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1-Introduction

The theory of angular momentum occupies an important position in the development of all physical theories of atomic physics, nuclear physics and particle physics. We observe in this theory that the Wigner's D-matrix elements are functions of Jacobi polynomials ) , ( β α n P with positive indices, α and β, but all the results derived from it are valid without this restriction by making use of the symmetry properties [START_REF] Edmonds | Angular Momentum in Quantum Mechanics[END_REF]. The extension of this idea to Clebsh-Gordan coefficients remain to be proven in the general case.

We find also in the famous Schwinger's work "on angular momentum" [START_REF] Schwinger | On angular Momentum[END_REF] a search of a generating function for 3j symbols function of modules of magnetic moments but the function obtained was with three parameters are not usable for obtaining a simple expression of these symbols. On the other hand in many bases [START_REF] Mardoyan | [END_REF][4][START_REF] Kibler | On a Generalized Oscillator System: Interbasis Expansions[END_REF][START_REF] Landau | Mécanique Quantique[END_REF] there are also other useful physical polynomials with restrictive indices and the matrix elements of passage between the bases has symmetry and may be calculated without restriction. So the problem is more general and occurs in many problems of quantum physics.

To verify this point of view we choose the polar basis of harmonic oscillator (2dPH) as a basis, unlike Schwinger abstract basis, for the study of angular momentum [START_REF] Landau | Mécanique Quantique[END_REF][START_REF] Messiah | Mécanique Quantique Tomes I et II Dunod[END_REF]. The double polar basis ) 4 ( dPH is function of the product of Jacobi polynomials for the angular part and Laguerre polynomials for the radial; this allows us to calculate the matrix elements ) 4 ( ) 2 ( 2 dPH dPH using the orthogonality of these polynomials. We propose two different methods and we derive two expressions for the restrictive indices. We perform also the calculation for unrestricted indices with a new generating function for the polar basis (2dPH) so we get new expressions of these coefficients. The identification of these expressions shows that the restriction of these indices is due to the symmetry. We find the integral representation of Clebsh-Gordan coefficients in terms of Laguerre polynomial then we deduce a new generating function dependant of two parameters and from which we can deduce the analytical expression. We prove the Relation between our results and the results derived by the group theory of Laguerre polynomials [START_REF] Vilenkin | Fonctions spéciales et théorie de la représentation des groupes[END_REF].We prove also that the recoupling coefficients are the same of Schwinger's approach therefore they are independent of the choice of the polar basis. Applying our method to classical groups will be the subject of another paper.

The plan of the paper is as follows. We begin, in section 2, by reviewing the basis of (2dPH) and 4-dimension polar basis of the harmonic oscillator. In section 3, we give a derivation of the generating function for the passage matrix elements between bases in terms of the module of magnetic moments. We expose in section 4 the relation of our method and the group theory of Laguerre polynomials. In section 5 we find the Generating functions of passage elements from 2(2dPH) to 4-dimensions polar basis in terms of magnetic moments (general case). Section 6 is devoted to resume our results on the symmetry of 3j symbols and the new generating functions of Clebsh-Gordan coefficients. In Section 6 we prove the connection between Schwinger approach for 6j, 9j symbols and the polar basis of harmonic oscillator.

The basis of (2dPH) and 4-dimension polar basis of harmonic oscillator

Using the method of separation of variables we can find the polar basis and the 4dimensional polar basis of harmonic oscillator. We shall give only the expressions of these bases [START_REF] Kibler | [END_REF].

2.1-The basis of 2(2dPH)

) , , , (

β α ρ ρ

To determine the eigenfunctions of two dimensions harmonic oscillator we put
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The solution of Schrödinger equation is:
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The double polar basic of harmonic oscillator 2(2dPH) is
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2.2-The 4-dimensions polar basis (4dPH)

) , , , ( ϕ θ ψ u We choose a new parameterization of the harmonic oscillator basis (4dPH) Put
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, ψ, θ and φ are Euler's angles.
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With these notations we can go to the dimensions 8, 16, 32... [21].

The eigenfunctions of the harmonic oscillator (4dPH) [START_REF] Edmonds | Angular Momentum in Quantum Mechanics[END_REF][START_REF] Schwinger | On angular Momentum[END_REF][START_REF] Mardoyan | [END_REF][START_REF] Vilenkin | Fonctions spéciales et théorie de la représentation des groupes[END_REF] is:
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The conservation of energy implies that:
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And
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Expression and generating function of the passage matrix elements between bases in terms of the module of magnetic moments

We observe that the functions of the basis, the radial and the angular are orthogonal polynomials so we can use either one or the other of these functions for calculating the matrix elements of passage

m m nj m j m j ' 3 2 2 1 1 , Ψ Φ Φ .

