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Abstract

Motivated by many recent works (by L. Charles, V. Guillemin, T. Paul,
J. Sjöstrand, A. Uribe, San Vũ Ngo.c, S. Zelditch and others) on the semi-
classical Birkhoff normal forms, we investigate the structure of the group
of automorphisms of the graded semi-classical Weyl algebra. The answer is
quite similar to the Theorem of Duistermaat and Singer for the usual alge-
bra of pseudo-differential operators where all automorphisms are given by
conjugation by an elliptic Fourier Integral Operator (a FIO). Here what re-
places general non-linear symplectic diffeomeorhisms is just linear complex
symplectic maps, because everything is localized at a single point1.

1 The result

Let W = W0 ⊕W1 ⊕· · · be the semi-classical graded Weyl algebra (see Section 2
for a definition) on R

2d. Let us define Xj := Wj ⊕Wj+1 ⊕ · · · . We want to prove
the:

Theorem 1.1 There exists an exact sequence of groups

0 → I →1 Aut(W ) →2 SymplC(2d) → 0

where

• SymplC(2d) is the group of linear symplectic transformations of C2d = R2d⊗
C

∗Institut Fourier, Unité mixte de recherche CNRS-UJF 5582, BP 74, 38402-Saint Martin
d’Hères Cedex (France); yves.colin-de-verdiere@ujf-grenoble.fr

1Thanks to Louis Boutet de Monvel for his comments and suggestions, in particular the
proofs of Lemmas 6.1 and 6.2. As he said, the main result is not surprising!
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• Aut(W ) is the group of automorphisms Φ of the semi-classical graded2 Weyl
algebra preserving ~

• I is the group of “inner” automorphisms ΦS of the form ΦS = exp(iadS/~),
i.e. ΦS(w) = exp(iS/~) ⋆ w ⋆ exp(−iS/~) as a formal power series, with
S ∈ X3

• The arrow →2 is just given from the action of the automorphism Φ on
W1 =

(

R2d
)⋆

⊗ C modulo X2

The proof follows [3] and also the semi-classical version of it by H. Christianson
[2]. This result is implicitly stated in Fedosov’s book [4] in Chapter 5, but it could
be nice to have an direct proof in a simpler context. The result is a consequence
of Lemmas 4.1, 6.1 and 6.2.

2 The Weyl algebra

The elements of the “Weyl algebra” are the formal power series in ~ and (x, ξ)

W = ⊕∞n=0Wn

where Wn is the space of complex valued homogeneous polynomials in z = (x, ξ)
and ~ of total degree n where the degree of ~jzα is 2j+|α|. The Moyal ⋆−product

a ⋆ b :=

∞
∑

j=0

1

j!

(

~

2i

)j

a

(

d
∑

p=1

←

∂ ξp
~∂xp

−
←

∂ xp
~∂ξp

)j

b = ab +
~

2i
{a, b} + · · ·

(where {a, b} is the Poisson bracket of a and b) gives to W the structure of
a graded algebra: we have Wm ⋆ Wn ⊂ Wm+n and hence, for the brackets,
i
~
[Wm, Wn]⋆ ⊂ Wm+n−2.

The previous grading of W is obtained by looking at the action of W on the
(graded) vector space S of symplectic spinors (see [5]): if F ≡

∑∞
j=0

~jFj(X) with

Fj ∈ S(R), we define f~(x) = ~−d/2F (x/~) whose micro-support is the origin. W
acts on S in a graded way as differential operators of infinite degree: if w ∈ W ,
w.f = OP~(w)(f).

3 A remark

We assumed in Theorem 1.1 that ~ is fixed by the automorphism. If not, the
symplectic group has to be replaced by the homogeneous symplectic group: the
group of the linear automorphisms M of (R2d, ω) which satisfies M⋆ω = cω. We
then have to take into account a multiplication of ~ by c. For c = −1, it is a
semi-classical version of the transmission property of Louis Boutet de Monvel.

2“graded” means that Φ(Wn) ⊂ Wn ⊕ Wn+1 ⊕ · · ·
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4 Surjectivity of the arrow →2

Lemma 4.1 The arrow →2 is surjective.

Proof.–

Let us give χ ∈ SymplC(2d). The map a → a◦χ is an automorphism
of the Weyl algebra: the Moyal formula is given only in terms of the
Poisson bracket.

