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By using the four-sideband theory, we analyze the gain spectrum in wideband two-pump fiber optical para-
metric amplifiers and predict gain ripples over the flat gain region. We derive an approximation of their
pseudo-periods and discuss methods for reducing their amplitudes. © 2008 Optical Society of America

OCIS codes: 060.0060, 060.4370.

Fiber-optical parametric amplifiers (FOPAs) are be-
ing developed for efficient ultrahigh bandwidth and
ultrafast signal processing technologies such as
wavelength conversion, multiplexing, sampling, buff-
ering, etc. [1,2]. Thanks to both the ultrafast Kerr
nonlinearity and the flexibility in the design of the fi-
ber’s dispersion curve, large and broadband paramet-
ric gain can be achieved in the 1.55 um region by us-
ing one or two pumps [1,2]. The latter architecture is
of interest for telecommunication applications: It al-
lows cancellation of signal distortion and idler broad-
ening, improvement of polarization insensitivity, and
the design of wideband amplifiers with flat gain spec-
tra [3-7]. Indeed, using a standard four-wave mixing
theory involving the two pumps, the signal, and the
generated idler waves, it is possible to optimize the
position of the two pumps so as to achieve wideband
flat gain between the two pumps [6,7]. However, this
model is not valid close to the pumps, as one has to
take into account the two other sidebands that are
generated in the region outside the two pumps by

Bragg scattering (BS) and modulation instability
(MI). The interaction among all four sidebands leads
to a gain reduction in the vicinity of the two pumps
[8-10]. Recently, we showed that by taking into ac-
count the four sidebands, one can predict small
ripples on the flat gain region that can lead to impair-
ments for telecommunication applications [11]. In
this Letter, we review these preliminary results
linked to a recent experimental demonstration of a
wideband and flat-gain two-pump FOPA (2P-FOPA)
[7]. We explain in detail the mechanism of the ob-
served ripples and discuss guidelines to minimize
those ripples when designing flat-gain 2P-FOPAs.

Following notations similar to [12], we denote by
w1, ws the angular frequencies of the two pumps and
by w3, w4, ws, and wg those of signal, idler, and the
sidebands generated outside the two pumps (see Fig.
1). We refer to this model as the four-sideband (4S5)
model. Assuming that the pumps are nondepleted
and following the steps in [5], it leads to a set of four
coupled equations:

As ABs + yP; vPq r r As
o| A3 | -¥P1 =ABy-yPy  -r i -7 A,
AN AP P || A
A -r -r - YPy  ~ABs—yPs] \Aj 1)
T
This equation has the form dY/dz=jMY. P{,P; are = where Awp=(wy—w1)/2, g=((-1)"+3)/2, Aw;=Awg

the pump powers, and A3, A4, A5, and Ag are the side-
bands’ slowly varying amplitudes (SVAs). y is the fi-
ber nonlinearity coefficient and r=2y\P;P,. The
terms AB;(i=3,4,5,6) in M represent linear wave-
vector mismatches between sideband ¢ and its closest
pump. They can be expanded in Taylor series about
wo=(w1+wy)/2:

y - _.Br ;
AB;= Blw) = Blog) = 2 (- D' (Bef - Aufp), (2)
=2 :

=|lws4—wc| for i=(3,4), and Aw;=Awgp=wc—ws
=2Awp—Awg for i=(5,6). B, are the higher-order dis-
persion coefficients at w¢. In practice, it is sufficient
to consider py, B3, and B4 to account for most
dispersion-related behaviors.

M does not depend on z; hence the solution can be
readily derived as follows:

Y(z)=exp(jMz)Y(0). (3)

By setting the appropriate sideband amplitude to 1
and the others to 0 as initial conditions, the gain can
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Fig. 1. Four-sideband model with pumps, signal, and
three generated idlers.

be numerically calculated for signals located in Jw,
—Aﬂ)p, (02+A&)P[.

To obtain a closed-form analytical solution for the
parametric gain, one would need to calculate the ei-
genvalues and eigenvectors of M. This has been done
for signals located in the vicinity of one pump [12],
but the calculation remains complex for the whole
spectrum. It is therefore convenient to neglect side-
bands A5 and Ag. Using this two-sideband (2S) model,
M is reduced to the 2 X 2 matrix framed in dotted line
in Eq. (1). The signal output SVA can then be derived
as in Section A1.2 of [1], with the following result:

A; = exp{(- 1)'j[¥(Py - P)/2 + (Ba/6)(Aw — Awp) e}
X [cosh(gz) —jzi sinh(gz)] (z1=3,4), (4)
8

where k= ’y(Pl +P2) +2E;:1ﬁ2k/(2k)!(A0)52k —Aw%k) is
the total wave-vector mismatch between the four in-
teracting waves, g=r*—(x/2)%, and r=2yyP;P,. For
high gain, one can neglect the decaying exponential
in Eq. (4):

2 “4g
+(B3/6)(Awd — Awp)] +glz2)

1 K ;
A~ <— _J'—> X exp({(- 1))j[ 1Py - P1)/2

(t=3,4). (5)

The signal gain is also straightforwardly derived
from Eq. (4) as G=1+[(r/g) sinh(gL)]*.