Elements of the passage matrix (first method)

We can do the calculation by the generating functions methods of Laguerre polynomials [START_REF] Hage-Hassan | The two-dimensional hydrogen atom in the momentum Representation[END_REF][START_REF] Erdelyi | Higher transcendal functions[END_REF][START_REF] Gradshteyn | table of integrals series and products[END_REF][START_REF] Weber | [END_REF] but we will just do the calculations by a new and much simpler method using the developments of these polynomials. Starting from the development
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We deduce that the elements of the matrix are:
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Integration of radial part

We know that any polynomial of degree n can be written in ascending order from zero to n or descending order from n to zero. We will use the second form in the development of Laguerre polynomials [START_REF] Sansone | orthogonal functions[END_REF]:
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The power of r is
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. Orthogonality of the generalized Laguerre polynomials (2.4) implies that k must be equal to n (
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) for the integral (3.2) be different from zero. We deduce that 0
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But i and j are positive numbers we thus infer that i = j = 0. We then do the integration on the radial part with (2.4).

Integration of angular part and matrix elements

We evaluate the integral of angular part of (3.2) with the help of integral over the product of three D's or the Gaunt integral [START_REF] Edmonds | Angular Momentum in Quantum Mechanics[END_REF][START_REF] Hage-Hassan | On the Euler angles for the classical groups, Schwinger approach and Isoscalar factors for SU (3)[END_REF] in terms of Clebsh-Gordan:
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), ( 2ϕ Analogue result is already obtained by Mardoyan and al. [START_REF] Mardoyan | [END_REF] and [4][START_REF] Kibler | On a Generalized Oscillator System: Interbasis Expansions[END_REF] by an approximation method.

Elements of the passage matrix using the radial functions (Second method)

The method of calculation of these elements using the radial functions is very useful for many applications [START_REF] Trlifaj | [END_REF][12]. We start from the expression 
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By applying (3.5) and identifying the two sides of (3.11) we find the analytic expression of matrix elements in term of the hypergeometric function
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Elements of the passage matrix and group theory of Laguerre polynomials

We observe that the basis ) 2 ( 2 dPH has several developments, among other ) 4 ( dPH , the development found by Vilenkin [START_REF] Vilenkin | Fonctions spéciales et théorie de la représentation des groupes[END_REF] using the group theory. We also give the analytical expression of a Clebsh-Gordan coefficient which is particularly useful in comparing these developments.

Group theory of Laguerre polynomials and the passage matrix

To determine the passage matrix elements we develop the basis ) 2 ( 2 dPH on the base ) 4 ( dPH using the expression (3.4) and the expression already established by Vilenkin [START_REF] Vilenkin | Fonctions spéciales et théorie de la représentation des groupes[END_REF] and the comparisons of these expressions.
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we write [START_REF] Vilenkin | Fonctions spéciales et théorie de la représentation des groupes[END_REF]:
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By coupling the product of Wigner's D-matrix then using Regge symmetry 
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Comparing this expression with (3.1) shows that we must develop the basis
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Conversely: We start from the expression (3.1) and we use (4.3) and (4.4) we find the expression (4.1).

Expression of the coefficient

' ) ( ' , ' ; , 2 1 2 1 2 1 lm l l m m l l
In the expression (4.3) we use the development (3.3) of Laguerre polynomial and then (3.5) we obtain:
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and identify the two sides of (4.6) we find finally the expression of Clebsh-Gordan coefficient.
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By identifying also the expression (4.3) with (3.1) and using the orthogonality of Laguerre polynomials we find the integral representation of the coefficient:
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Generating functions of passage elements from 2(2dPH) to 4-dimensions polar basis in terms of magnetic moments (general case)

We build first a new generating function of the polar basis ) 2 ( dPH and the generating functions of ) 4 ( dPH . We derive from the overlap of these functions the generating functions of matrix elements in term of magnetic moments (general case).

1 The new generating function for the polar basis

We know that the Cartesian basis of harmonic oscillator in Dirac notations is 0 , 0 ,

ny y nx x y x a a n n + + = (5.1)
This ket is not the eigenfunctions of z L . Thus to obtain the basis which has this property we must take the transformation [8]

2 2 2 1 1 1 2 1 2 1 2 1 , , ), ( ), ( 2 
2 ), ( 2 2 A A N A A N N N N N N L ia a A ia a A z y x y x + + + + + + + + = = + = - = + = - = (5.2)
The new basis (5.3)

This basis is function of z L and N with the values 2m and 2j. The new generating function may be written in the form: 

0 , 0 ] exp[ ) , ( 2 2 1 1 2 1 + + + = A t A t t t F 0 , 0 ] 2 / ) ( 2 2 / ) ( 2
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is the basis of Fock-Bargmann space [START_REF] Hage-Hassan | On the Euler angles for the classical groups, Schwinger approach and Isoscalar factors for SU (3)[END_REF][START_REF] Bargmann | On the representations of the Rotation group[END_REF] 

= - = , ) exp( ) ( 1 π μ .

