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Introduction

The aim of this note is to give a characterization of some reproducing kernels of spaces of holomorphic functions on the unit ball of C n . These kernels are obtained with the weighted Bergman kernel B α (z, w) and bounded holomorphic functions ϕ 1 (z), • • • , ϕ l (z).

We denote by B the unit ball of C n and by r(z) = n i=1 |z i | 2 -1 a defining function. Let α > -1 and let dV α (z) = (-r(z)) α dV (z). We denote by A 2 α the weighted Bergman space of B with respect the measure dV α (z) [START_REF] Krantz | Function theory of several complex variables[END_REF]. It is a Hilbert space and its reproducing kernel is given by B α (z, w) = c α (1 -zw) n+1+α . When α = 0, we denote by B(z, w) the usual Bergman kernel and by A 2 the Bergman space. we have Theorem 1.1. Let α > -1 and Φ(z) = (ϕ 1 (z), • • • , ϕ l (z)) be holomorphic. The kernel K α (z, w) = 1 -Φ(z)Φ(w) B α (z, w) is a reproducing kernel if and only if sup B |Φ(w)| ≤ 1.

The reproducing properties of kernels of type (1 -ϕ(z)ϕ(w))B(z, w) was studied by F. Beatrous and J. Burbea [START_REF] Beatrous | Interpolation problems for holomorphic functions[END_REF], for spaces of holomorphic functions on domains of C n and by S. Saitoh for abstract kernels of Hilbert spaces of functions [START_REF] Saitoh | Theory of reproducing kernel and its applications[END_REF]. In the case of he unit disc of C, when ϕ is finite Blaschke product, the characterization of the related Hilbert space was obtained by K. Zhu [START_REF] Zhu | Sub-Bergman Hilbert Spaces on the Unit Disk[END_REF] and [START_REF] Zhu | Sub-Bergman Hilbert Spaces on the Unit Disk II[END_REF] for Bergman space and by S. Sultanic for weighted Bergman spaces [START_REF] Sultanic | Sub-Bergman Hilbert spaces[END_REF]. The same questions was introduced by L. De Branges ang J. Rovnyak in the context of Hardy spaces [START_REF] Sarason | Sub-Hardy Hilbert spaces in the Unit Disk[END_REF]. The following theorem gives the Hilbert space associated to the kernel K α (z, w). We have

Theorem 1.2. Let α ≥ 1 and let Φ(z) = (ϕ 1 (z), • • • , ϕ l (z)) be holomorphic. The Kernel K α (z, w) is a reproducing kernel of A 2 α-1 if and only if there exists C > 0 such that 1-|Φ(z)| 2 ≤ C(-r(z)), z in B.
For -1 ≤ α < 0, we denote by B 2 α the diagonal Besov space. A holomorphic function f belongs to B 2 α if and only if (I + N )f is in A 2 α+1 , where N = n k=1 z k ∂ z k is the normal complex field [START_REF] Krantz | Function theory of several complex variables[END_REF]. We have

Theorem 1.3. Let Φ(z) = (ϕ 1 (z), • • • , ϕ l (z)) be holomorphic. If there exists C > 0 such that sup B |N ϕ i (w)| ≤ C i, 1 ≤ i ≤ l, then (1) If 0 < α < 1, K α (z, w) is a reproducing kernel of A 2 α-1 . (2) K 0 (z, w) is a reproducing kernel of the Hardy space H 2 . (3) If -1 < α < 0, K α (z, w) is a reproducing kernel of B 2 α .

Sub-Bergman spaces

Recall that the Bergman projection B α is the orthogonal projection from L 2 (dV α ) onto A 2 α . Given a bounded function ϕ the Toëplitz operator of symbol ϕ is defined by

T ϕ f = B α (ϕf ).
We consider the self-adjoint operator H given by

Definition 2.1. Let Φ(z) = (ϕ 1 (z), • • • , ϕ l (z)) be holomorphic. We set Hf = l i=1 ϕ i T ϕ i f f ∈ A 2 α .
We first estimate the norm of H. We have

Proposition 2.2. Let H as above. Then H = sup B |Φ(w)| 2 . Proof : Let f in A 2 α . Then Hf A 2 α ≤ l i=1 ϕ i B α (ϕ i f ) A 2 α ≤ sup B |Φ(w)| l i=1 B α (ϕ i f ) A 2 α . Since B α is a projection, B α (ϕ i f ) A 2 α ≤ ϕ i f A 2 α , then l i=1 B α (ϕ i f ) A 2 α ≤ sup B |Φ(w)| f A 2 α . Let f w (z) = B α (z, w) B α (w, w) , u in B. Then Hf w (z) = l i=1 ϕ i (z)ϕ i (w)f w (z) and Hf w , f w α = |Φ(w)| 2 , where •, • α is the inner product of A 2 α . The relation Hf w , f w α ≤ H f 2 A 2
α and the fact that f w A 2 α = 1 finish the proof. Proof of the theorem 1.1: Assume that sup B |Φ(w)| 2 ≤ 1. Then H is a contraction and the operator (I -H) 1/2 is well defined. It is a self-adjoint operator and it is well known that (I -H) 1/2 A 2 α is a sub-Hilbert space whose reproducing kernel is given by (I -H)B α (z, w) = K α (z, w) see [START_REF] Sarason | Sub-Hardy Hilbert spaces in the Unit Disk[END_REF], [START_REF] Zhu | Sub-Bergman Hilbert Spaces on the Unit Disk[END_REF] for details.

