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Sparse Regression Learning by Aggregation and LangevirtéAGarlo

A.S. Dalalyas, A.B. TsybakoV

38IMAGINE, LIGM, Université Paris Est, Ecole des Ponts Paeish, FRANCE
bCREST and LPMA, Université Paris 6,FRANCE

Abstract

We consider the problem of regression learning for detestiindesign and independent random errors.
We start by proving a sharp PAC-Bayesian type bound for tip@eentially weighted aggregate (EWA)
under the expected squared empirical loss. For a broad afassise distributions the presented bound
is valid whenever the temperature paramgtef the EWA is larger than or equal tar4, whereo? is the
noise variance. A remarkable feature of this result is triatialid even for unbounded regression functions
and the choice of the temperature parameter depends esatiusn the noise level.

Next, we apply this general bound to the problem of aggragdtie elements of a finite-dimensional
linear space spanned by a dictionary of functigns...,¢y. We allow M to be much larger than the
sample sizen but we assume that the true regression function can be walbajmated by a sparse linear
combination of functiong;. Under this sparsity scenario, we propose an EWA with a hésilgd prior
and we show that it satisfies a sparsity oracle inequalitly lgiiding constant one.

Finally, we propose several Langevin Monte-Carlo algonitio approximately compute such an EWA
when the numbeM of aggregated functions can be large. We discuss in somé thetaonvergence of
these algorithms and present numerical experiments tiditicoour theoretical findings.

Keywords: Sparse learning, regression estimation, logistic regrmessracle inequalities, sparsity prior,
Langevin Monte-Carlo.

1. Introduction

In recent years a great deal of attention has been devotedriaithg in high-dimensional models under
the sparsity scenario. This typically assumes that, intamfdio the sample, we have a finite dictionary of
very large cardinality such that a small set of its elementwiges a nearly complete description of the
underlying model. Here, the words “large” and “small” arelarstood in comparison with the sample size.
Sparse learning methods have been successfully appliedimfdrmatics, financial engineering, image
processing, etc. (see, e.g., the surve)EIh [44]).

A popular model in this context is linear regression. We olisa pairs X1, Y1), ..., (Xn, Yn), where
eachX; — called the predictor — belongs B andY; — called the response — is scalar and satisfies
X[ Ao + & with some zero-mean noige The goal is to develop inference on the unknown veggar RM.

In many applications of linear regression the dimensioK;aé much larger than the sample size, i.e.,
M > n. Itis well-known that in this case classical procedureshsas the least squares estimator, do not
work. One of the most compelling ways for dealing with theaiton whereM > n s to suppose that the
sparsity assumption is fulfilled, i.e., thag has only few coordinatesftierent from 0. This assumption is
helpful at least for two reasons: The model becomes easieteipret and the consistent estimatiomef
becomes possible if the number of non-zero coordinatesadl smough.

During the last decade several learning methods explditiegparsity assumption have been discussed
in the literature. Thei-penalized least squares (Lasso) is by far the most studiedhnd its statistical
properties are now well understood (cf., e.f}.[]4] 4] 7. 5BHL[4%] and the references cited therein). The
Lasso is particularly attractive by its low computationast For instance, one can use the LARS algo-
rithm [L9], which is quite popular. Other procedures basedlosely related ideas include the Elastic Net
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[@], the Dantzig selector[[g] and the least squares witlroqaytpenalization@?]. However, one impor-
tant limitation of these procedures is that they are prgvabhsistent under rather restrictive assumptions
on the Gram matrix associated to the predictors, such as tieatcoherence assumpti[18], the uni-
form uncertainty principle|]8], the irrepresenta [48]tloe restricted eigenvaluﬁ [4] conditions. This is
somewhat unsatisfactory, since it is known that, at leatit@ory, there exist estimators attaining optimal
accuracy of prediction under almost no assumption on then@natrix. This is, in particular, the case for
the £o-penalized least squares estimaﬂ)r [7, Thm. 3.1]. Howeakiercomputation of this estimator is an
NP-hard problem. We finally mention the papfer][42], whichpsi to attention the fact that the empirical
Bayes estimator in Gaussian regression with Gaussian paioitectively recover the sparsity pattern.
This method is realized il‘m2] via the EM algorithm. Howents theoretical properties are not explored,
and it is not clear what are the limits of application of thethhegl beyond the considered set of numerical
examples.

In [E, ] we proposed another approach to learning undesplarsity scenario, which consists in
using an exponentially weighted aggregate (EWA) with a priypchosen sparsity-favoring prior. There
exists an extensive literature on EWA. Some recent readtssing on the statistical properties can be found
in [@, B.[11,[2#] 28], 43]. Application of EWA to the single-exregression and Gaussian graphical models
has been developed iE[ZO] ar@[Zl], respectively. Proadwith exponential weighting received much
attention in the literature on the on-line learning, B2 [40], the monograplfi [lL4] and the references
cited therein.

The main message oﬂ%&?} is that the EWA with a properlysemoprior is able to deal with the
sparsity issue. In particulal, [[1p,|16] prove that such arAE3Mtisfies a sparsity oracle inequality (SOI),
which is more powerful than the best known SOI for other comrmpmcedures of sparse recovery. An
important point is that almost no assumption on the Gramimatrrequired. In the present work we
extend this analysis in two directions. First, we prove aghAC-Bayesian bound for a large class of
noise distributions, which is valid for the temperaturegmaeter depending only on the noise distribution.
We impose no restriction on the values of the regressiortimmcT his result is presented in Sectign 2. The
consequences in the context of linear regression undesigpassumption are discussed in Sectipn 3.

The second problem that we analyze here is the computati&W#f with the sparsity prior. Since
we want to deal with large dimensio, computation of integrals ové&™ in the definition of this esti-
mator can be a hard problem. Therefore, we suggest an apmb&n based on Langevin Monte-Carlo
(LMC). This is described in detail in Sectiﬁh 4. Sectﬂ)n 5tedms numerical experiments that confirm fast
convergence properties of the LMC and demonstrate a ni¢erpgnce of the resulting estimators.

2. PAC-Bayesian typeoracle inequality

Throughout this section, as well as in Sectﬂ)n 3, we assumevik are given the dat&i(Y;), i =
1,...,n, generated by the non-parametric regression model

Yi=f@Z)+&  i=1...n (1)

with deterministic desigy, ..., Z, and random error§. We use the vector notation = f + £, where
& = (&4,...,&)" and the functionf (-) is identified with the vectof = (f(Zy),..., f(Z,)". The space
Z containing the design poin# can be arbitrary and is a mapping fromZ to R. For each function
h: Z — R, we denote bylhll, the empirical norm2 3.1 h(Z)?)"?. Along with these notation, we
will denote by||v||, the {p-norm of a vectow = (vi,...,v,) € R", that is||v||,’§ =31 IviIP, 1< p< oo,
IVlle = max |vi| and||V||o is the number of nonzero entrieswfWith this notation1|f||§ = n||f|2.

Assume that we are given a collectipiy : A € A} of functionsf, : Z — R that will serve as building
blocks for the learning procedure.The geis assumed to be equipped witliraalgebra and the mappings
A f,(2) are assumed to be measurable with respect totizigebra for alz € Z. Letr be a probability
measure om\, called the prior, and lg& be a positive real number, called the temperature paraméaer
define the EWA by

(2 = f () Fng(A),
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wheren, 5 is the (posterior) probability distribution
Tnp(dd) oc exp{ - HIY — £ 115} (dA),

andf, = (fa(Za), ..., f1(Zy))". We denote by the smallest positive number, which may be equatdo,
such that
L) eA? = max/f(Z)- . (Z) <L (2)
|

In the sequel, we use the conventigd = 0 and, for any functiov : R — R, we denote byiv|l., its
Lo (R)-norm.

