line defines the
locus for the displacement of the platform around point B when only the ith actuator is
moving. If we represent two points A and C located on this line around B, the direction

of vector u defines the direction of the displacement when the ith leg is actuated in the
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positive sense of g;. Thus, point A represents the point before passing point B and point

C the point after when the ith actuator is moving.
It is so possible to determine the signs of the product (6X/aq, )" (X-X,) at

points A and C. At point A it is negative and at point C it is positive. This shows that
point B is a local minimum of AX2. Thus, such a configuration does not represent a
maximum of the third kind.

Of course, there are exceptions to our rule of thumb, but they are extremely rare
and occur only for some particular mechanism designs. For example, consider a 3-RPR
planar parallel robot. The curve described by the platform centre, when two of the
actuators are blocked, is an ellipse. Therefore, if one takes a segment at whose
endpoints the slope is nearly the same, this segment is clearly close to a line. However,
if a 3-RRR planar parallel robot is considered, the curve is a sextic. Theoretically, it is
possible to have a segment at whose endpoints the slope is nearly the same, yet the
segment is far from linear (e.g., there is a cusp point, or a tiny loop). However, we
consider that such situations are extremely unlikely to happen, and even if they do, they
will occur for only certain configurations and not throughout the workspace. Therefore,
for simplicity, we will exclude this small possibility from our study.

C. Conclusions

To sum up, the proposed method is very simple to implement and, for most
practical 3-DOF planar robot designs, fast and accurate. For most designs, at each
nominal configuration, we have to compute the direct kinematics for eight sets of
active-joint variables, which can either be done analytically, or using a very accurate
numerical method (since we are far from singularities). Thus, for computing the local

maximum orientation error and local maximum position error of a 3-DOF planar
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parallel robot for a given nominal configuration, one should, at worst, compute the
direct kinematics at only 12n points (using the algorithms presented in [11]), where n is
the number of discretization points on each of the edges of the input error bounding box.
As already mentioned, such a discretization is unfortunately somewhat time-consuming
and might lead to a certain computational inaccuracy. However, relatively simple
analysis can show that for a given robot design, only the eight vertices of the input error
bounding box should be verified. Namely, for the computation of the maximum
orientation error, this is the case if no two wrenches can be parallel and lead to a local
maximum, and for the computation of the maximum position error, this is the case if no
two wrenches can intersect at the platform center and the variation of the direction of
each vector 0X/0q; is very small.
IV. EXAMPLES

A. A 3-DOF 3-RPR Planar Parallel Robot

In this part, we will study the accuracy of a 3-DOF 3-RPR planar parallel robot

(Fig. 7). This robot is designed as follows:

the actuators are mounted on the base and are located at revolute joints A;;

triangles A;A,A3 and B1B,B; are equilateral;

the centre O of frame Oxy is located at the geometric center of triangle

A1ALAs;

OA;=0.35mand PB;j=0.1m

the error bound on the active-joint variables is € =2-10*rad .
The Type 2 singularities of this robot are well known [12-14]. They appear

when the robot is in such configuration that:

— the rotation angle is ¢ =+cos™(PB/OA) ~+73.4° ;
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- the platform centre P is located on a circle whose centre is O and whose radius

is equal to\/OA? + PB? —2-OA, PB, cosg .

The Type 1 singularities for this robot occur when point A; coincides with point B;.

These three Type 1 singularity points lie on the Type 2 singularity circle.

Thus we propose to analyse a usable workspace defined by a circle whose centre

is O and whose radius is equal to 0.245 m for two different orientation angles ¢, 0 and

10 degrees. This workspace is free of singularities (the radius for the Type 2 singularity

circle at ¢ = 0° and at 10° is 0.25 m and 0.2521 m, respectively).

The direct kinematic model of the robot is quite simple to obtain and has two

distinct solutions, for active-joint variables that do not lead to singularities. We have to

study here three different cases:

(@)

(b)

Configurations where two wrenches are parallel. These configurations can be
either a local maximum or a local minimum for the orientation error. In our
example, the wrenches are perpendicular to the directions of the prismatic
joints and pass through points B;. Thus, this case appears when the directions
of two of the prismatic joints are parallel (Fig. 8a). For such configurations,
the orientation of the platform remains constant if only the actuated joint of
the third leg moves. Therefore, this configuration is a local minimum for the
orientation error.

