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ABSTRACT 

Three-degree-of-freedom planar parallel robots are increasingly being used in 

applications where precision is of the utmost importance. Clearly, methods for 

evaluating the accuracy of these robots are therefore needed. The accuracy of well 

designed, manufactured, and calibrated parallel robots depends mostly on the input 

errors (sensor and control errors). Dexterity and other similar performance indices have 

often been used to evaluate indirectly the influence of input errors. However, industry 

needs a precise knowledge of the maximum orientation and position output errors at a 

given nominal configuration. An interval analysis method that can be adapted for this 

purpose has been proposed in the literature, but gives no kinematic insight into the 

problem of optimal design. In this paper, a simpler method is proposed based on a 

detailed error analysis of 3-DOF planar parallel robots that brings valuable 

understanding of the problem of error amplification. 

Keywords: parallel mechanisms, accuracy, dexterity, performance evaluation, error 

analysis. 
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I. INTRODUCTION 

Parallel robots are increasingly being used for precision positioning, and a 

number of them are used as 3-degree-of-freedom (DOF) planar alignment stages. 

Clearly, in such industrial applications, accuracy is of the utmost importance. Therefore, 

simple and fast methods for computing the accuracy of a given robot design are needed 

in order to use them in design optimization procedures that look for maximum accuracy. 

Errors in the position and orientation of a parallel robot are due to several 

factors: 

− manufacturing errors, which can however be taken into account through 

calibration; 

− backlash, which can be eliminated through proper choice of mechanical 

components; 

− compliance, which can also be eliminated through the use of more rigid 

structures (though this would increase inertia and decrease operating speed); 

− active-joint errors, coming from the finite resolution of the encoders, sensor 

errors, and control errors. 

Therefore, as pointed out by Merlet [1], active-joint errors (input errors) are the most 

significant source of errors in a properly designed, manufactured, and calibrated parallel 

robot. In this paper, we address the problem of computing the accuracy of a parallel 

robot in the presence of active-joint errors only. In the balance of the paper, the term 

“accuracy” will therefore refer to the position and orientation errors of a parallel robot 

that is subjected to active-joint errors only. 

The classical approach consists in considering the first order approximation that 

maps the input error to the output error: 
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   p J q  (1) 

where q represents the vector of the active-joint (input) errors, p the vector of output 

errors and J is the Jacobian matrix of the robot. However, this method will give only an 

approximation of the output maximum error. Indeed, as we will prove in this paper, 

given a nominal configuration and some uncertainty ranges for the active-joint 

variables, a local maximum position error and a local maximum orientation error not 

only occur at different sets of active-joint variables in general, but these active-joint 

variables are not necessarily all at the limits of their uncertainty ranges. 

Several performance indices have been developed and used to roughly evaluate 

the accuracy of serial and parallel robots. A recent study [2] reviewed most of these 

performance indices and discussed their inconsistencies when applied to parallel robots 

with translational and rotational degrees of freedom. The most common performance 

indices used to indirectly optimize the accuracy of parallel robots are the dexterity index 

[3], the condition numbers, and the global conditioning index [4]. However, in a recent 

study of the accuracy of a class of 3-DOF planar parallel robots [5], it was demonstrated 

that dexterity has little to do with robot accuracy, as we define it. 

Obviously, the best accuracy measure for an industrial parallel robot would be 

the maximum position and maximum orientation errors over a given portion of the 

workspace [1,5] or at a given nominal configuration, given actuator inaccuracies. A 

general method based on interval analysis for calculating close approximations of the 

maximum output error over a given portion of the workspace was proposed recently in 

[1]. Obviously, the maximum output error over a given portion of the workspace is the 

most important information for a designer. However, this method is relatively difficult 

to implement, gives no information on the evolution of the accuracy of the manipulator 
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within its workspace and gives no kinematic insight into the problem of optimal design. 