�

5 The principal symbols

Let Φ be an automorphism of W . Then Φ induces a linear automorphism Φn

of Wn: if w = wn + r with wn ∈ Wn and r ∈ Xn+1 and Φ(w) = w′n + r′ with
w′n ∈ Wn and r′ ∈ Xn+1, Φn(wn) := w′n is independent of r. The polynomial wn

is the principal symbol of w ∈ Xn. We have Φm+n(wm ⋆ wn) = Φm(wm) ⋆ Φn(wn).
Hence Φn is determined by Φ1 because the algebra W is generated by W1 and
~. The linear map Φ1 is an automorphism of the complexified dual of R2d. Let
us show that it preserves the Poisson bracket and hence is the adjoint of a linear
symplectic mapping of C2d. We have:

Φ([w, w′]⋆) = [Φ(w), Φ(w′)]⋆ .

By looking at principal symbols, for w, w′ ∈ X1, we get

{Φ1(w), Φ1(w
′)} = {w, w′} .

6 Inner automorphisms

The kernel of →2 is the group of automorphisms Φ which satisfy Φn = Id for all
n, i.e. for any wn ∈ Wn

Φ(wn) = wn mod Xn+1 .

The following fact is certainly well known:

Lemma 6.1 If Φ ∈ ker(→2), Φ = exp(D) where D : Wn → Xn+1 is a derivation
of W .

Proof [following a suggestion of Louis Boutet de Monvel]– We define Φs for s ∈ Z.
Let Φs

p,n : Wn → Wn+p be the degree (n + p) component of (Φs)n : Wn → Xn.
Then Φs

p,n is polynomial w.r. to s. This allows to extend Φs to s ∈ R as

a 1-parameter group of automorphisms. We put D = d
ds

(Φs)|s=0
. We have

Φs = exp(sD). We deduce that D is a derivation. �

We need to show the:
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Lemma 6.2 Every derivation D of W sending W1 into X2 is an inner derivation
of the form

Dw =
i

~
[S, w]

with S ∈ X3.

Proof [following a suggestion of Louis Boutet de Monvel]–
Let (ζk) the basis of W1 dual to the canonical basis (zk) for the star bracket,

i.e. satisfying [ζk, zl] = ~

i
δk,l. We have [ζk, w] = ~

i
∂w
∂zk

. Put yk = Dζk ∈ X2. As

the brackets [ζk, ζl] are constants, we have: [Dζk, ζl] + [ζk, Dζl] = 0, or ∂yk/∂zl =
∂yl/∂zk. There exists an unique S vanishing at 0 so that:

[S, ζk] = −
∂S

∂zk

=
~

i
yk .

Hence D = (i/~)[S, .]. Because yk ∈ X2, S is in X3. �

7 An homomorphism from the group G of ellip-

tic FIO’s whose associated canonical transfor-

mation fixes the origin into Aut(W )

Each w ∈ W is the Taylor expansion of a Weyl symbol a ≡
∑∞

j=0
~jaj(x, ξ) of a

pseudo-differential operator â. Let us give an elliptic Fourier Integral Operator U
associated to a canonical transformation χ fixing the origin. The map â → U−1âU
induces a map F from S0 into S0 which is an automorphism of algebra (for the
Moyal product).

Lemma 7.1 The Taylor expansion of F (a) only depends on the Taylor expansion
of a.

This is clear from the explicit computation and the stationary phase expansions.
As a consequence, F induces an automorphism F0 of the Weyl algebra graded

by powers of ~.

Lemma 7.2 F0 is an automorphism of the algebra W graded as in Section 2.

Proof.–

We have to check the F0(Wn) ⊂ Xn. Because F0 preserves the
⋆−product, it is enough to check that F0(W1) ⊂ X1. It only means
that the (usual) principal symbol of F (a) vanishes at the origin if a
does. It is consequence of Egorov Theorem.
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Summarizing, we have constructed a group morphism α from the group G of
elliptic FIO’s whose associated canonical transformation fixes the origin in the
group Aut(W ).

Definition 7.1 An automorphism Φ of W is said to be real (Φ ∈ AutR(W )) if
the mapping Φ mod(~W ) is real.

Theorem 7.1 The image of the group G by the homomorphism α is AutR(W ).
In particular, any Φ ∈ AutR(W ) can be “extended” to a semi-classical Fourier
Integral Operator.

Proof.–

The image of α is in the sub-group AutR(w) because the canonical
transformation χ is real.

We have still to prove that the image of α is AutR(W ). Using the
Theorem 1.1 and the metaplectic representation, it is enough to check
that the automorphism exp(iadS/~) comes from an FIO. Let H be a
symbol whose Taylor expansion is S (the principal symbol of H is a

real valued Hamiltonian). The OIF U = exp
(

iĤ/~

)

will do the job.

�
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