In order to get meaningful statistical results on the acoycd the EWA, some conditions on the noise
are imposed. In addition to the standard assumptions tieahdise vecto¢ = (£1,...,&,)" has zero
mean and independent identically distributed (iid) cooaties, we require the following assumption on the
distribution ofé;.

Assumption N. For anyy > 0 small enough, there exist a probability space and two naneariablest
and¢ defined on this probability space such that
i) & has the same distribution as the regression e&ors
i) &+ ¢ hasthe same distribution as{ly)¢ and the conditional expectation satisfiglg | £] = O,
iii) there existty € (0, ] and a bounded Borel function: R — R, such that
logE[€“ | ¢ = 4]

lim sup ————— <1,
=0 (ta)e[~to.to] xSUPPE) t2yv(a) h

where sup) is the support of the distribution &f

Many symmetric distributions used in applications sat&fsumption N with functions such that|v||.,
is a multiple of the variance of the noige This follows from Remarkf [[}6 given at the end of this settio
and their combinations.

Theorem 1. Let Assumption N be satisfied with some function v anﬂ|letc(|2]) fThen for any priorr, any
probability measure p oA and anyB > max(4/V|l., 2L/tp) we have

E[||ﬂ—fllﬁ]<fA||f—fl||ﬁ p(dﬁ)+w,

where¥k(-, -) stands for the Kullback-Leibler divergence.

Prior to presenting the proof, let us note that Theofem 1 thénspirit of [1§, Theorems 1,2], but is
better in several aspects. First, the main assumption ieigstive validity of the oracle inequality involves
the distribution of the noise alone, Whi|§[16, Theorem 2ipieon an assumption (denoted (&) in [@])
that ties together the distributional properties of thesa@nd the nature of the dictiondry}. A second
advantage is that Assumption N is independent of the sangder®nd, consequently, suggests a choice
of the parametes that does not change with the sample size. Theorem f [86]rels these advantages
but itis valid only for a very restricted class of noise diafitions, essentially for the Gaussian and uniform
noise. As we shall see later in this section, Theoiem 1 leaéhoice of the tuning paramefmwhich is
very simple and guarantees the validity of a strong oraelquality for a large class of noise distributions.

Proof of Theorerﬂllt suffices to prove the theorem farsuch thath Ifs — fl2p(dd) < 0o andp < «
(implying K(p, 7) < ), since otherwise the result is trivial.

We first assume tha@t> 4||v||., and thal. < co. Lety > 0 be a small number. Let now( £1), .. ., (&n, &n)
be a sequence of iid pairs of random variables defined on a conpnobability space such that ((;) sat-
isfy conditions i)-iii) of Assumption N for any. The existence of these random variables is ensured by
Assumption N. We use here the same notagioas in model|§|1), since it causes no ambiguity.

Seth, = f—f,h = f,— f, ¢ = (&,....&)7, U(h,h") = |Ih]53 + 2h"h" and AU(h, h’, h") =
(Ihl3 = Ih"]I3) + 2(h = h")Th” for any pairh, h’, h” € R". With this notation we have

T i = 2 ~T
E[lIf, - fII12] = E[IhIZ] = E[IIh + —h Zl.
y
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ThereforeE[||f, — f|2] = S + S1, where
B f yU(hp,y )\~
S=-ZFE|lo expg - ——24 22 da)|,
N e e LG

B AU(h, h,y0)\
Sy = n—yE[Iogﬁ exyf - %)nnﬁ(dﬂ)}

We first bound the terr8. To this end, note that

exp—B'U(h., )}
 ex0—50 (. &) n(dw)

Tinp(dd) = n(da)

and, therefore,
E|log f exp{- 2U(h,.€) n(d/l)]— —E|log f exp{ - Z2U(hy, £2))r(d)]

By part ii) of Assumption N and the independence of vectétg;| for different values off, the probability
distribution of the vector§+ ¢)/(1+v) coincides with that of. Therefore,£+¢)/(1+7y) may be replaced
by £ inside the second expectation. Now, using the Holder inkiyuwe get

__B —(1+7)8U(h,.8)
n(l+y)E[Ionge n(dd)].

Next, by a convex duality argumetjt j10, p. 160], we find
BK(p, )
< 2 )
s< [ inipa + 5782

Let us now bound the terr8;. According to part iii) of Assumption N, there exisfg > 0 such that
Yy < vo,

up|09 E[e“| = a]

<v(@(l+o,(1), VaeR.
1<t t

In what follows we assume that < yo. Since for eveny, [28-1(h:(Z) - h(Z.))| 2871 < to, using
Jensen'’s inequality we get

B = " o =
S1 < n—yE[log f exp| - %(nmnﬁ— lini3)} 6, E(exp{Zze L(ha(Z:) - N(Z)))|€)x(dD)]

B n . 4|Vl
—E|log f exp{—g(nmnﬁ—nhna}el exp| 2 2|y = I+ 0, (1)} 2(d) |

For y small enough < %o), this entails that up to a positive multiplicative constahe termsS; is
bounded by the expressi@ij Iong exp(— “W('“ h))aﬂr(d/l)] where

B+ 4||V||oo)

V(ha, h)= B(lIhali2 - [ihlI2) + lIh,—hii2.

Using [|11 . Lemma 3] and Jensen’s inequality we ob&in< 0 for anyy < (8 — 4||Vil.)/4nL. Thus, we
proved that
BK(p,7)

2
LR < [ i pay + S22
for anyy < 9o A (B — 4||Vll)/4nL. Lettingy tend to zero, we obtain

E[IihIE] < f||h,1||np(d,l)+'8(]((p m)
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for any 8 > max(4ivllw, 2L/tp). Fatou’s lemma allows us to extend this inequality to theega =
max(4Vil, 2L /to).

To cover the cask = +oo,1y = 400, wWe fix somely € (0, c0) and apply the obtained inequality to the
truncated priorrt' (d2) o 15, (2)7(d2), whereL’ € (Lo, 0) andAp = {1 € A : max [f(Z)] < L'}. We
obtain that for any measupe< 7 supported by,

E[I-112] < f lIha13 p(a) + 2XP-1) (p” )

f Il pda) + EX P (p’”)

One easily checks théit’ tends a.s. th and that the random variable sup, Il 121(max || < C) is
integrable for any fixe€. Therefore, by Lebesgue’s dominated convergence theoeegetv

Elfiamaxal < O] < [ ihiZpy + 2 2.

Letting C tend to infinity and using Lebesgue’s monotone convergeneerem we obtain the desired
inequality for any probability measuggwhich is absolutely continuous w.rit.and is supported by,
for someLo > 0. If p(AL,) < 1 for anyLo > O, one can replacp by its truncated versiop-" and use
Lebesgue’s monotone convergence theorem to get the desgeitl O

The following remarks provide examples of noise distribng, for which Assumption N is satisfied.
Proofs of these remarks are given in the Appendix.

Remark 1 (Gaussian noise)lf & is drawn according to the Gaussian distributior(0, 02), then for any
¥ > 0 one can chooséindependently of according to the Gaussian distributiox(0, (2y + y?)o?). This
results in {a) = o and, as a consequence, Theo@m 1 holds formapy 4. Note that this reduces to
the Leung and Barron’ﬂB] result if the prior is discrete.

Remark 2 (Rademacher noisef &1 is drawn according to the Rademacher distribution,P€&; = +0) =
1/2, then for anyy > 0 one can definég as follows:

= (L+y)osgnpé - (1+7)U] -

where U is distributed uniformly if-1, 1] and is independent @f This results in (g) = ¢ and, as a
consequence, Theord 1 holds for gny 402 = 4E[£2].