Configurations where two wrenches intersect at the platform center. These
configurations can be either a local maximum or a local minimum for the
position error. In our example, it is easy to verify that such configurations

appear only outside the studied workspaces (Fig. 8b).
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(c) Configurations in which the direction of vectors 6X/dqg;, is not nearly

constant. Figures 9a and 9b represent the variation in the direction of vectors

oX/aq, in the interval studied (the figures for 0X/ég, and 0X/doq, are

obtained by 120° rotations). It is possible to note that this variation is
extremely small in the studied workspace (less than 0.6°).

Thus, there are only eight active-joint variable sets to test for computing the
maximum orientation and maximum position error of the robot for a given nominal
pose. For each set, the two possible platform poses are obtained analytically, and the
corresponding orientation error and position error are computed for the solution that is
closest to the nominal pose. The resulting contour plots for two orientations are
presented in Figs. 10 and 11.

As expected, it can be seen that the robot is more accurate in the center of its
workspace, far from singularities. The closer the robot to the singularity circle, the
poorer is its accuracy. It is interesting to note that while there is always a substantial
position error, the orientation error is virtually zero in the central part of the workspace.
B. A 3-DOF 3-PRR Planar Parallel Robot

In this part, we will study the accuracy of a 3-PRR planar parallel robot

(Fig. 12). This robot is designed as follows:

the actuators are mounted on the base and are located at prismatic joints AiB; ;

the centre O of frame Oxy is located at the geometric centre of the triangle

A1ALAs;

triangles A1A,As and C,C,C; are equilateral and the guides of the prismatic

joints are tangent to the circle whose centre is O and whose radius is OA;;

OA;=0.35m, BiC;=0.4mand PC;=0.1 m;
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- the stroke of the actuators is 76 cm.

- the error bound on the active-joint variables is £ =10 um.

The direct kinematics of this robot allows up to six real solutions and cannot be
solved analytically [11]. Since we only need the solution that can be reached from the
nominal pose, while the active-joint variables remain in their intervals, the best solution
is to use an iterative numerical method such as the Newton-Raphson method. This
method requires only the computation of the Jacobian matrix of the robot, which is very
simple to obtain. In our error analysis, we will always start the algorithm at the nominal
configuration and vary the active-joint variables in a very small interval of length up to
e. Furthermore, we will use this algorithm for configurations that are sufficiently far
from singularities. Therefore, as verified in this example, the algorithm converges very
quickly (usually, in only two iterations for a precision of 10%° m and 10% degrees).

The singularities of this robot have been studied in [14], but correspond to quite
complex curves. Fortunately, however, it is easy find a design for which there are no
singularities inside the workspace for the given working mode (given set of inverse
kinematic solutions). The studied workspace of our robot corresponds to an equilateral
triangle inscribed in a circle centred in O and whose radius is equal to 0.3 m. One edge
of the triangle is parallel to x. This workspace will be studied for orientation angles
equal to 0° and 10°. There are no Type 2 singularities in it.

We have to study here three different cases:

@ Configurations where two wrenches are parallel. These configurations can be

either a local maximum or a local minimum for the orientation error. In our
example, the instantaneous wrenches are along the lines B;C;. Thus, this case

appears when two of the legs are parallel (Fig. 13). Two types of such

17



(b)

(©)

configurations exist. Figure 13a represents a configuration which
corresponds to a local minimum for the orientation error. For this
configuration, the two legs form a parallelogram and the orientation of the
platform remains constant while the third actuator moves alone. Figure 14b
represents a configuration which corresponds to a local maximum for the
orientation error. In this configuration, if the mobile platform is pushed away
in any direction by the third leg, it will rotate in the same sense. However, in
our example, it is easy to verify that such configurations cannot appear
inside the studied workspace.

Configurations where two wrenches intersect at the platform center. These
configurations can be either a local maximum or a local minimum for the
position error. In our example, it is easy to verify that such configurations
cannot appear inside the studied workspace.

