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Pulverized rocks were found near the San Andreas Fault, as far as 400m away 

from the fault core. It is exceptional to observe such a dense fragmentation so far 

from the core. Here we show that extreme strain rate is necessary to intensely 

fragment intact rocks sampled near the fault. We performed laboratory 

experiments on natural rocks to understand this pulverization, using a Split 

Hopkinson Pressure Bars apparatus. When strain rate exceeds 150/s, samples 

break into numerous fragments, to a scale smaller than the initial grain size. To 

satisfy such strain rate, we propose that the pulverization damage is associated 

with supershear rupture.  

In the northeast of Los Angeles, the Mojave segment of the San Andreas Fault 

displays unusual fault damage. The whole outcrop is made of rocks finely broken to a 

scale smaller than the initial grain size of about 1.5 mm. Such damage can be found as 

far as 400 m from the fault core1. This damage pattern affects mainly crystalline rocks. 

These rocks are not extensively weathered, with only minor clay content2,3. Another 

puzzling feature is the preservation of the initial isotropic grain pattern, indicating that 

these rocks experienced little strain1. Whereas grain comminution and gouge formation 

is common within the fault core, where much of the strain occurs, intense pulverization 

is very surprising so far from the fault core. In the damage zone around a fault, the 
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strain is usually localized along fractures, leaving blocks relatively undamaged4,5. Why 

does this not happen near the San Andreas Fault? 

The objective of this paper is to investigate the role of dynamic loading on the 

pulverization of rocks near the San Andreas Fault. We performed laboratory 

experiments on rocks sampled near the San Andreas Fault. After presenting the 

experiments and their results, we discuss their implication on the physics of 

earthquakes.  

Dynamic pulverization is a process where stress localization is inhibited, so that 

the whole medium can be finely fractured6. Strain localization is the consequence of an 

unstable feedback: the largest pre-existing crack within the material is the most 

favourable for further fracture propagation; once extended, it becomes even more 

amenable to further propagation. Finally, this crack extends at the expense of the others. 

However, at higher loading rate, this localization process may be inhibited. The 

favoured crack propagates at a finite rate, at least limited by the P-wave velocity of the 

medium, and cannot accommodate all the energy provided to the medium. Other 

fractures can propagate simultaneously and coalesce to produce numerous small 

fragments. The sample becomes eventually pulverized6.  

Did this process apply to the damaged rocks bordering the core of the San 

Andreas Fault? The dynamic pulverization has been considered in fault cores7, but 

never in the damaged zone around a fault. To quantify its plausibility, we have 

submitted rocks sampled near the pulverized zone to high strain rate loading. These 

rocks were not originally pulverized as they laid further from the fault core (about 500 

m away), but they remained more damaged than the host rock. This rock material 

therefore reproduces the state of damage just before pulverization: not yet pulverized, 

but still damaged.  



3 

The experiments were performed using a Split Hopkinson Pressure Bar (SHPB) 

apparatus8 in the Laboratoire de Mécanique des Solides of the École Polytechnique, 

Palaiseau, France. Each sample was inserted between two bars impacted by an striker 

arriving at known velocity. The dimensions of the bars (3 meters long and 4 cm 

diameter) were so that the propagation of elastic waves in the bars was mainly one-

dimensional. Considering the analytical solution of the wave equation in the bars, forces 

and displacements applied to the bar extremities were retrieved. We checked that the 

forces were identical at the input and output bars, to verify the sample were 

homogenously loaded. We can then derive average stress, strain and strain rate in the 

sample9 (Figure 3).  

Even if the SHPB apparatus is relatively common in mechanical engineering, it is 

scarcely used in Earth Sciences10,11. In these experiments, we avoided two difficulties. 

Firstly, the lack of confining stress was not a problem, as rock pulverization 100 m 

away from the fault zone has been so far observed at the ground surface. Secondly, 

there was no scaling issue, as the size of the tested samples (typically 3 cm long with a 

diameter of 2.5 cm) was similar to the size of the pulverized samples taken from the 

field. Moreover, the grain size of the rock studied here was more than ten times smaller 

than the sample size (Figure 1a).  