Using the 2S and 4S models, we analyzed an ex-
perimental 2P-FOPA with flat gain spectrum over
more than 70 nm demonstrated by Chavez Boggio et
al. in a highly nonlinear fiber of 243 m effective
length [7]. The results are shown in Fig. 2. The 2S
model, which was used to design a flat-gain FOPA,
shows good agreement with the experimental results
for signals that are separated by more than 10 nm
from the closest pump. In particular, the flat-gain re-
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Fig. 2. Spectrum of the 2P-FOPA gain. Squares, experi-

mental results; solid curve, 4S analysis; dashed curve,

25 analysis (standard model). The parameters are S

=6.4%x10%0s?2m™!,  B;=0.65x10* s’ m™!, pB,=-1.6

X107 g* m~1, y=8 W1 m™!, and Awp=3.25%10° rad/s.

gion of 70 nm is fairly well fitted. As expected, the re-
duction of the parametric gain in the vicinity of the
pumps can be fitted by using the 4S model. The dis-
crepancy observed for wavelengths larger than \, is
due to Raman gain. However, when zooming in on
the edges of the flat region of the spectrum, Fig. 3
shows that the 4S model predicts gain ripples.
Clearly, these ripples occur in a region where both MI
and BS processes are negligible. Their existence was
verified by simulation of the nonlinear Schrodinger
equation. The pseudo-periods of the ripples range
from 0.5 to 1 nm, and their amplitudes can be larger
than 1.5 dB, which is sufficient to impair telecommu-
nication applications [11].

Equation (3) gives very little insight about the un-
derlying mechanisms of these ripples, as it can be
solved only by numerical means. Instead, we will
limit our discussion to qualitative considerations
within the flat-gain region (where the approximation
of the two sidebands model is good). The four complex
eigenvalues of M have the form N3 (Awg)
=pi(Awg) £jg1(Awg) and A5 6(Awg)=po(Awg)
+jg9(Awg). The output field amplitude of the signal is
a linear combination of four exponentials exp(j\;z) (i
=3,4,5,6), with weights that depend on the initial
field amplitudes. Neglecting all decaying exponen-
tials, the output SVA is approximated by

A =aexp(jpiz +g12) + b exp(jpoz +822),  (6)
and thus the parametric gain by
G(2) =~ |a|?e®81? + |b|?e?82% + 2|able's1+822
Xeos[(py - p)z + ¢, (7)

where ¢=arg(ab*) and a, b are weights. This latter
expression shows how the different eigenvalues com-
bine to give the output parametric gain. It also shows
that G contains an oscillating term whose pseudo-
period depends on z. In the region of flat gain that is
of interest for telecommunications, Eq. (5) also shows
that the output field is approximated by a single ex-
ponential. Because the exponentials are a basis for
function decomposition, we infer that one of the
terms [say a exp(jp1z+£12)] in Eq. (6) should be domi-
nant and equal to A; of Eq. (5), while the other term
is a small perturbation (|a|>|b|). In Eq. (7), the sec-
ond term could therefore be neglected, and the third
term would account for the small ripples that are ob-
served. By assumption, we also get pi(Awg)
=(=1)[UPy=Py)/2+(B3/6)(Awi—-Aw})]z (i=3,4) and
g1=8. We note that AB; 4(Awg)=AB5 ¢(Awgp). Suppose
that \3(Awg) is an eigenvalue of M with the associ-
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Fig. 3. (a), (b) Zoom in on the edges of the flat-gain region.
Dashed curve, plot of Eq. (9).
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ated eigenvector [vs(Aws)vs(Awg)vi(Aws)vg(Aws)].
From the second row of M it then comes that

(ABs(Awgp) + ¥YP1) X v3(Awgp) + ¥P1 X v5(Awgp)
+r X vg(Awgp) +r X v4(Awgp)
= (AB5(Aws) + ¥P1) X v3(Awsp) + ¥P1 X v5(Awsp)
+1r X vg(Awgp) +1 X vg(Awgp). (8)

Similar expressions hold with all other lines of M.
Thus, we deduce that —)\;(A(USB) is another eigen-
}{alue of M with associated eigenvector
"lva(Awgp)vs(Awsp)vg(Awgp)vy(Awgp)].  Identifying
the real and imaginary parts with \5(Awg), we de-
duce py(Awg)=-pi(Awgp) and gy(Aws)=gi(Awgp).
Hence

cos[(p; — pg)z] = cos| BzAwp(Awp — Awg)*z
+ Y(Py - Py)zl. 9)

We have plotted cos[ 834 wp(Awp—Awg)?z] with an ad-
justed phase in Fig. 3 as a dashed curve. It shows a
fairly good agreement with the pseudo-periods of the
ripples within the flat region. Equation (9) also shows
the influence of the fiber dispersion slope and length
on the ripples pseudo-period. In this region where MI
and BS processes are negligible, the relative ampli-
tude of the ripples depends on the ratio
2|b/alexp{[g(Awgp) —g(Awg)]z}. Although b/a is very
small, this latter expression shows that noticeable
ripples may occur if g in the inner band between the
two pumps (at +Awg) is smaller than or equal to g for
a signal located at the symmetrical frequency rela-
tively to the closest pump [at +Awgp=+(2Awp—Awg)].