The generating function of the 4-dimensions polar basis (4dPH)

The generating function of the basis (4dPH) may be deduced from the generating function of Wigner's D-matrix and the generating function of Laguerre polynomials

The generating function of Wigner's D-matrix

The Schwinger generating function [START_REF] Schwinger | On angular Momentum[END_REF] of Wigner's D-matrix is: 
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Generating function of Laguerre polynomials

The generating function of Laguerre polynomials, [START_REF] Erdelyi | Higher transcendal functions[END_REF][START_REF] Gradshteyn | table of integrals series and products[END_REF] is:
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The generating function of the basis (4dPH)

Using the above generating functions we find
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So we get the generating function

)]] ( ) ( [ 1 1 ) 1 ( 2 ) 1 ( exp[ ) 1 ( 1 ) , , , ( 1 2 2 1 2 2 2 1 1 1 2 2 z z z z s s s r s r s G η η ξ η η ξ η ξ + - + + - + - + - - = r
(5.9)

Generating function of passage matrix elements.

The generating function of the passage matrix elements (5.11) this expression is the generating functions of the 3j symbols of Schwinger [START_REF] Schwinger | On angular Momentum[END_REF]. We find after development of (5.11) and the identification with (5.10) the expression of the elements matrix of passage in terms of magnetic moments (general case). 
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t d t d t F t F t t s G r s G μ μ ϕ ρ ϕ ρ η ξ η ξ ∫ = r
(5.13)

The symmetry of 3j symbols and the new generating functions of Clebsh-Gordan coefficients

We give first the symmetry coefficients Clebsh-Gordan, result of the preceding paragraphs, and then the new generating function of these coefficients which is a function of two parameters only.

Symmetry of 3j symbols

Comparing the expressions (3.7) and (5.12) we obtain two equivalent expressions of Clebsh-Gordan coefficients:

m m m m m m m m m j j j m m j j 3 3 2 1 2 1 2 1 ) ( , = m m m m m m m m m j j j m m j j 3 3 2 1 2 1 2 1 ) ( ,
We find four expressions of symmetry [START_REF] Regge | Symmetry properties of Clebsh-Gordan Coefficients[END_REF][START_REF] Bargmann | On the representations of the Rotation group[END_REF] . , , ,

- = - = - = = = - = = = (6.1) , , , , m m m 
We made a computer program (Maple) to make the verification. Put

2 1 2 1 2 1 1 2 , j j J J m m J J + = + - = - With 2 1 2 1 2 1 2 2 1 1 , 2 / ) ( , 2 / ) ( M M m m M J J M m J J M m + = + = - + = + - =
We obtain also in terms of 3j symbols the expression:
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The new generating function of Clebsh-Gordan coefficients

Multiplying the two sides of the expression (3.11) by

) ( ) ( 1 1 2 1 2 x L x m n m m +
and after integration we find:
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With the help of the generating function of Laguerre polynomial we derive the new generating function of Clebsh-Gordan coefficients

= Φ Φ Ψ ∑ 2 2 1 1 3 3 2 1 1 ) ( ) , ( 1 m j m j m j j j n n v u m j A = - - - - - - - + + ∝ - + ∫ dx e v v xv u u xu x x m j m m j 1 2 2 2 0 ) ( 1 3 2 1 3 ) 1 ( )] 1 /( exp[ ) 1 ( )] 1 /( exp[ ) ( 1 ) ( ) ( ) 1 ( 2 1 3 2 1 3 2 1 3 2 1 3 ) 1 ( ) 1 ( ) 1 ( )! ( + - + + - - - + - - - - - + m m j m m j m m j uv v u m m j (6.2)
So we obtain a generating function with two parameters and not three as in the Schwinger's work [START_REF] Schwinger | On angular Momentum[END_REF] and the development of this expression gives (3.12).

Schwinger approach for 6j, 9j symbols and the polar basis of harmonic oscillator

In this part we determine the function of the coupling of two angular momentums in terms of creation operators of the polar basis of oscillator and we demonstrate that the choice of the polar basis gives also the recoupling coefficients 3nj.

The generating function of the coupled basis in terms of creation operators

In this part we choose the polar basis by 0 , 0 ) 1 ( 2 The calculation of this expression is done by means of Bargmann integral [START_REF] Hage-Hassan | On the Euler angles for the classical groups, Schwinger approach and Isoscalar factors for SU (3)[END_REF][START_REF] Bargmann | On the representations of the Rotation group[END_REF] and it is clear that we get the same Schwinger generating functions of 6j and 9j symbols. The generalization of this result to recoupling coefficients 3nj may be done by the same method.

  the both sides of the expression (3.3) and then we put 0 using the expressions[START_REF] Erdelyi | Higher transcendal functions[END_REF] 
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With

) , , ( ), , , , ( The development of this expression gives the expression of the function (2.10) in terms of the creation and destruction operators of harmonic oscillator. This result is similar to the well known three-dimensional case of harmonic oscillator [22].

The coupling of three and four angular momentum

To determine the expressions of Racah coefficients and 9j symbols we follow Schwinger's method for the coupling of angular momentum. We write the coupling of four angular momentums by two different ways.

And to be the clearest possible we write ) , (

We 

The generating function of the second coupling is

The generating function of the recoupling coefficient