Assume now that K α (z, w) is a reproducing kernel, then for any finite sequences (w j ) K α (w j , w k ) is a definite positive matrix. Let w be a point in the ball, then

K α (w, w) = (1 -|Φ(w)| 2 ) B α (w, w) ≥ 0, then |Φ(w)| 2 ≤ 1.
Proof of the theorem 1.2: The proof involves the Douglas criterion [START_REF] Douglas | On majorization, factorization, and range inclusion of operators on Hilbert space[END_REF] we mention here the statement. In the definition, the relation AA * λBB * means that λBB * -AA * is a positive operator. We consider the coordinate functions Φ 0 (z) = (z 1 , • • • , z n ) and we denote by H 0 its associated operator. The kernel of the Hilbert space (I

-H 0 ) 1/2 A 2 α is given by (1 -zw) B α (z, w) = c α B α-1 (z, w). Then (I -H 0 ) 1/2 A 2 α = A 2
α-1 by the uniqueness of the reproducing kernel. If we suppose that K α (z, w) is a reproducing kernel of A 2 α-1 , from the Douglas criterion, there exists λ > 0 such that I -H

λ(I -H 0 ). Let f in A 2 α . Then (I -H)f, f α ≤ λ (I -H 0 )f, f α . Let w in B. The function f (z) = B α (z, w) gives 1 -|Φ(w)| 2 ≤ λ(-r(w)).
The sufficient conditions follows from the result :

Proposition 2.3. Let Φ(z) = (ϕ 1 (z), • • • , ϕ l (z)) be holomorphic. If 1 -|Φ(z)| 2 ≤ C(-r(z)), there exists λ > 0 such that 1 λ (I -H 0 ) I -H λ(I -H 0 ).
Proof of the proposition 2.3 : Let α ≥ 1. The right part of the "inequality" follows from two technical lemmas :

Lemma 2.4. There exists C > 0 such that for f in A 2 α , (I -H)f, f α ≤ C f 2 A 2 α+1 . Proof : Let f in A 2 α . Then (1) (I -H)f, f α = B B K α (z, w)f (w)f (z)(-r(w)) α (-r(z)) α dV (w)dV (z).
Let K(z, w) = K α (z, w)(-r(w)) 1/2+α/2 (-r(z)) 1/2+α/2 and notice by K the integral operator given by ( 2)

Kg(z) = B K(z, w)g(w)dV (w), g ∈ L 2 (B)
Assume for the moment that K is bounded in L 2 (B), the Chauchy-Schwarz inequality gives

(I -H)f, f α ≤ K(f (-r(•)) 1/2+α/2 ) L 2 (B) f A 2 α+1 ≤ C f 2 A 2 α+1
.

It remains to study the boundedness of K. This follows from the Schur criterion [START_REF] Zhu | Operator Theory in Function Spaces[END_REF]. We have only to prove that there exists

C > 0 such that K(z, w) = C |1 -zw| n+1 . Recall that, [4] prop 8.1.4., (3) |1 -Φ(z)Φ(w)| 2 (1 -|Φ(z)| 2 )(1 -|Φ(w)| 2 ) ≤ |1 -zw| 2 (-r(z))(-r(w))
.

Therefore there exists C > 0 such that 1 -Φ(z)Φ(w) ≤ C|1 -zw| then |K(z, w)| has the desired pointwise estimate. We finish the proof of the proposition with the following result :

Lemma 2.5. Let α > -1. There exists C > 0 such that 1 C f 2 A 2 α+1 ≤ (I -H 0 )f, f α ≤ C f 2 A 2 α+1 , f ∈ A 2 α . Proof : The proof is direct. Let f (z) = m a m z m . Recall that z m 2 A 2 α = c α Γ(m 1 + 1) • • • Γ(m n + 1) Γ(|m| + n + 1 + α)
,

where |m| = m 1 + • • • + m n [4]. Let us remark that (1 -zw)B α (z, w) = cB α-1 (z, w). Then (I -H 0 )f (z) = c B B α-1 (z, w)f (w)(-r(w)) α dV (w) = c m a m z m |m| + n + α . and (I -H 0 )f, f α = c m |a m | 2 Γ(m 1 + 1) • • • Γ(m n + 1) (|m| + n + α)Γ(|m| + n + 1 + α) .
Notice that

f 2 A 2 α+1 = c m |a m | 2 z m 2 A 2 α+1 = c m |a m | 2 Γ(m 1 + 1) • • • Γ(m n + 1) Γ(|m| + n + 2 + α) .
The equivalence follows from the relation Γ(z + 1) = zΓ(z).