In contrast, a very simple geometric method for computing the exact value of the 

accuracy of 3-DOF 3-PRP planar parallel robots was described in [5] (in this paper, P 

and R stand for passive prismatic and revolute joins, respectively, while P and R stand 

for actuated prismatic and revolute joins, respectively). This method proposes to replace 

the existing dexterity maps by maximum position error maps and maximum orientation 

error maps. While this method covers three of the most promising designs for precision 

parallel robots (one of which is commercialized and the other two built into laboratory 

prototypes), it does not always work for other 3-DOF planar parallel robots. 

This paper generalizes the method proposed in [5] by following a detailed 

mathematical proof which gives us important insight into the accuracy of planar parallel 

robots. The present study considers only 3-DOF three-legged planar parallel robots with 

prismatic and/or revolute joints, one actuated joint per leg, and at most one passive 

prismatic joint in a leg. The method is illustrated on two practical designs: 

1. A 3-RPR planar parallel robot. This robot is the planar projection of the 

PAMINSA robot [6] and the design parameters are those of the prototype 

manufactured at INSA of Rennes, France. 

2. A planar 3-PRR robot [7]. A precision parallel robot based on this design has 

been developed in the Technical University of Braunscheig, in Germany [8]. 

The remainder of this paper is organized as follows. Section II briefly outlines 

the mathematical theorems used in this paper. Section III presents the method used for 

the analysis of the orientation and position errors. Finally, Section IV covers several 

numerical examples, and conclusions are given in the last section. 
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II. MATHEMATICAL BACKGROUND 

Analyzing the (local) maximum position error and the (local) maximum 

orientation error of a parallel robot, induced by bounded errors in the active-joint 

variables, is basically studying, on a set of closed intervals, the maxima of functions X 

and defined as: 
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0
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2

0     , (3) 

where x0, y0 and 0 are the Cartesian coordinates corresponding to the nominal (desired) 

platform pose (position and orientation) of the studied parallel robot, and x, y and   are 

the actual platform coordinates. 

In the case of a 3-DOF planar fully-parallel robot, X and are functions of 

three variables: the active-joint variables of the robot (the inputs), which will be denoted 

by qi (in this paper, i = 1, 2, 3). Thus, we have to find the maxima of X and on the 

set of intervals    00 , iii qqq , where qi0 are the active-joint variables 

corresponding to the nominal pose (x0, y0, 0) of the platform (in the selected working 

mode, i.e., the selected solution to the inverse kinematics) and  is the error bound on 

the active-joint variables (Fig. 1). 

To simplify our error analysis, we will make the practical assumption that the 

nominal configuration is sufficiently far from (Type 1 and Type 2) singularities. Type 1 

singularities [9] are configurations where a parallel robot loses its desired functionality 

– it loses one or more degrees of freedom. These are the internal and the external 

boundaries of workspace. For this reason, the usable workspace of an industrial parallel 

robot will be away from these singularities. Similarly, Type 2 singularities [9] are 
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another kind of configurations where a parallel robot loses its desired functionality – 

this time it loses control of the mobile platform. Furthermore, near these configurations, 

the output error increases exponentially. For these reasons, industrial parallel robots are 

designed to exclude such singularities. Therefore, we will obviously perform our error 

analysis only for configurations that are sufficiently far from singularities, i.e., for 

nominal configurations from which the robot cannot enter into singularity while the 

active-joint variables stay within their error-bounded intervals. 

Once we have made this practical assumption, we address the problem of finding 

the global maxima of X and It is well known that the maximum of a continuous 

multivariable function, f, over a given set of intervals can be found by analysing the 

Hessian matrix, H: 
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Using this Hessian matrix, the set of variables (q1m, q2m, q3m), where 

   00 , iiim qqq , leads to a maximum of f if 0),,( 321 
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 and H is 

negative definite. If such a point exists (q1m, q2m, q3m), we will call it a maximum of the 

first kind. 