Remark 3 (Stability by convolution) Assume thag; and¢; are two independent random variablesé4f
and¢; satisfy Assumption N withy & co and with functions (a) and v(a), then any linear combination
aéy + o' ¢ satisfies Assumption N with £ oo and the v-functiom?v(a) + (a')?V'(a).

Remark 4 (Uniform distribution) The claim of preceding remark can be generalized to lineanlzie
nations of a countable set of random variables, provided tha series converges in the mean squared
sense. In particular, if; is drawn according to the symmetric uniform distributioritwiariances?, then
Assumption N is fulfilled withyt= co and (@) = . This can be proved using the fact thathas the
same distribution as- 3, 27'n;, wherer; are iid Rademacher random variables. Thus, in this case the
inequality of Theorerf] 1 is true for agy> 402.

Remark 5 (Laplace noise)If ¢ is drawn according to the Laplace distribution with variane?, then for
anyy > 0 one can choosg¢independently of according to the distribution associated to the charadtici

function
1 2y +v?
t) = 1+
“0=7 y)Z( 1+ (1+ 7)2(0't)2/2)
One can observe that the distribution fs a mixture of the Dirac distribution at zero and the Laplace

distribution with variance(1 + y)%2. This results in {8) = 20/(2 — ot3) and, as a consequence, by
taking b = 1/02, we get that Theorelﬂ 1 holds for afy> max(&2, 2Lo).




Remark 6 (Bounded symmetric noise Assume that the error§ are symmetric and that(| < B) =1
for some Be (0,). Let U ~ U([-1,1]) be a random variable independent §f Then,; = (1 +
)€l sgn[sgné) — (1 + y)U] - ¢ satisfies Assumption N witlfa) = a. Since||vil. < B?, we obtain that
Theoren{]L is valid for ang > 4B2.

Consider now the case of finite. W.l.0.g. we suppose that = {1,..., M}, {f;, 1 € A} = {f1,..., fu}
and we take the uniform prior(2 = j) = 1/M. From Theorenﬂl we immediately get the following sharp
oracle inequality for model selection type aggregation.

Corollary 1. Let Assumption N be satisfied with some function v and]letd®). Hirhen for the uniform
prior z(A = j) =1/M, j=1,..., M, and anyB > max(4|vll«, 2L/to) we have

Ellfa - fIRT < min IIfy = fI +

BlogM
—

This corollary can be compared with bounds for combiningcptures in the theory of prediction of
deterministic sequencds [41] 29] 13|, pg.[12, 14]. With osatiun, the bounds proved in these works can
be written is the form
CzlogM
%. 3)

.....

13 1

- ;(Yi - *(@))* < Cy min — ;(vi - f@)°+
Heref;(Z) is interpreted as the value ¥f predicted by thgth proceduref*(Z) as an aggregated forecast,
andC; > 1, C; > 0 are constants. Such inequalities are proved under thenpsism thatY's are
deterministic and uniformly bounded. Whén = 1, applying [|3) to random uniformly bounded's
from model [[L) withE(&) = 0 and taking expectations can yield an oracle inequalitylaino that of
Corollary ﬂ However, the uniform boundednessygé supposes that not only the noigebut also the
functionsf andf; are uniformly bounded. Bounds drshould be a priori known for the construction of the
aggregated rulé* in (E) but in practice they are not always available. Our itssare free of this drawback
because they hold with no assumptionforWWe have no assumption on the dictionéfy; . . ., fi} neither.

3. Sparsity prior and SOI

In this section we introduce the sparsity prior and presesgasity oracle inequality (SOI) derived
from Theorenf]L.

In what follows we assume that ¢ RM for some positive integeM. We will use boldface letters to
denote vectors and, in particular, the elementa ofFor any square matrig, let Tr(A) denote the trace
(sum of diagonal entries) o&. Furthermore, we focus on the particular case wi¥grds the image of
a convex polytope iRM by alink function g: R — R. More specifically, we assume that, for some

.....

M
Fa= {h(z) = g(z/quﬁj(z)), Vze Z' A € RM satisfieg|A|l; < R},
=1

wherel|Ally = X;14j| stands for the/;-norm. The link functiorg is assumed twice continuouslyfidiren-
tiable and known. Typical examples of link function incluthe linear functiorg(x) = x, the exponential
functiong(x) = €, the logistic functiong(x) = €*/(e* + 1), the cumulative distribution function of the
standard Gaussian distribution, and so on.

If, in addition, f € ¥4, then modell) reduces to that of single-index regressiiih known link
function. In the particular case gfx) = X, this leads to the linear regression defined in the Intradoct
Indeed, it sifices to take

Xi = (¢1(Z),....om(Z)", i=1,....n

This notation will be used in the rest of the paper along withdassumption thaf; are normalized so that
all the diagonal entries of matrix ", X;X{" are equal to one.



Student 1)
T
+
o
o
'

. *“M”“_F”’D}”WW“H** oo o TR

Laplace

i . +W“__+,,,,m”ﬁ_mmmm% L

Gaussiar

I e [}

L L 1 L L 1 L L
01 008 0.06 004 0.02 [i] -002 -0.04 -0.06 -0.08 01

Figure 1: The boxplots of a sample of size* rawn from the scaled Gaussian, Laplace and Stug@htlistributions. In all the
three cases the location parameter is 0 and the scale param&02.

The family 7, defined above satisfies inequalify (2) with= 2R||g'|l.L,, WhereL, = max j |¢;(Z)|
and||g’|l. is the maximum of the derivative gfon the interval £ RLy, RL,]. Indeed, since is the¢; ball of
radiusRin RM andg;s are bounded bly,, the real numbeng = A7 X; andu’ = A’ TX; belong to the interval

[-RLy, RLy] for every A and A’ from A. Consequently,fa(Z) — fv(Z)| = lg(u) — g(u))| = fuu g(s)dsis
bounded bylg'|l.|ui — U], the latter being smaller tharRRy'||e, L.

We allow M to be large, possibly much larger than the samplesiaé M > n, we have in mind that
the sparsity assumption holds, i.e., there extsts RM such thatf in (fl) is close tof;- for somed* having
only a small number of non-zero entries. We handle this Sitnaia a suitable choice of priar. Namely,
we use a modification of the sparsity prior proposecmm [16khbuld be emphasized right away that we
will take advantage of sparsity for the purpose of predicdad not for data compression. In fact, even if
the underlying model is sparse, we do not claim that our egtinis sparse as well, but we claim that it is
quite accurate under very mild assumptions. On the otheat,fsxme numerical experiments demonstrate
the sparsity of our estimator and the fact that it recoversectly the true sparsity pattern in examples
where the (restrictive) assumptions mentioned in the thietion are satisfied (cf. Sectibh 5). However,
our theoretical results do not deal with this property.

To specify the sparsity prior we need the Huber functian : R — R defined by

2 i <
m):{t, if |t <1

21t -1, otherwise.

This function behaves very much like the absolute valui biit has the advantage of beindgfdientiable
at every point € R. Lett anda be positive numbers. We define thgarsity prior

efuj(a/li )

2M M
@) = e { [ ] o 101 < Rl @

C(t,T,R j=1 (T2 + /112)2

whereC, - r is the normalizing constant.

Since the sparsity prioﬂ(4) looks somewhat complicatedhearristical explanation is in order. Let us
assume thaR is large andr is small so that the functiores“(®%) and 1(|ll; < R) are approximately equal
to one. With this in mind, we can notice thais close to the distribution o#/2rY, whereY is a random
vector having iid coordinates drawn from Student’s t-dlsttion with three degrees of freedom. In the
examples below we choose a very smakmaller than In. Therefore, most of the coordinatesf are
very close to zero. On the other hand, since Student’s tifolision has heavy tails, a few coordinates of
7Y are quite far from zero.