The maxima of g correspond to the roots of x=0.
When B,>0, one can choose 8y and Awp such that «
can be written in terms of a fourth-order Chebyshev
polynomial [6] whose roots are all located between
the two pumps. As a consequence, g is always greater
in the inner band between the two pumps than in the
outer band and the ripples become negligible. When
B4 <0, two roots +{); of k=0 are always located in the
outer band [7]. To minimize the ripples, one should
therefore design the FOPA spectrum such that « pos-
sesses two other roots located close to +2Awp—();. To
verify these assumptions, we have plotted in Fig. 4(a)
the spectra of two different 2P-FOPAs: one with posi-
tive B4 and the other one with a negative 8, and an
optimized . All other parameters are the same as
for the FOPA studied in Figs. 2 and 3. In both cases,
the parametric gain is increased in the flat region
and the ripples are reduced compared with the FOPA
studied in Figs. 2 and 3. To quantify the reduction of
the ripples amplitudes, we have numerically calcu-
lated |a|?e?1 and subtracted that amount from G(L).
The results are shown on Fig. 4(b) and show that the
relative ripples amplitudes are significantly reduced
for the FOPAs of Fig. 4(a) compared with the FOPA of
Figs. 2 and 3.
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Fig. 4. (a) Gain spectra of 2P-FOPAs with B,=6.3
X 1073 82 m~!, B,=1.6X107%° s* m~! (solid curve) and S,
=5X10%s?m™1, B4=-1.6%X10"% s*m~! (dotted curve).
(b) Ripple relative amplitudes associated with the FOPA of
Fig. 2 (dashed curve) and the two FOPAs of Fig. 3(b) with
positive B4 (solid line) and negative B, (dotted curve).

In conclusion, we have investigated the nature of
ripples in the flat-gain region of 2P FOPAs. These
ripples may be large enough to lead to impairments
in telecommunication systems. By looking at the ei-
genvalues, we were able to predict their pseudo-
periods. To reduce the ripples amplitudes, we have
shown that the 2P-FOPA should be designed such
that the gain within the flat region between the two
pumps is larger than the gain in the outer band. With
positive By fibers this design is straightforward. How-
ever, most conventional fibers have negative £4. In
this case, the gain between the two pumps should be
maximized in order to reduce the ripples.

This work has been funded by the Conseil Regional
de Franche-Comté, the European Regional Develop-
ment Fund (ERDF), and the UK’s Engineering and
Physical Sciences Research Center (EPSRC). The au-
thors gratefully thank J. M. Chavez Boggio and co-
workers for sharing their experimental results.

References

1. M. E. Marhic, Fiber Optical Parametric Amplifiers,
Oscillators and Related Devices (Cambridge U. Press,
2007).

2. C. J. McKinstrie, S. Radic, and A. H. Gnauck, Opt.
Photon. News 18(3), 34 (2007).

3. M. C. Ho, M. E. Marhic, K. K. Y. Wong, and L. G.
Kazovsky, J. Lightwave Technol. 20, 469 (2002).

4. A. Vedadi, A. Mussot, E. Lantz, H. Maillotte, and T.
Sylvestre, Opt. Commun. 267, 244 (2006).

5. M. E. Marhic, K. K.-Y. Wong, and L. G. Kazovsky, J.
Opt. Soc. Am. B 20, 2425 (2003).

6. M. E. Marhic, Y. Park, F. S. Yang, and L. G. Kazovsky,
Opt. Lett. 21, 1354 (1996).

7. J. M. Chavez Boggio, J. D. Marconi, S. R. Bickham, and
H. L. Fragnito, Opt. Express 15, 5288 (2007).

8. M. Yu, C. J. McKinstrie, and G. P. Agrawal, Phys. Rew.
E 48, 2178 (1993).

9. L. Provino, H. Maillotte, E. Lantz, T. Sylvestre, and J.
M. Dudley, in Conference on Lasers and Electro-Optics
Europe, IEEE Conference Digest (IEEE, 2000), paper
Ctul4.

10. C. J. McKinstrie and S. Radic, Opt. Lett. 27, 1138
(2002).

11. A. Vedadi, E. Lantz, H. Maillotte, and T. Sylvestre, in
2008 IEEE/LEOS Winter Topical Meeting Series
(IEEE, 2008), paper TuB 1.2.

12. M. E. Marhic, A. A. Rieznik, and H. L. Fragnito, J. Opt.
Soc. Am. B 25, 22 (2008).