The global maximum of f could also be on the faces of the input error bounding 

box shown in Fig. 1. This time, we have to study the maxima of six functions of two 

variables each, defined as: 
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g1:    321032 ,,, qqqfqq  , 

g2:    321032 ,,, qqqfqq  , 

g3:    320131 ,,, qqqfqq  , 

g4:    320131 ,,, qqqfqq  , 

g5:     302121 ,,, qqqfqq , 

g6:     302121 ,,, qqqfqq . 

If such points exist, we will call them maxima of the second kind. 

The global maximum of f could also be on the edges of the input error bounding 

box. This time, we have to study the maxima of twelve univariate functions: 

h1:    302011 ,, qqqfq , 

h2:    302011 ,, qqqfq , 

h3:    302011 ,, qqqfq , 

h4:    302011 ,, qqqfq , 

h5:    302102 ,, qqqfq , 

h6:    302102 ,, qqqfq , 

h7:    302102 ,, qqqfq , 

h8:    302102 ,, qqqfq , 

h9:  320103 ,, qqqfq   , 

h10:  320103 ,, qqqfq   , 

h11:  320103 ,, qqqfq   , 

h12:  320103 ,, qqqfq   . 

If such points exist, we will call them maxima of the third kind. 

Finally, the global maximum of f could also be on one of the eight corners of the 

input error bounding box. These eight points will be referred to as extrema of the fourth 

kind. 

Finding the global maxima of functions X and  is equivalent to finding the 

maxima of functions X² and ². In the next section, we will study the extrema of the 

functions X² and ². 

III. ANALYSIS OF THE ORIENTATION AND POSITION ERRORS 

A. Maximum Orientation Error 

The partial derivatives of ² are given as 
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These derivatives are equal to zero if 0/  iq or if 00  . Obviously, however, 

a maximum can exist only if 0/  iq . 

For a 3-DOF planar parallel robot, two different situations correspond to the 

condition 0/  iq : 

− The robot is at a Type 1 singularity. However, we already assumed that the robot 

cannot enter a Type 1 singularity within the interval studied. 

− The twist of the mobile platform, when legs j and k (j,k = 1, 2, 3, kji  ) are 

fixed, is a pure translation. Figure 2 represents the mobile platform of a robot 

linked to three actuated legs, through revolute joints (these could be prismatic 

joints as well). Each leg applies a wrench Ri on the mobile platform, whose 

center is denoted by P. The intersection point O3 of the wrenches R1 and R2 

represents the instantaneous rotation centre of the mobile platform when 

actuators 1 and 2 are fixed and the third actuator is moving. Thus, if  ,
T

x yX , 

vector 3/ qX , defined as  Tqyqxq 333 /// X , represents the 

instantaneous displacement of the platform under the action of the third actuator 

only, where. For the twist of the platform to be a pure translation, wrenches R1 

and R2 need to be parallel (Fig. 3). When such a configuration is inside the 

interval studied, the corresponding orientation error is a local extemum. 

Therefore, a maximum of the first kind exists if and only if 1 2//R R and 

2 3//R R and 1 3//R R  (Fig. 4). However, such a configuration corresponds to a Type 2 
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singularity, and we already assumed that there are no Type 2 singularities for the set of 

intervals studied. 

A maximum of the second kind exists if ji RR // and ki RR //  (i, j, k = 1, 2, 3), 

kji  . This, however, is equivalent to the previous case and is therefore impossible. 

A maximum of the third kind exists if ji RR //  (i, j = 1, 2, 3). If such a 

configuration is possible, it has to be tested to determine its nature. 

Finally, extrema of the fourth kind will always exist and should always be tested. 