These heuristics are illustrated by Figﬂre 1 presentingdixelots of one realization of a random vector
in R10000 with jid coordinates drawn from the scaled Gaussian, Lap({double exponential) and Student
t(3) distributions. The scaling factor is such that the philitgt densities of the simulated distributions are
equal to 100 at the origin. The boxplot which is most likelyrépresent a sparse vector corresponds to
Student’s(3) distribution.

The relevance of heavy tailed priors for dealing with spggrisas been emphasized by several authors
(see , Section 2.1] and references therein). Howevest wiothis work focused on logarithmically



concave priors, such as the multivariate Laplace disiobut Also in wavelet estimation on classes of
“sparse” functions|E3] and__[133] invoke quasi-Cauchy andeRapriors. Bayes estimators with heavy-
tailed priors in sparse Gaussian shift models are dichBsHi

The next theorem provides a SOI for the EWA with the sparsiikyr[@).

Theorem 2. Let Assumption N be satisfied with some function v antﬂletc(lﬂ) fTake the prioer defined
in (E) andg > max(4\Vlle, 2L/tp). Assume that B 2Mr anda < 1/(4M7). Then for allA* such that
[[A*]l1 £ R-2Mt we have

M
DI~ 120 < e~ 13+ L Y tog(a+ 4+ A2 D o 2
-1

with Cgs = 1ifg(x) = x and Gy ¢ = 112 + 119”1l (ll9lle + I fllee) fOr Other link functions g.
Proof. Let us define the probability measysgby

dpo

m () « (%(/l - /l*)) 1g, om0 (A — 7). (5)

Since||A*]|y < R- 2Mr, the conditiond — A" € By(2Mr) implies thatd € B;(R) and, thereforepg is
absolutely continuous w.r.t. the sparsity priorin view of Thm.[:L we have

Ellf — IR < fA 12— 112 po(dA) + @

Sincefy(Zi) = (X 2) we haveV,[(f2(Z) - (Z))’] = 2g' (X[ )(fa(Z) - f(Z))Xi and
Val(fa(@) - (Z))] = 2lg (X7 )7 + ¢" (X[ D(@XT D) = F@)IXiXT .

One can remark that the factor ¥fX;" in the last display is bounded Iy, . Therefore, in view of the
Taylor formula,

(faZ) — 1(2))? < (fa(Z) - F(2))* + 2(f (Z0) - F(Z))g (XT )X (A - A°)
+Cq [ X (1 - 27)]2

By the symmetry ofpp with respect tol*, the integralf(/l — A7) po(dA) vanishes. Combining this with the
fact that the diagonal entries of the mat}]iio:‘,i XiX{" are equal to one, we obtain

f 12 = F112 po(dd) < I fx = FI2 + Cy f 1A - 112 po(dA).
A RM

To complete the proof, we use the following technical result

Lemma 3. For every integer M larger thad, we have:
M
f (A1 — 41)%po(dA) < 472%™, K(po, m) < 2(@ll’ll + 1) +4 > log(1+14;1/7).
RM 3
j=1

The proof of this lemma is postponed to the appendix. It isalwthat inequality|]5) follows from
Lemma 3, sinchM [|[A— /l*llg Po(dd) = M fRM(/ll - /1’1)2 po(dA) and, under the assumptions of the theorem,
e4MaT g e O

Theorenﬂz can be used to choose the tuning parameter® whenM > n. The idea is to choose
them such that both terms in the second Iine|])f (5) were of tderdd(1/n). This can be achieved,
for example, by taking?® ~ (Mn)~* andR = O(Mr). Then the term‘%g Z'j\il log(1+ |/lj*|/‘r) becomes
dominating. It is important that the numbker of nonzero summands in this term is equal to the number
of nonzero coordinates df. Therefore, for sparse vectot§ this term is rather small, namely of the order



M*(log M)/n, which is the same rate as achieved by other methods of sperseery, cf. [B[P[]7[]4]. An
important diference compared with these and other papes-trased sparse recovery is that in Theorem
E, we have no assumption on the dictiong#y, . .., ¢m}.

Note that in the case of logistic regression the link funttipas well as its first two derivatives, are
bounded by one. Therefore, since the logistic model is maiséd for estimating functionswith values
in [0, 1], TheorenﬂZ holds in this case wi@ s < 3. Similarly, for the probit modelif., when the link
functiong is the cdf of the standard Gaussian distribution) &nalith values in [Q1], one easily checks
thatCgy ¢ < (r1 + 1)/2.

4. Computation of the EW-aggregate by the Langevin Monte-Carlo

In this section we suggest Langevin Monte-Carlo (LMC) prhaes to approximately compute the
EWA with the sparsity prior wheM > n.

4.1. Langevin Dfusion in continuous time

We start by describing a continuous-time Markov procedied¢he Langevin dfusion, that will play
the key role in this section. Lat : RM — R be a smooth function, which in what follows will be referred
to as potential. We will assume that the gradienVd$ locally Lipschitz and is at most of linear growth.
This ensures that the stochastiffeliential equation (SDE)

dL; = VV(L)dt+ V2dW,, Lo= Ay, t >0 (6)

has a unique strong solution, called the Langevifiudion. In the last displayWV stands for anM-
dimensional Brownian motion ant} is an arbitrary deterministic vector froR. It is well known that
the process$l}i>o is a homogeneous Markov process and a semimartingal@cﬂ'[ﬁn. 12.1].

As a Markov procesd, may be transient, null recurrent or positively recurrerite Tatter case, which
is the most important for us, corresponds to the processfgati the law of large numbers and implies the
existence of a stationary distribution. In other termg, i6 positively recurrent, there exists a probability
distributionPy on RM such that the procedsis stationary provided that the initial conditidg is drawn
at random accordingy. A remarkable property of the Langevinfiilision—making it very attractive for
computing high-dimensional integrals—is that its stagigndistribution, if exists, has the density

pv () < e/, A1eRM,

w.rt. the Lebesgue measufe][25, Thm. 10.1]. Furthermam@essimple conditions on the potenthdl
ensure the positive recurrencelaf The following proposition gives an example of such a caaodit

Proposition 1 ([B4], Thm 2.1) Assume that the function V is bounded from above. If theretigice
continuously dferentiable function D RM — [1, o) and three positive constantstaand r such that

VV(2)"VD(2) + AD(4) < —aD(2) + b(lAl> <), (7)

for everyd € RM, then the Langevin gfusionL defined byﬂG) is D-geometrically ergodic, that is

[Eth(LolLo = 20 - [ ) putda] < RGO,

for every function h satisfyingh/D||l.. < 1 and for some constants,R- 0 andpy € (0, 1).

FunctionD satisfying [}’) is often referred to as Lyapunov function anddition ﬂ’) is called the drift
condition towards the séfl : ||1]]> < r}. Recall that the drift condition ensures geometrical ngxﬁ@,
Theorem 16.1.5]. Specifically, for every functibsuch that|h?/DJ|, < 1 and for everyt, s> 0,

|Covi[h(Le), h(L9]| < RyD(Ao)ol ™.



Combining this with the result of Propositiﬁh 1 it is not hémdcheck that if|h2/Dlls < 1, then

e (3 [ ot [ mvpvoar)] < $. ®)

whereC is some positive constant depending only\on Note also that, in view of Propositicﬁb 1, the
squared bias term in the bias-variance decomposition déthkand side of|]8) is of orde®(T~2). Thus,
the main error term comes from the stochastic part.