Configurations in which the direction of vectors 0X/dqg, is not nearly

constant. Figures 14a and 14b represent the variation in the direction of

vectors 0X/oqg, in the interval studied (the figures for 0X/dqg, and 0X/aoq,

are obtained by rotations of 120°). It is possible to note that this variation is
very small in the studied workspaces (less than 0.01°). As already
mentioned, this is not a 100% guarantee that the maximum position error
occurs at one of the eight corners of the input error bounding box. Therefore,
for the purposes of this demonstration, we have also verified on the edges of
the bounding box (using 20 discretization intervals on each edge). Not even

one nominal configuration was found for which the maximum position error
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is not at one of the eight corners. Therefore, the assumption that we make is
valid in this example.

Thus, for this robot too, there only are eight sets of active-joint variable to test
for computing the local maximum orientation error and local maximum position error of
the robot. The resulting contour plots for two different orientations are presented in
Figs. 15 and 16.

It can be noted that the position error of this parallel robot is nearly constant for
both orientations, from about 11 um to 17 um, and only slightly larger than the input
errors ¢ = 10 um. This can be explained by the fact that the robot stays far from
singularities of the second kind in the studied workspace. Furthermore, it appears the
orientation error is nearly constant and virtually zero, throughout the workspace.
Therefore, this parallel robot is an excellent candidate for precision positioning, as

demonstrated by the authors of [8].

V. CONCLUSIONS

This paper presented a detailed study of the local maximum orientation and
position errors occurring in 3-DOF planar parallel robots subjected to errors in the
inputs. It was proven that, when sufficiently far from singularities, the local maximum
orientation and position errors can occur only when at least two inputs suffer a
maximum error. However, a simple procedure was proposed to evaluate, for a given
design, whether these output errors can occur when only two inputs are at a maximum
error. Thanks to this detailed study, a simple method was proposed to calculate the local
maximum orientation and position errors for a given nominal configuration and given
error bound on the inputs. The method involves solving the direct kinematics for eight,

or a maximum of 12n (n being the number of discretization steps), sets of inputs. This
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method is relatively fast, accurate, but mostly, very simple to implement and gives
valuable insight into the kinematic accuracy of parallel robot. The authors believe that
the proposed method should be used for all 3-DOF planar fully-parallel robots instead

of the much less meaningful dexterity maps.
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FIGURE CAPTIONS

: Input error bounding box.

: The leg wrenches applied to the mobile platform.

: Pure translational motion following a variation in gz only.
: Extrema of the first and second type for the function A¢.
: Pure rotational motion following a variation in gz only.

: Analysis of a local extremum for which 0X/4dq; is orthogonal to (X — XO).

Schematic of the 3-RPR planar parallel manipulator.

Configurations of the 3-RPR parallel manipulator corresponding to local extrema

in (a) the orientation error and (b) the position error.

Fig. 9: Variation in the direction of vector 0X/aoq, (degrees) for two orientations.

Fig. 10: Maximum orientation and position errors for the 3-RPR manipulator at ¢ = 0°.

Fig. 11: Maximum orientation and position errors for the 3-RPR manipulator at ¢ = 10°.

Fig. 12: Schematic of the studied 3-PRR manipulator.

Fig. 13: Configurations of the 3-PRR parallel manipulator corresponding to local (a)

minimum and (b) maximum of the orientation error.

Fig. 14: Variation in the direction of vector 6X/aoq, (degrees) for two orientations.

Fig. 15: Maximum orientation and position errors for the 3-PRR manipulator at ¢ = 0°.

Fig. 16: Maximum orientation and position errors for the 3-PRR manipulator at ¢ = 10°.
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Fig. 1: Input error bounding box.

Fig. 2: The leg wrenches applied to the mobile platform.
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Unconstrained
infinitesimal motion

Fig. 5: Pure rotational motion following a variation in gz only.
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X(C)-X(0)

X(A)-X(0)

O

Fig. 6: Analysis of a local extremum for which 6X /&g, is orthogonal to (X —X,).

Fig. 7: Schematic of the 3-RPR planar parallel manipulator.
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Fig. 8: Configurations of the 3-RPR parallel manipulator corresponding to local

extrema in (a) the orientation error and (b) the position error.
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Fig. 15: Maximum orientation and position errors for the 3-PRR manipulator at ¢ = 0°.
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Fig. 16: Maximum orientation and position errors for the 3-PRR manipulator at ¢ = 10°.
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