Thus, in the analysis of the orientation error, only maxima of the third and fourth 

kind might appear. Maxima of the third kind are very difficult to compute analytically 

even for simple 3-DOF planar parallel robots. Therefore, we are confident that the best 

way to proceed, in areas of the workspace where one feels that the robot might be in 

configurations in which two wrenches are parallel and this could be a local maximum 

(rather than a minimum) for the orientation angle, is to discretize the edges of the input 

error bounding box (Fig. 1), compute  at each discrete point, and retain the maximum 

value. Obviously, such a discretization will be somewhat time-consuming and less 

accurate, but our approach will still produce much more meaningful results than a 

simple dexterity plot. Note, however, that in most cases it will be obvious that such 

configurations cannot occur. For these cases, one must only compute  at each corner 

of the input error bounding box and retain the maximal value. This will be the exact 

local orientation error. 

 

B. Maximum Position Error 

The partial derivatives of X² are given as 
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These derivatives are equal to zero if 0/  iqX , if iq /X  is orthogonal to 0XX   , 

or if 00  XX . Obviously, however, the condition 00  XX  corresponds to a 

global minimum, and will therefore be ignored. 

For a 3-DOF planar parallel robot, two different situations correspond to the 

condition 0/  iqX : 

− The robot is at a Type 1 singularity. However, we already assumed that the robot 

cannot enter in a Type 1 singularity within the interval of interest. 

− The twist of the mobile platform, when legs j and k (j,k = 1, 2, 3, kji  ) are 

fixed, is a pure rotation. When the twist of the platform is a pure rotation, this 

means that the intersection point O3 of wrenches R1 and R2 coincides with point 

P (Fig. 5). When such a configuration is inside the interval of interest, the 

corresponding position error is a local extemum. 

Next, we will show geometrically that a global maximum of X
2
 can exist only 

on the edges (including the corners) of the input error bounding box. Indeed, finding 

this maximum is equivalent to finding the point from the uncertainly zone of the 

platform center that is farthest from the nominal position of the mobile platform. This 

uncertainty zone is basically the maximal workspace of the robot (i.e., the set of all 

attainable positions of the platform centre) obtained by sweeping the active-joint 

variables in their corresponding intervals,    00 , iii qqq . Obviously, the point that 

we are looking for will be on the boundary of this maximal workspace. 

A geometric algorithm for computing this boundary is presented in [10], but we 

will not discuss it here in detail. We only need to mention that this boundary is 
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composed of segments of curves that correspond to configurations in which at least one 

leg is at a Type 1 singularity (which we exclude from our study) or at an active-joint 

limit (we also consider that there are no limits on the passive joints). A segment for 

which only one active-joint is at a limit is a line segment (in the case of a passive 

prismatic joint) or a circular arc whose radius depends on the leg lengths and platform 

size (in the case of two passive revolute joints). 

In error analysis, the intervals of interest are extremely small compared to the 

overall dimensions of the robot, and so is the uncertainty zone for a given nominal 

configuration. This means that, in practice, the radius of a circular arc that belongs to 

the boundary of the uncertainty zone will be much greater than the maximum position 

error. Therefore, for such a tiny arc of large radius, the point that is farthest from the 

nominal position will be at one of the two extremities of the arc. This point will 

therefore correspond to at least two active-joint variables at a limit. 

Thus, thanks to this geometric analysis, we were able to demonstrate that the 

maximum position error cannot be elsewhere but on the edges of the input error 

bounding box. Next, a deeper analysis will guarantee, to a certain precision, that in 

some cases, the maximum position error occurs only at one of the eight corners of the 

input error bounding box. 

For legs j and k (j,k = 1, 2, 3, kji  ), the condition for having a maximum of 

the third kind on the interval    00 , ii qq  is that: 

(a) 0/  iqX ; 

(b) iq /X  is orthogonal to 0XX . 

Condition (a) has already been discussed. Such a configuration has to be 

examined in order to determine whether it corresponds to a global maximum or not. 
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However, it is very difficult to analytically identify such configurations. Therefore, once 

again, we are confident that the best way to proceed, in areas of the workspace where 

one feels that the robot might be in configurations in which two leg wrenches intersect 

at the center of the mobile platform, is to discretize the edges of the input error 

bounding box, compute X at each discrete point, and retain the maximum value. Note, 

however, that in most cases it will be obvious that such configurations cannot occur. For 

these cases, one must only consider condition (b). 