4.2. Langevin dgfusion associated to EWA
In what follows, we focus on the particular caglex) = x. Given (X;,Y), i = 1,...,n, with X; ¢ RM

andY; € R, we want to compute the expression
Jaw A€xP{ = B7HIY = XAUZ}n(d)

A= ,
Jew €xp{ = Y = XAU3}(dA)

(9)

whereX = (X4,..., Xn)". In what follows, we deal with the prior

i M g-oled)
r(ld) e H (72 + 2
assuming thaR = +co. As proved in Sectionf] 2 ar[dl 3, this choice of the prior leadshiarp oracle
inequalities for a large class of noise distributions. Aniealent form for writing [P) is

;izf Apv(A)dA,  wherepy(A) « e/W
RM

with
Iy - X/l||§

B

A simple algebra shows th@(1) = e’ satisfies the drift condition[[7). A nice property of this
Lyapunov function is the inequalityl|?, < o~ D(A). It guarantees thaﬂ(S) is satisfied for the functions
h(2) = A;.

Let us define the Langevin fliision L, as solution of [[6) with the potentiad given in (Z§) and the
initial conditionLo = 0. In what follows we will consider only this particularfilision process. We define
the average value

M
V() = - - > {2loge® + ) + w(a)). (10)

j=1

_ 1 T
LTz—f Ltdt, T>0
0

T
According to [B) this average value convergeas oo to the vectord that we want to compute. Clearly,
itis much easier to computer than. Indeed/l involves integrals irM dimensions, wheredsr is a one-
dimensional integral over a finite interval. Of course, tonpute such an integral one needs to discretize
the Langevin diusion. This is done in the next subsection.

4.3. Discretization

Since the sample paths of didision process are Holder continuous, it is easy to showtieadiemann
sum approximation

| =

N-
=7 Z (T —T),
0

with0=Typ < Ty <...< Ty =T converges td.7 in mean square when the sampling iffiwiently dense,
that is when maxT;,1 — T;| is small. However, when simulating theffdision sample path in practice, it
is impossible to follow exactly the dynamics determinedﬁ))j Ve need to discretize the SDE in order to
approximate the solution.

10



A natural discretization for the SDﬂ (6) is proposed by théeEscheme with a constant step of dis-
cretizationh > 0, defined as

LE, = LE+hvV(LE) + V2hg, LE =0, (11)

fork=0,1,...,[T/h]-1, where¢,, &, ... arei.i.d. standard Gaussian random vectoi®Yrand [x] stands
for the integer part ok € R. Obviously, the sequendeF; k > 0} defines a discrete-time Markov process.
Furthermore, one can show that this Markov process can bapatated to a continuous-timeflilision-
type process which converges in distribution to the Langdiffusion ash — 0. Here extrapolation means
the construction of a proce$kn;t € [0, T]} satisfyingLynn = LE for everyk = 0,...,[T/h]. Such a
procesg I:t,h;t € [0, T]} can be defined as a solution of the SDE

[T/h]-1
dlen = > en®/MVV(LE) di+ V2dW,, t> 0.
k=0

This amounts to connecting the successive values of thedvarkain by independent Brownian bridges.
The Girsanov formula implies that the Kullback-Leiblereiigence between the distribution of the process
{Li;t € [0, T]} and the distribution ofL:f;t € [0, T]} tends to zero ab tends to zero. Therefore, it makes

sense to approximater by
(T/h-1

E
LE.
k=0

—
I—T,h =

—H| =

Proposition 2. Consider the linear modéf = XA" + ¢, whereX is the nx M deterministic matrix ang is
a zero-mean noise with finite covariance matrix. Thentfer fRM Apv(A) da with py(2) « e/@ and V(1)
defined in [(10) we have

Tl T —E

T eI o

Proof. We present here a high-level overview of the proof defertiregdetails to the Appendix.

Step 1 We start by showing that

- 1 (7. 2
limE||[Lt,— = Lipdt| =0.
h—0 ' Th T L th 2
Step 2 We then split the expressi(#lfOT Lndtinto two terms:
1 (- 1 (- - 1 (- -
= f Lipdt= = f Lindio, A (IILenll2) dt+ = f Lendya+oo (1L enll2) dt. (12)
T Jo T Jo T Jo
T T2

and show that the expected noEHfiry||, is bounded uniformly il andT by some function oA that
decreases to 0 #— oo. LaterA will be chosen as an increasing functionlof

Step 3 We check that the Kullback-Leibler divergence between ik#ibution of (l:t,h; 0<t<T)and
of (L;;0 < t < T) tends to zero ak — 0. This implies the convergence in total variation and, as a
consequence, we get

lim E[(% fo (L) dt - fR MG(/l)pv(/l)d/l)z]zE[(% fo "a(Ly dt - fR MG(/l)pv(/l)d/l)z] (13)

for any bounded measurable functién: RM — R. We use this result witkB(2) = A; Ipo a1 (NIAI12),
i=1,...,M.

Step 4 To conclude the proof we use the fact ﬂfﬁﬁpA/lpv(/l) dA tends to zero aé — oo, and that by

the ergodic theorem (cf. Proposition 1) the right hand sfd@) tendsto 0 a§ — oo.
O

11



This discretization algorithm is easily implementable afiod small values oh, If’h is very close to
the integraﬁ = f/l pv(4) dA of interest. However, for some valueshyfwhich may eventually be small
but not enough, the Markov proce{skf; k > 0} is transient. Therefore, kfis not small enough the sum in
the definition ofl:'ih explodes|[35]. To circumvent this problem, one can eithedifydhe Markov chain
LE by incorporating a Metropolis-Hastings correction, oret@ksmalleh and restart the computations.
The Metropolis-Hastings approach guarantees the cormeeg® the desired distribution. However, it
considerably slows down the algorithm because of a signifipeobability of rejection at each step of
discretization. The second approach, where we just takeallesrh, also slows down the algorithm but we
keep some control on its time of execution.

5. Implementation and experimental results

In this section we give more details on the implementatichefMC for computing the EW-aggregate
in the linear regression model.

5.1. Implementation

The input of the algorithm we are going to describe is thddtify, X, o) and the tuning parameters
(@,B,7,h,T), where

- Y is then-vector of values of the response variable,

- Xis then x M matrix of predictor variables,

- o is the noise level,

- Bis the temperature parameter of the EW-aggregate,

- «a andr are the parameters of the sparsity prior,

- handT are the parameters of the LMC algorithm.

The output of the proposed algorithm is a vectar RM such that, for everx € RM, XTA provides a
prediction for the unobservable value of the response bigrizorresponding t&. The pseudo-code of the
algorithm is given below.

Input: ObservationsY, X, o) and parametersy(g, 7, h, T)
Output: The vector?
Set
[n,M]=size(X);
L=zeros(M,1);
lambda=zeros(M,1);
H=0;
Calculate
XX=X’*X;
Xy=X’x*y;
while His less tharT do
nablaV=(2/p8) * (Xy-XX*L) -a*w’ (al);
nablaV=nablaV-4x*L./(7"2+L."2);
L=L+h*nablaV+sqrt (2*h) *randn(M, 1) ;
H=H+h;
lambda=lambda+h*L/T;
end
return lambda

Algorithm 1: The algorithm for computing the EW-aggregate by LMC.

Choiceof T: Since the convergence rate lof to A is of the ordefT -2 and the best rate of convergence
an estimator can achieve ms'/?, it is natural to sel = n. This choice ofT has the advantage
of being simple for implementation, but it has the drawbatke&ing not scale invariant. A better
strategy for choosing is to continue the procedure until the convergence is oleserv

12
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Figure 2: A typical result of the EWA (left panel) and the Lagsght panel) in the setup of Example 1 with= 200, M = 500 and
S =20.

Choice of h: We choose the step of discretization in the fotm: 8/(Mn) = 8/Tr(X"X). More details on
the choice oh andT will be given in a future work.

Choiceof B, rand a: Inour simulations we use the parameter values
=0, B=40%  1=40/(T(X'X))"2.