Experimental results yielded three types of final states (figures 1 and 2): (1) an 

unbroken state, where insufficient loading did not allow to break the sample, (2) a 

simple fracturing state, where a sample was split by a few (at most three) longitudinal 

fractures - a common damage pattern for uniaxial loading at small strain rate -, and (3) a 

multiple fragmentation state, when the sample was ruined into multiple fragments, some 

with a size smaller than 1 mm. The experiments performed at a strain rate higher than 

150/s provide samples finely broken, whereas those performed below 100/s gave 



4 

samples broken into two or three fragments (figure 2). The grain size of fragments 

decreased with higher strain rate.  

We will now discuss the pertinence of the laboratory results to explain the natural 

pulverization. As the tested samples were collected in the damage zone of the San 

Andreas Fault, their Young modulus was small (10±3 GPa, about one fifth of the 

tabulated value for granite12). The static strength of the material ranges between 50 and 

90 MPa, about half the tabulated values for intact granite12. These low values suggest 

that the initial samples exhibit a dense network of cracks. All these cracks compete with 

the most favourable crack and help preventing strain localization along a single fracture. 

Consequently, we estimate that our threshold strain rate is a minimum value for the 

transition to fine fragmentation in the field.  

Our transition does not only delimit different final damage patterns, but also 

corresponds to an increase in the apparent strength of the sample. These experimental 

results are in accordance with the statistical theory of Hild and Reynoual13 for the 

transition from single to multiple fracturing regimes. In both theory and experiments, 

rock strength starts increasing with strain rate, once in a pulverization regime. 

Theoretically, there is an intrinsic increase of the material strength14, as the propagation 

of several small fractures requires more energy than that of a single large fracture. 

Experimentally, there is also a dynamic confinement phenomenon, when the sample 

does not instantaneously expand laterally at high strain rates. When computing the 

equivalent constraining stress with Forrestal formula15, we retrieve dynamic confining 

pressures in the range of 2 to 10 MPa, corresponding to a burial depth of only 100 – 500 

m. This suggests that pulverization may also be found in the shallow subsurface.  

We do not pretend to reproduce the exact state of pulverized rocks, especially its 

grain size distribution. The natural state is certainly the result of several earthquakes, 
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each one damaging rocks by both compression and shear loading. Here, we focus only 

on the transition between localized fracturing and pervasive fragmentation.  

We focused on dynamic pulverization to explain pulverization near faults. Other 

mechanisms may inhibit the strain localization process. The first one is the ductile-

fragile transition at high confining stress or high temperature16. But this transition is too 

high (300 MPa, 350°C16) for crystalline rocks at the ground surface. A second way to 

inhibit strain localization is to apply fast rotating stress. The sheared zones are then 

reworked over and over, so that the strain localization is annealed at the expense of the 

formation of preferential microstructure orientation17. This mechanism requires large 

strain and it is not the case for the pulverized rocks from the San Andreas Fault since 

they preserve their original facture. 

High strain rate may be a necessary condition for pulverization, but it may not be 

a sufficient condition. Other phenomena can also modulate the onset of pulverization. 

Under tensile loading, rock strength is reduced and this may explain the asymmetry of 

damage observed along faults18.  

There are some issues in relating the laboratory experiments to the field 

observations. Our experiments were performed under a uniaxial loading. The transition 

strain rate depends on the speed of fracture propagation and on the interaction between 

cracks, controlled by the statistics of the initial crack population and the size of the 

stress shadow zones around each crack. These parameters do not strongly depend on the 

fracture mode19. The fracture speed propagation is close to the S wave velocity cs in all 

fracture modes. The shape of the stressed areas around a crack tip differs with fracture 

mode, but its size varies similarly, with stress decaying with distance to the fracture tip r 

as 1/r1/2. Hence, the transition from single to multiple fracturing is only weakly 

dependent on the fracture mode20. The strain rate condition obtained experimentally is a 
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reasonable approximation to the natural case in that the sample is subject to both shear 

stress and normal stress.  

Our results show that the transition zone is mainly related to the strain rate, rather 

than to the stress amplitude. Pulverized rocks are markers of events with high strain rate 

(>100/s). They also endured low strain amplitude, as their initial structure is preserved.  

To determine in which conditions these two constraints are satisfied together, we 

computed the strain rate and the stress near a crack tip propagating at a constant speed. 

Considering distances from the fault (r=100 m) small relative to the rupture size (more 

than 10 km), we calculate an asymptotic development on the distance to the rupture tip. 