Condition (b) is even more complicated to analyze. The partial derivative 

iq /X  represents the first two elements of the ith column of the Jacobian matrix of the 

robot. If the direction of vectors iq /X  is close to a constant in the interval studied 

(which is far from Type 2 singularities), then it is possible to say that on this interval, 

the displacement of the robot, when legs j and k are fixed, is close to a straight line. This 

can be verified approximately by computing vector iq /X  at each corner of the input-

error bounding box. If the variation of the direction of the vector iq /X  is inferior to a 

given value (for example 1 degree), then one can consider that the direction of iq /X  

does not change in the interval studied. 

Let B be a point for which iq /X  is orthogonal to 0XX  (Fig. 6). Vector 

udefines the direction of the allowed displacement at point B. If we represent a line 

passing through point B, whose direction is defined by vector u, this line defines the 

locus for the displacement of the platform around point B when only the ith actuator is 

moving. If we represent two points A and C located on this line around B, the direction 

of vector u defines the direction of the displacement when the ith leg is actuated in the 
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positive sense of qi. Thus, point A represents the point before passing point B and point 

C the point after when the ith actuator is moving. 

It is so possible to determine the signs of the product    0

T
/ XXX  iq  at 

points A and C. At point A it is negative and at point C it is positive. This shows that 

point B is a local minimum of X². Thus, such a configuration does not represent a 

maximum of the third kind. 

Of course, there are exceptions to our rule of thumb, but they are extremely rare 

and occur only for some particular mechanism designs. For example, consider a 3-RPR 

planar parallel robot. The curve described by the platform centre, when two of the 

actuators are blocked, is an ellipse. Therefore, if one takes a segment at whose 

endpoints the slope is nearly the same, this segment is clearly close to a line. However, 

if a 3-RRR planar parallel robot is considered, the curve is a sextic. Theoretically, it is 

possible to have a segment at whose endpoints the slope is nearly the same, yet the 

segment is far from linear (e.g., there is a cusp point, or a tiny loop). However, we 

consider that such situations are extremely unlikely to happen, and even if they do, they 

will occur for only certain configurations and not throughout the workspace. Therefore, 

for simplicity, we will exclude this small possibility from our study. 

C. Conclusions 

To sum up, the proposed method is very simple to implement and, for most 

practical 3-DOF planar robot designs, fast and accurate. For most designs, at each 

nominal configuration, we have to compute the direct kinematics for eight sets of 

active-joint variables, which can either be done analytically, or using a very accurate 

numerical method (since we are far from singularities). Thus, for computing the local 

maximum orientation error and local maximum position error of a 3-DOF planar 



 14 

parallel robot for a given nominal configuration, one should, at worst, compute the 

direct kinematics at only 12n points (using the algorithms presented in [11]), where n is 

the number of discretization points on each of the edges of the input error bounding box. 

As already mentioned, such a discretization is unfortunately somewhat time-consuming 

and might lead to a certain computational inaccuracy. However, relatively simple 

analysis can show that for a given robot design, only the eight vertices of the input error 

bounding box should be verified. Namely, for the computation of the maximum 

orientation error, this is the case if no two wrenches can be parallel and lead to a local 

maximum, and for the computation of the maximum position error, this is the case if no 

two wrenches can intersect at the platform center and the variation of the direction of 

each vector iq /X  is very small. 

IV. EXAMPLES 

A. A 3-DOF 3-RPR Planar Parallel Robot 

In this part, we will study the accuracy of a 3-DOF 3-RPR planar parallel robot 

(Fig. 7). This robot is designed as follows: 

− the actuators are mounted on the base and are located at revolute joints Ai; 

− triangles A1A2A3 and B1B2B3 are equilateral; 

− the centre O of frame Oxy  is located at the geometric center of triangle 

A1A2A3; 

− OAi = 0.35 m and PBi = 0.1 m 

− the error bound on the active-joint variables is 
42 10 rad   . 