These values @8 andr are derived from the theory developed above. However, wetigken = 0
and notae > 0 as suggested in Sectiﬂn 3. We introduced tlhere0 for theoretical convenience, in
order to guarantee the geometric mixing of the LangeMifugion. Numerous simulations show that
mixing properties of the Langevinftiision are preserved with = 0 as well.

5.2. Numerical experiments

We present below two examples of application of the EWA witi@ for simulated data sets. In
both examples we give also the results obtained by the Lassegure (rather as a benchmark, than for
comparing the two procedures). The main goal of this seétida illustrate the predictive ability of the
EWA and to show that it can be easily computed for relativalgé dimensions of the problem. In all
examples the Lasso estimators are computed with the thealhejustified value of the regularaization

parameter- 1/8logM/n (cf. [H]).

5.2.1. Example 1

This is a standard numerical example where the Lasso andigaeiector are known to behave well
(cf. [B]). Consider the mod&f = XA* + ¢, whereX is aM x n matrix with independent entries, such that
each entry is a Rademacher random variable. Such matriegsaatiicularly well suited for applications
in compressed sensing. The najse R" is a vector of independent standard Gaussian random vesiabl
The vectord™ is chosen to b&-sparse, wher8 is much smaller thaM. W. 1. 0. g. we consider vectos
such that only firs& coordinates are fferent from 0; more preciselyl,’j‘ =1(j £ S). Following [E], we
chooser? = S/9. We run our procedure for several valuesSadndM. The results of 500 replications are
summarized in Table 1. We see that EWA outperforms Lassd thetonsidered cases.

A typical scatterplot of estimated chieients forM = 500,n = 200 andS = 20 is presented in Fi{l 2.
The left panel shows the estimated fiazents obtained by EWA, while the right panel shows the estiiia
codficients obtained by Lasso. One can clearly see that the @stimalues provided by EWA are much
more accurate than those provided by Lasso.

An interesting observation is that the EWA selects the sabozero coordinates df even better than
the Lasso does. In fact, the approximate sparsity of the E&V#ot very surprising, since in the noise-free
linear models with orthogonal matr, the symmetry of the prior implies that the EWA recovers thmz
coordinates without error.
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M = 100 M = 200 M = 500

EWA Laso | EWA Lasso | EWA  Lasso

n=100S=5 | 0.063 0344 | 0.064 0.385 | 0.087  0.453
(0.039) (0.132) | (0.043) (0.151) | (0.054) (0.161)

n=100S =10 0.73725 1.680 | 1.153  1.018 | 1.891  2.413
(0.699)  (0.621) | (1.091) (0.677)| (1.522)  (0.843)
n=100S=15| 5021  4.330 | 6.495 5366 | 8.917  7.1828
(1.593)  (1.262) | (1.794) (1.643) | (2.186) (2.069)

n=200S=5 | 0021 0151 | 0.022 0171 | 0.019  0.202
(0.011)  (0.048) | (0.013) (0.055) | (0.012)  (0.057)

n=200S=10| 0.106  0.658 | 0.108  0.753 | 0.117  0.887
(0.047)  (0.169) | (0.048) (0.198) | (0.051)  (0.239)

n=200S=20| 11190  3.124 | 1.6015  3.734 | 2.728  4.502
(0.696)  (0.806) | (1.098) (0.907) | (1.791)  (1.063)

Table 1: Average losit — A%||2 of the estimators obtained by the EW-aggregate and the liagS@mmple 1. The standard deviation
is given in parentheses.

We note that the numerical results on the Lasso in Thble] 5.2 kubstantially dierent from those
reported in the short version of this paper published in tiie@eding of COLT 2009 [17]. This is because
in [L7] we used the R packagésrs andglmnet, whereas here we use the MATLAB package 1s. It
turns out that in the present example the latter providegraoturate approximation of the Lasso than the
aforementioned R packages.

The running times of our algorithm are reasonable. For nt&ain the casea = m = 100 andS = 10
the execution of our algorithm is only three times longentttee11-1s implementation of the Lasso. On
the other hand, the prediction error of our algorithm is ntben twice smaller than that of the Lasso.

5.2.2. Example 2

Consider model[[l) whei# are independent random variables uniformly distributettiénunit square
[0, 1]? and¢; are iid N(0, ) random variables. For an integer- 0, we consider the indicator functions
of rectangles with sides parallel to the axes and havingfabdttom vertex the origin and as right-top
vertex a point of the formi(k, j/K), (i, j) € N2. Formally, we defing; by

di-1pi(¥) = Joixpn k¥, Vxe[0,1]%
The underlying imagé we are trying to recover is taken as a superposition of a smaiber of rectangles
of this form, that isf(x) = Zﬁl A;¢¢(X), for all x € [0, 1]? with someA* having a smalfg-norm. We set
k=15,]I2%l0 = 3, ;¢ = Ao = 4500 = 1. Thus, the cardinality of the dictionarys = k? = 225.

In this example the functiong; are strongly correlated and therefore the assumptiongdikicted
isometry or low coherence are not fulfilled. Nevertheleks, ltasso succeeds in providing an accurate
prediction (cf. Table 2). Furthermore, the Lasso with treotetically justified choice of the regularization
parameterr 4/8 logM/n is not much worse than the ideal Lasso-Gauss (LG) estimatercall the LG
estimator the ordinary least squares estimator in the estlorodel where only the predictor variables
selected at a preliminary Lasso step are kept. Of cours@gitfermance of the LG procedure depends on
the initial choice of the tuning parameter for the Lasso .stepour simulations, we use its ideal (oracle)
value minimizing the prediction error and, therefore, wibtb@ resulting procedure the ideal LG estimator.

As expected, the EWA has a smaller predictive risk than thesaastimator. However, a surprising
outcome of this experiment is the supremacy of the EWA overideal LG in the case of large noise
variance. Of course, the LG procedure is faster. Howeven &om this point of view the EWA is rather
attractive, since it takes less than two seconds to compinéhie present example.
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| EWA Lasso Ideal LG

c=1n=100| 0.160 0273  0.128
(0.035) (0.195) (0.053)
c=2,n=100| 0210 0.759  0.330
(0.072) (0.562)  (0.145)
oc=4,n=100| 0420 2.323  0.938
(0.222) (1.257) (0.631)
oc=1,n=200| 0.130 0.187  0.069
(0.030) (0.124) (0.031)
c=2,n=200| 0.187 0.661  0.203
(0.048) (0.503)  (0.086)
oc=4n=200| 0278 2230 0571
(0.132) (1.137) (0.324)

Table 2: Average IosiO 12 (Zj(ﬁj - /1]-‘)¢j(x))2dx of the the EWA, the Lasso and the ideal LG procedures in Exar@pl The
standard deviation is given in parentheses.

Figure 3: This figure shows a typical outcome in the setup afhgle 2 whem = 200 andk = 15. Left: the original imageCenter:
the observed noisy sample with= 0.5. Pixels for which no observation is available are in bleRlght: the image estimated by the
EWA.

6. Conclusion and outlook

This paper contains two contributions: New oracle inedieslifor EWA, and the LMC method for
approximate computation of the EWA. The first oracle inetyaresented in this work is in the line of the
PAC-Bayesian bounds initiated by McAIIest[SO]. It isideflor any prior distribution and gives a bound
on the risk of the EWA with an arbitrary family of functions.ekt, we derive another inequality, which
is adapted to the sparsity scenario and called the sparsityecinequality (SOI). In order to obtain it, we
propose a prior distribution favoring sparse represestatiThe resulting EWA is shown to behave almost
as well as the best possible linear combination within alrediterm proportional td*(log M)/n, where
M is the true dimensiony* is the number of atoms entering in the best linear combinaiwdn is the
sample size. A remarkable fact is that this inequality isaoted under no condition on the relationship
between dferent atoms.