Details of the computation are given in supplementary material. The first term of the 

development20 with a rupture speed below the S wave velocity (subshear rupture) yields 

a strain decaying as 1/r1/2, and a strain rate decaying as 1/r3/2. Figure 4 shows the shear 

strain rate of rocks located 100 m from the fault supposing that the maximum strain is 

2%, a value we think representative of the maximum strain sustained by the pulverized 

rocks. The maximum strain rate stays two orders of magnitude below the experimental 

threshold strain rate to enable pulverization. Other terms of the Taylor expansion of 

strain21 give similar or lower strain rate for a strain smaller than 2%. Reaching the 

experimental threshold is therefore unlikely for subshear rupture in homogeneous 

material.  

In the previous computation, we made two hypotheses: a homogeneous medium 

and a sub-shear rupture. For faults separating two different media, a sharp tensile pulse 

can be generated in the tensile part of the fault. If the Weertman pulse they describe 

induces pulverization, we expect to find pulverized rocks along bimaterial faults, with 

no sign of compression. However, pulverized sandstone along the San Jacinto Fault 

show compression features23. Moreover, pulverized rocks can be found on both sides of 
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the San Andreas Fault near Lake Hughes area1. Pulverized rocks can be induced by 

several processes, and we propose a different mechanism for this high strain rate.  

Supershear rupture induces a shock wave, with a sharp front and with small decay 

with distance20. High strain rates of loading can be reached 100m far from the fault core 

as supershear rupture induces a shock wave24 and generates high frequency 

displacements25. This is consistent with the discovery so far of pulverized rocks only 

near large strike-slip faults: San Andreas and San Jacinto Faults in California1,3,23, 

Northern Anatolia Fault in Turkey26, Arima-Takatsuki Fault in Japan27, which are more 

amenable to supershear rupture. We predict that off-fault pulverization would be only 

found only along large strike-slip faults, and this provides a way to test our hypothesis 

in the future.  

This work gives constraints on the formation of pulverized rocks, which endured 

deformation rate larger than 100/s. As strong indicator of previous supershear rupture, 

moreover as an indicator independent of seismological data, pulverized rocks should be 

seriously considered for the risk assessment of such potentially damaging earthquakes.  
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Figure 1. States of the samples after experiment. (a-left) At a low strain rate 

(here, 140/s), a granodiorite sample split into a few fragments when deformed in 

the Split Hopkinson Pressure Bar apparatus. (b-right) At a higher strain rate 

(here, 400/s), the sample was pulverized into numerous fragments with 

diameter smaller than the rock initial grain size. The ruler has centimetric marks. 

Figure 2. Summary of the 27 experiments performed, where the final state 

relative to the peak stress and the peak strain rate are represented. The 

transition from single crack fracture (blue circles, figure 1 left) to intense 

pulverization (red stars, figure 2 right) depends on strain rate. The threshold 

occurs between 100/s and 150/s. Some samples remain unbroken (green 

squares). 

 Figure 3. Time-lapse snapshots of a sample being pulverized. The vertical bars 

lettered A, B, C and D denote the times of the above photographs, taken with 

four independently triggered cameras. The stress and strain history measured 

in our experiment is reported in the lower graphs. The sample is broken during 

the first loading, before the subsequent loading associated to the waves 

reflected at the bar extremities. The sample breaks in an early stage but 

because of their inertia, the fragments fly away later. The sample is fragmented 

while in a pure uniaxial compression, and not during stress relaxation. 

Figure 4. Dilatational strain rate versus dilatational strain induced by a rupture 

propagating with a constant below the Rayleigh velocity in a location 100 m 

away from the fault core. As the fracture tip passes near the monitoring location 

strain and strain rate varies. We normalized both the strain and strain rate so 

that the maximum strain amplitude is 2%, corresponding to the order of 
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magnitude of the maximum strain experienced by the pulverized rocks near the 

San Andreas Fault. The curves were computed for several rupture velocities, all 

below the Rayleigh wave velocity (here cR~0.8740301cS). All curves achieve a 

maximum strain rate less than 0.25/s, three orders of magnitude below the 

100/s pulverisation threshold we determined in the laboratory. Details of the 

computation are given in supplementary material. 
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