The Type 2 singularities of this robot are well known [12–14]. They appear 

when the robot is in such configuration that: 

− the rotation angle is 1

1 1cos ( ) 73.4PB /OA      ; 
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− the platform centre P is located on a circle whose centre is O and whose radius 

is equal to cos2 11

2

1

2

1 PBOAPBOA  . 

The Type 1 singularities for this robot occur when point Ai coincides with point Bi. 

These three Type 1 singularity points lie on the Type 2 singularity circle. 

Thus we propose to analyse a usable workspace defined by a circle whose centre 

is O and whose radius is equal to 0.245 m for two different orientation angles  , 0 and 

10 degrees. This workspace is free of singularities (the radius for the Type 2 singularity 

circle at   = 0° and at 10° is 0.25 m and 0.2521 m, respectively). 

The direct kinematic model of the robot is quite simple to obtain and has two 

distinct solutions, for active-joint variables that do not lead to singularities. We have to 

study here three different cases: 

(a) Configurations where two wrenches are parallel. These configurations can be 

either a local maximum or a local minimum for the orientation error. In our 

example, the wrenches are perpendicular to the directions of the prismatic 

joints and pass through points Bi. Thus, this case appears when the directions 

of two of the prismatic joints are parallel (Fig. 8a). For such configurations, 

the orientation of the platform remains constant if only the actuated joint of 

the third leg moves. Therefore, this configuration is a local minimum for the 

orientation error. 

(b) Configurations where two wrenches intersect at the platform center. These 

configurations can be either a local maximum or a local minimum for the 

position error. In our example, it is easy to verify that such configurations 

appear only outside the studied workspaces (Fig. 8b). 
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(c) Configurations in which the direction of vectors iq /X  is not nearly 

constant. Figures 9a and 9b represent the variation in the direction of vectors 

1/ qX  in the interval studied (the figures for 
2/ qX  and 3/ qX  are 

obtained by 120° rotations). It is possible to note that this variation is 

extremely small in the studied workspace (less than 0.6°). 

Thus, there are only eight active-joint variable sets to test for computing the 

maximum orientation and maximum position error of the robot for a given nominal 

pose. For each set, the two possible platform poses are obtained analytically, and the 

corresponding orientation error and position error are computed for the solution that is 

closest to the nominal pose. The resulting contour plots for two orientations are 

presented in Figs. 10 and 11. 

As expected, it can be seen that the robot is more accurate in the center of its 

workspace, far from singularities. The closer the robot to the singularity circle, the 

poorer is its accuracy. It is interesting to note that while there is always a substantial 

position error, the orientation error is virtually zero in the central part of the workspace. 

B. A 3-DOF 3-PRR Planar Parallel Robot 

In this part, we will study the accuracy of a 3-PRR planar parallel robot 

(Fig. 12). This robot is designed as follows: 

− the actuators are mounted on the base and are located at prismatic joints AiBi ; 

− the centre O of frame Oxy  is located at the geometric centre of the triangle 

A1A2A3; 

− triangles A1A2A3 and C1C2C3 are equilateral and the guides of the prismatic 

joints are tangent to the circle whose centre is O and whose radius is OA1; 

− OAi = 0.35 m, BiCi = 0.4 m and PCi = 0.1 m; 
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− the stroke of the actuators is 76 cm. 

− the error bound on the active-joint variables is 10   μm. 