Sparsity oracle inequalities similar to that of Theorﬂm @ aalid for the penalized empirical risk
minimizers (ERM) with ap-penalty (proportional to the number of atoms involved ia tApresentation).
It is also well known that the problem of computing thepenalized ERM is NP-hard. In contrast with
this, we have shown that the numerical evaluation of the esiggl EWA is a computationally tractable
problem. We demonstrated that it can figogently solved by the LMC algorithm. Numerous simulations
we did (some of which are included in this work) confirm ourdretical findings and, furthermore, suggest
that the EWA is able toféiciently select the sparsity pattern. Theoretical justiftcaof this fact, as well
as more thorough investigation of the choice of parametwrgved in the LMC algorithm, are interesting
topics for future research.
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Appendix: proofsof technical results

6.1. Proof of Propositioff]2

For brevity, in this proof we denote by- || the Euclidean norm iRM and we setr = 1 in @).
The case of general > 0 is treated analogously. Recall that for some sihall 0 we have defined the
M-dimensional Markov chainl€; k = 0,1,2, .. ) by (cf. (10) and[(Z1)):

Lk = Lk + 2087X7(Y = XLE) - hg(LE) + V2hg,,, L5 =0,
where €,;k = 1,2,...) is a sequence of iid standard Gaussian vectoRMpand

4y A
g:RM S RM st g(/l)z(T2+l/12+w’(/ll),..., M +a)’(/lM))
1

.
Y :
4+ A

In what follows, we will use the fact that the functigris bounded and satisfids g(1) > 0 for all 2 € RM.

Let us prove some auxiliary results. Set 2371X7Y, A = 2871X"X and assume that < 1/|[4].
Without loss of generality we also assume thiah is an integer. In what follows, we denote By> 0 a
constant whose value is not essential, does not depencneitfi nor onh, and may vary from line to
line. Since the functiog is bounded andg,,, has zero mean, we have

E[LE.] = (I —hA)E[LE] + hE[v—g(LE)],  Vk>O.

Therefore,
IE[LE I < (0 — hA)E[LE]N + Ch< IE[LE]I+Ch, VK> 0.

By induction, we get
IE[LENI < Ckh< CT,  Vke[0,[T/h]]. (14)

Furthermore, sincé,, , is independent of £ andY, we have

E[ILE. .17 E[IILE + hv—hALE — hg(LE)IP] + 2hM

E[IILEI? + 2h(LE)T(v— ALE) — 2h(LE)Tg(LE) + h?lv — ALE — g(LE)II] + 2hM
E[IILEI? + 2h(LE)T (v — ALE) + 2h%ALE|I? + 2h?lv — g(LE)IP] + 2hM

E[IILEI + 2h(LE)Tv — 2h(LE)T (A — ha®)LE + 2n?|v — g(LE)II] + 2hM
E[IL 7] + 2hE[(Lg)T]v+Ch

E[IILEI] + ChT, vk € [0,[T/h]].

INCINCIN NN

Once again, using induction, we get
E[ILEIA < CKhT<CT%  Vkelo,[T/h]]. (15)

This implies, in particular, thahQT)E[HL[ET/h]HZ] — 0 ash — 0 for any fixedT.

Proof of Step 1. Denote by the function
() =v-Aa1—-g(1), VaeRM
and define the continuous-time random procd§§§;© < t < [T/h]h) by

[T/h]-1
dLih = Z Y(LE) Ay (@) dt+ V2dWy,  Lop =0, (16)
pary

whereW; is a M-dimensional Brownian motion satisfyingx, = &,, for all k. The rigorous construction
of W can be done as follows. LeB(;0 < t < T) be aM-dimensional Brownian motion defined on the
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same probability space as the sequedced(< k < [T/h]) and independent o&(; 0 < k < [T/h]). One
can check that the process defined by

t
Wi =&+ Bi—Bun— (- -k (B(k+l)h - Bxn — §k+l)’ t € [kh, (k+ 1)h[
h

is a Brownian motion and satisfi#¥ = &.
By the Cauchy-Schwarz inequality,

1 T [T/h-1

p [T/h-1 1 7. 2 - ~ 2
E|||= LE-= | Lindfl | = E||= ( Lkhh]l[kh(k+l)h)(t)_Lt,h)dt
T — T Jo T
[T/h] (k+1)h
1
<z Zf EIn — Cnnl?] it
, [T (k+1)h
< 2 ) [ EMIDIR + 2 - Wl
k=0 fh
2h3 [T/h-1
< T D ElW(LDIF]+4Mh,
k=0

Using the inequalityly(2)ll < C(1 + ||4]l) and (1§), we get

[T/h] 1 T 2 (T/h-1

h . Ch?

[y Lk——f Codf | < e+ S5 3 ENLER]+ 4mh
& 0 k=0

< Ch(1+hT?).

This completes the proof of the Step 1.

Proof of Step 2. Using (1§) we obtain

AL - i L
€0mal) < 7 [ ElCullian 0T < 75 [ EOCw)

C [T/h-1  A~(k+1)h
g f (EDILEIA + PPE[Ilw(LE) + ALEIP] + E[IW; — Wil[?]) dit
TA 4 Jkn
[T/h-1] 2
C CT
< = h(E[||LE|]2 W + Mh) < =—. 17
TA 2, NENILEIF + CIF b < =3 (7)

Thus, choosing, for examplé, = T3 we guarantee that lif, . limn_o E[[|T2|]] = 0

Proof of Step 3. First, note that@6) can be written in the form
diin = @(Ch ) dt+ V20W;, Lop=0,

wherey(Lp, t) is a non-anticipative process that equa(é xnn) whent € [kh, (k + 1)h). Recall that the
Langevin difusion is defined by the stochastid¢fdrential equation

dL; = y(Ly) dt+ V2dW,, Lo =0.

Therefore, the probability distributior3_t and Py, 1 induced by, respectivelyL{;0 < t < T) and
(Lyn; 0 < t < T) are mutually absolutely continuous and the corresponBimdon-Nykodim derivatives
are given by Girsanov formula:

dpP
L”( L) = exp—= f (L) — (L) (AL — (L) dD - 3 f 3L, - w(LOIP d).
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This implies that the Kullback-Leibler divergence betw&gp; andPy_t is given by

)
K(PurIPL, 1) = ~E[log (5 L”(L))] 3 | ey -ucorlar

Using the expressions gf andy, as well as the fact that the functignis Lipschitz continuous, we can
bound the divergence above as follows:

1[T/h]—1 (k+1)h
KPuPLn) = 3 ) [ ElW(Le) —u(LoPdt
k=0
[T/M-1 Ak+1)h
<c ) [ Ella- L
k=0 kh
[T/hl-1  ~(k+1)h t 2
- c ) fkh E[||fkh¢/(Ls)ds+ V2(W — Wia)|| ] it
k=0

From the Cauchy-Schwarz inequality and the fact figéa)|| < C(1 + ||4]) we obtain

[T/h]-1

(k+1)h t
c > f hf E[ll¥(Ls)|?]dsdt+ ChT
kh kh

k=0
[T/N-1 ~(k+1)h
cr > f Elllu(Ls)I?]ds+ ChT
kh

k=0

.
Chzf E[lly(Ls)|?]ds+ ChT
0

KPL7IP, 1)

N

N

N

N

.
Chzf E[lILsl?]ds+ ChT.
0

Since by Propositioﬂ 1 the expectation||afy|? is bounded uniformly irs, we getK(P.rIP;, 1) — O as
h — 0. In view of Pinsker’s inequality, cf, e.gDSS], this ingd that the distributio;, + converges to
PLr in total variation a1 — 0. Thus, [IB) follows.