For the left part of the "inequality" (of the proposition 2.3), we consider the auxiliary operator

H given by Hf = B α (|Φ| 2 f ), α > -1. Let us remark that H ≤ sup B |Φ(w)| 2 and Hf, f α = l i=1 ϕ i f, B α (ϕ i f ) α ≤ l i=1 ϕ i f, ϕ i f α = Hf, f α , then (4) 
I -H I -H

We have the following result :

Lemma 2.6. Let H as above. There exists λ > 0 such that I -H 0 λ(I -H).

Proof :

Let us remark that 1 -|Φ(0)| 2 ≤ 2|1 -Φ(z)Φ(0)|, the relation (3) gives 1 1 -|Φ(z)| 2 ≤ 4 1 -|Φ(0)| 2 |1 -Φ(z)Φ(0)| 2 (1 -|Φ(z)| 2 )(1 -|Φ(0)| 2 ) ≤ C (-r(z))
.

Then -r(z) ≤ C(1 -|Φ(z)| 2 ) and f 2 A 2 α+1 ≤ C (I -H)f, f α .
It remains to apply the lemma 2.5 to achieve the proof.

Proof of the theorem 1.3 : The proof is similar for 0 ≤ α ≤ 1 but require a minor modification to use the Schur criterion. We recall that for u an v holomorphic functions [START_REF] Rudin | Function theory in the Unit Ball of C n[END_REF],

B u(w)v(w)(-r(w)) α dV (w) = B (N + (n + 1 + α)I)u(w)v(w)(-r(w)) α+1 dV (w) = B u(w)(N + (n + 1 + α)I)v(w)(-r(w)) α+1 dV (w), (5) 
In this case the kernel of (I -H 0 ) 1/2 A 2 α is given by (1 -zw) B α (z, w) = cB α-1 (z, w) thus (I -H 0 ) 1/2 A 2 α is the weighted Bergman space A 2 α-1 when 0 < α < 1, the Hardy space H 2 for α = 0 and the Besov space B α for -1 < α < 0.

For f in A 2 α , (I -H)f (z) = B (N + (n + 1 + α)I)K α (z, w)f (w)(-r(w)) α+1 dV (w)
and the relation ( 1) becomes

(I -H)f, f α = B (N + (n + 1 + α)I)(I -H)f (z)f (z)(-r(z)) α+1 dV (z) Let K(z, w) = (-r(z)) α/2+1/2 (-r(w)) α/2+1/2 × (N + (n + 1 + α)I)(N + (n + 1 + α)I)K α (z, w)
and K be the integral operator given by (2). Then

(I -H)f, f α = B K(f (•)(-r(•)) 1/2 )(z)f (z)(-r(z)) 1/2 dV (z). K(z, w) = 1 s,t=0 (I + (n + 1)N ) s (I + (n + 1)N ) t (1 -Φ(z)Φ(w)) ×(I + (n + 1)N ) 1-s (I + (n + 1)N ) 1-t B α (z, w).
Then there exists C > 0 such that

|K(z, w)| ≤ C(-r(z)) α/2+1/2 (-r(w)) α/2+1/2 ( |1 -Φ(z)Φ(w)| |1 -zw| n+1+α+2 + i |N ϕ i (w)| + i |N ϕ i (z)| |1 -zw| n+1+α+1 + ( i |N ϕ i (z)|) ( i |N ϕ i (w)|) |1 -zw| n+1+α
) .

Recall 

2 A 2 α+1.

 22 that |1 -Φ(z)Φ(w)| ≤ C|1 -zw| and sup B |N ϕ i (w)| ≤ C, then |K(z, w)| ≤ C(-r(z)) 1/2 (-r(w)) 1/2 |1 -zw| n+2 .Let us remark that (-r(z)) and (-r(w)) are bounded by a constant times |1 -zw|. Then|K(z, w)| ≤ C |1 -zw| n+1 . The operator K is bounded in L 2 (B) and the relation (1) gives (I -H)f, f α ≤ C f The lemma 2.5 gives I -H ≤ λ(I -H 0 ).The theorem 1.2 and 1.3 characterize the sub-Hilbert space (I -H) 1/2 (A α ), this space is the analogue for the unit ball of C n of the complementary space. The space (I -H) 1/2 (A α ) is also a complementary space. It is a consequence of the relation (4) and the lemma 2.6 that there exists C > 0 such that 1C (I -H 0 ) I -H I -HUnder the condition on Φ given in the theorem 1.2 and theorem 1.3, we have (I -H) 1/2 (A α ) = (I -H) 1/2 (A α ).