The direct kinematics of this robot allows up to six real solutions and cannot be 

solved analytically [11]. Since we only need the solution that can be reached from the 

nominal pose, while the active-joint variables remain in their intervals, the best solution 

is to use an iterative numerical method such as the Newton-Raphson method. This 

method requires only the computation of the Jacobian matrix of the robot, which is very 

simple to obtain. In our error analysis, we will always start the algorithm at the nominal 

configuration and vary the active-joint variables in a very small interval of length up to 

ε. Furthermore, we will use this algorithm for configurations that are sufficiently far 

from singularities. Therefore, as verified in this example, the algorithm converges very 

quickly (usually, in only two iterations for a precision of 10
-20

 m and 10
-20

 degrees). 

The singularities of this robot have been studied in [14], but correspond to quite 

complex curves. Fortunately, however, it is easy find a design for which there are no 

singularities inside the workspace for the given working mode (given set of inverse 

kinematic solutions). The studied workspace of our robot corresponds to an equilateral 

triangle inscribed in a circle centred in O and whose radius is equal to 0.3 m. One edge 

of the triangle is parallel to x. This workspace will be studied for orientation angles 

equal to 0° and 10°. There are no Type 2 singularities in it. 

We have to study here three different cases: 

(a) Configurations where two wrenches are parallel. These configurations can be 

either a local maximum or a local minimum for the orientation error. In our 

example, the instantaneous wrenches are along the lines BiCi. Thus, this case 

appears when two of the legs are parallel (Fig. 13). Two types of such 
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configurations exist. Figure 13a represents a configuration which 

corresponds to a local minimum for the orientation error. For this 

configuration, the two legs form a parallelogram and the orientation of the 

platform remains constant while the third actuator moves alone. Figure 14b 

represents a configuration which corresponds to a local maximum for the 

orientation error. In this configuration, if the mobile platform is pushed away 

in any direction by the third leg, it will rotate in the same sense. However, in 

our example, it is easy to verify that such configurations cannot appear 

inside the studied workspace. 

(b) Configurations where two wrenches intersect at the platform center. These 

configurations can be either a local maximum or a local minimum for the 

position error. In our example, it is easy to verify that such configurations 

cannot appear inside the studied workspace. 

(c) Configurations in which the direction of vectors iq /X  is not nearly 

constant. Figures 14a and 14b represent the variation in the direction of 

vectors 1/ qX  in the interval studied (the figures for 2/ qX  and 3/ qX  

are obtained by rotations of 120°). It is possible to note that this variation is 

very small in the studied workspaces (less than 0.01°). As already 

mentioned, this is not a 100% guarantee that the maximum position error 

occurs at one of the eight corners of the input error bounding box. Therefore, 

for the purposes of this demonstration, we have also verified on the edges of 

the bounding box (using 20 discretization intervals on each edge). Not even 

one nominal configuration was found for which the maximum position error 
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is not at one of the eight corners. Therefore, the assumption that we make is 

valid in this example. 

Thus, for this robot too, there only are eight sets of active-joint variable to test 

for computing the local maximum orientation error and local maximum position error of 

the robot. The resulting contour plots for two different orientations are presented in 

Figs. 15 and 16. 

It can be noted that the position error of this parallel robot is nearly constant for 

both orientations, from about 11 µm to 17 µm, and only slightly larger than the input 

errors  = 10 µm. This can be explained by the fact that the robot stays far from 

singularities of the second kind in the studied workspace. Furthermore, it appears the 

orientation error is nearly constant and virtually zero, throughout the workspace. 

Therefore, this parallel robot is an excellent candidate for precision positioning, as 

demonstrated by the authors of [8]. 

V. CONCLUSIONS 

This paper presented a detailed study of the local maximum orientation and 

position errors occurring in 3-DOF planar parallel robots subjected to errors in the 

inputs. It was proven that, when sufficiently far from singularities, the local maximum 

orientation and position errors can occur only when at least two inputs suffer a 

maximum error. However, a simple procedure was proposed to evaluate, for a given 

design, whether these output errors can occur when only two inputs are at a maximum 

error. Thanks to this detailed study, a simple method was proposed to calculate the local 

maximum orientation and position errors for a given nominal configuration and given 

error bound on the inputs. The method involves solving the direct kinematics for eight, 

or a maximum of 12n (n being the number of discretization steps), sets of inputs. This 
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method is relatively fast, accurate, but mostly, very simple to implement and gives 

valuable insight into the kinematic accuracy of parallel robot. The authors believe that 

the proposed method should be used for all 3-DOF planar fully-parallel robots instead 

of the much less meaningful dexterity maps. 
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FIGURE CAPTIONS 

Fig. 1: Input error bounding box. 