Proof of Step 4. To prove that the right hand side ¢f[13) tends to zer® as +oo, we use the fact that the
procesd ; has the geometrical mixing property wiih(1) = e*l!l2. Bias-variance decomposition yields:

E[(% fo "a(Ly dt - f G(/l)pv(/l)d/l)z] - %Var[ fo TG(Lt)dt]+(% fo " E[G(L] dt - f G(/l)pv(/l)d/l)?

The second term on the right hand side of the last displaystengdero a§ — oo in view of Propositior[ll,
while the first term can be evaluated as follows:

T AT
%j(; j(; Covg[G(Lt), G(Ls)]dtds

C T T
< ﬁf f p S dtds< CT™
0 0

This completes the proof of Propositiﬂn 2.

—Var f G(Ly) dt

6.2. Proof of Lemm§]3

We first prove a simple auxiliary result, cf. Lemrﬂa 4 below.eihthe two claims of Lemmﬂ 3 are
proved in Lemmaf]5 ar{dl 6, respectively.
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Lemma 4. Forevery Me N and every s> M, the following inequality holds:

1 Moo dy M
(ﬂ/Z)M »f{‘u:llullps} H (1 + UJZ)2 < (S— M)2 ’

Proof. Let U, ..., Uy be iid random variables drawn from the scaled Stud@)tdistribution having as
density the functiom — 2/[r(1+u?)?]. One easily checks thB{U?] = 1. Furthermore, with this notation,

we have

1 M

(r/2)M {ulluls>s) = (1+ u2)2 - Z|U | >

In view of Chebyshev’s inequality the last probability camth)unded as follows:

P(

and the desired inequality follows. O

ME[U?] _ M
(s— ME[|U1[))2 ™ (s5— M)?

Mz

Ujl > s) <

j=1

Lemma5. Let the assumptions of Theorﬂn 2 be satisfied and)lbephe probability measure defined by
@). 1f M > 2then

f (A1 — 2)?po(dd) < 4reer.

Proof. Using the change of variables= (1 — %)/ we write

f(/ll - ﬂi)zpo(dﬂ) = CMTzf U1 l_l(1+ U2 ) a)(uz‘ruJ )
A B1(2M)

with

M

_ 2 w(‘rau )
Cu = (LQM)(H(“ u?)~2e )du) (18)

whereu; are the components af Bounding the functione (**4) by one, extending the integration from
B1(2M) to RM and using the inequality, u3(1 + u)~?du < 7, we get

f (A2 = )?po(dA) < Cu?n( f 1+8)2d)" " = 2Cur2(x/2),
A R

where we used that the primitive of the function{&?)~? is %arctan&) + To boundCy, we first

use the inequalitw(x) < 2|x| which yields:

M M
du; 71 du; 71
CM < f —2m'||u|| | | J < 4(1/TM | | ] ) 19
( B(2M) i1 (1+ uz)2 Bu2m) g (1+ u2)2 49

_X
2(1+x2)

In view of (L9) and Lemm§ 3 we have
Cu < €“™M©2/mM(1 - 1/M)™ < 26™M(2/m)M (20)
for M > 2. Combining these estimates we get

| s 2potan) < ar7er

and the desired inequality follows. O



Lemma 6. Letthe assumptions of Theorﬂ’n 2 be satisfied andgy)lbehe probability measure defined by
@&). Then

M
K(po. 7) < 2"l + Z 2log(1+1471/7)) + (1 + 4Ma).
i=1

Proof. The definition ofr, pp and of the Kullback-Leibler divergence imply that

(12+22)26"Y)

K(Por) = fo 08 {CuCra T s )

(@2+(4-1))%

~109CUCor) + 251 fy e 100 {%ﬂi})z}po(d@
+ 21 Joyomn @(@d) = o(a(4; — 47))po(dA). (21)
We now successively evaluate the three terms on the Rflfm;t, in view of Gl), we have
M g-ilour)

— M
Cor =f | | du; < f1+u2 2du) = (x/2M.
R Bu(R) .1 (1+u22 ] ( R( ) 1) (7/2)

This and [2P) imply logCmC,.-r) < 1+ 4Mar.
To evaluate the second term on the RHS[of (21) we use that

4+ 2 2e( - &) Phe
s = l+t ¥— /D) + 5—F——=
2+ (4 - X)) 2+ (1 - /1;)2( Ot E )2

L+ 14/ + (4 /7)7 < (L+ 145 /)2

N

This entails that the second term on the RHS@ (21) is bourficed above byz?ilz log(1+ I/lj*l/‘r).
Finally, since the derivative ab(") is bounded in absolute value by 2, we hase4) — w(a (4 — A7) <
2a|/lj*| which implies:

M
Y[ (@ad) - datd - )po(dd) < 200
= Jeiemn)

Combining these inequalities we get the lemma. O

6.3. Proofs of remark -6
We only prove Remarl«{} 2 arﬂj 6, since the proofs of the rengneimarks are straghtforward.

6.3.1. Proof of Remar 2
Let ¢ be a random variable satisfyiR(¢ = +07) = 1/2 and letU be another random variable, inde-
pendent of and drawn from the uniform distribution or 1, 1]. Recall that’ = (1 + y)o sgnp=2¢ — (1 +

U] -&.
We start by proving thaf + ¢ has the same distribution as {1y)¢. Clearly,|¢ + ¢] equals (1+ y)o
almost surely. Furthermore,

Pé+¢=(1+y)0)= Pl = (1+y)U)
= S(PA> A+ PU)+ (- 12 1+ )V))

- %((1iy+l)+(_liy+l)):%'

This entails thaP(¢ + ¢ = —(1+y)o) = 1/2 and, therefore, the distributions®# ¢ and (1+ y)é& coincide.
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We compute now the conditional expectatieff|¢]. SinceU and¢ are independent, we have
E[{1¢=0]l= (1+y)oE(sgn[1-(1+y)U]) -0 =0.

Similarly, E[{ | € = —o] = 0.
To complete the proof of Remalfk 2, it remains to show thatippof Assumption N is fulfilled. Indeed,

logE1é=0] 1 log(ew 2+y +e—t<z+y>a¢)

t2yo2 t2yo 2(1+7) 2(1+7y)
= ——|tyo +log(1+{e2@me gl Y |
o2 Yo + og( +{e 2017

Applying the inequality of|E6, Lemma 3] withg = 2(1+ y)/y andx = tyo, we get

(t)’O’)Z (1 + 7) —

logE[€¥ | & = o] < 1
t2yo2 v

X

1+

t2yo2

and the desired result follows.

6.3.2. Proof of Remarf{ 6
We start by computing the conditional moment generatingtion (Laplace transform) af givené:

E[e?|& = a]= e @E[e¢*) | £ = a]

= e‘a(et(“”'é” P(sgn@) > (1+y)U) + e @Ap(sgn@) < (1 + y)U)

_ 2+y Y
- gtaf dly)a tlya__ 7 | 22
€ ( 2+2y  ° 2+ 2y (2)

Using (22) we obtain

2
E[et(“f)] — E[E[et(“f) |§]] =5 :27; E[e—t(1+7)-f] + ZZZyE[et(lﬂ)E] — E[et(lw)f],

since the symmetry of implies thatE[e )] = E[e*%] for everyt. Thus, + ¢ has the same
distribution as (& y)¢.

On the other hand, taking the derivatives of both side@)‘@ﬂ using the fact th&[/ | £ = a] equals
to the derivative of the moment generating functiffe® | £ = a] att = 0, we obtain thaE[¢|& = a] = 0
for everya € [-B, B]. To complete the proof of Remaﬂ< 6 we appE[lG, Lemma 3] tight hand side
of (£3). This yields

1
log (E[€* |¢ = al) < (va)* =Y < @B)¥(1+7).
Y
Therefore, part iii) of Assumption N is satisfied witte) < B?. This completes the proof of Remdik 6.
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