Fig. 2: The leg wrenches applied to the mobile platform. 

Fig. 3: Pure translational motion following a variation in q3 only. 

Fig. 4: Extrema of the first and second type for the function ². 

Fig. 5: Pure rotational motion following a variation in q3 only. 

Fig. 6: Analysis of a local extremum for which iq /X  is orthogonal to  0XX  . 

Fig. 7: Schematic of the 3-RPR planar parallel manipulator. 

Fig. 8: Configurations of the 3-RPR parallel manipulator corresponding to local extrema 

in (a) the orientation error and (b) the position error. 

Fig. 9: Variation in the direction of vector 1/ qX  (degrees) for two orientations. 

Fig. 10: Maximum orientation and position errors for the 3-RPR manipulator at  = 0°. 

Fig. 11: Maximum orientation and position errors for the 3-RPR manipulator at  = 10°. 

Fig. 12: Schematic of the studied 3-PRR manipulator. 

Fig. 13: Configurations of the 3-PRR parallel manipulator corresponding to local (a) 

minimum and (b) maximum of the orientation error. 

Fig. 14: Variation in the direction of vector 1/ qX  (degrees) for two orientations. 

Fig. 15: Maximum orientation and position errors for the 3-PRR manipulator at  = 0°. 

Fig. 16: Maximum orientation and position errors for the 3-PRR manipulator at  = 10°. 
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FIGURES 

 

 

Fig. 1: Input error bounding box. 

 

 

 

Fig. 2: The leg wrenches applied to the mobile platform. 
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Fig. 3: Pure translational motion following a variation in q3 only. 

 

 

Fig. 4: Extrema of the first and second type for the function ². 

 

 

Fig. 5: Pure rotational motion following a variation in q3 only. 
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Fig. 6: Analysis of a local extremum for which iq /X  is orthogonal to  0XX  . 

 

 

 

Fig. 7: Schematic of the 3-RPR planar parallel manipulator. 
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(a) 0/ 3  q  (b) 0/ 3  qX  

Fig. 8: Configurations of the 3-RPR parallel manipulator corresponding to local 

extrema in (a) the orientation error and (b) the position error. 

 

 

  

(a)  = 0° (b)  = 10° 

Fig. 9: Variation in the direction of vector 1/ qX  (degrees) for two orientations. 
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(a) maximum orientation error (degrees) (b) maximum position error (µm) 

Fig. 10: Maximum orientation and position errors for the 3-RPR manipulator at  = 0°. 

 

 

  

(a) maximum orientation error (degrees) (b) maximum position error (µm) 

Fig. 11: Maximum orientation and position errors for the 3-RPR manipulator at  = 10°. 
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Fig. 12: Schematic of the studied 3-PR R manipulator. 

 

 

 

(a) local minimum (b) local maximum 

Fig. 13: Configurations of the 3-PRR parallel manipulator corresponding to local (a) 

minimum and (b) maximum of the orientation error. 
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(a)  = 0° (b)  = 10° 

Fig. 14: Variation in the direction of vector 
1/ qX  (degrees) for two orientations. 

 

  

(a) maximum orientation error (degrees) (b) maximum position error (µm) 

Fig. 15: Maximum orientation and position errors for the 3-PRR manipulator at  = 0°. 
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(a) maximum orientation error (degrees) (b) maximum position error (µm) 

Fig. 16: Maximum orientation and position errors for the 3-PRR manipulator at  = 10°. 

 


