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Introduction

Given K/F a quadratic extension of p-adic fields, we denote by σ the non trivial element of the Galois group of K over F . We denote by η K/F the character of order 2 of F * , trivial on the set of norms of K * .

A smooth representation of GL(n, K) is said to be distinguished if it admits on its space a nonzero linear form, which is invariant under GL(n, F ). The pair (GL(n, K), GL(n, F )) is known to be a generalized Gelfand pair, which means that for an irreducible representation (π, V π ) of GL(n, K), the space of GL(n, F )-invariant linear forms on V π is of dimension at most one. The unitary distinguished representations are the natural space which supports the Plancherel measure of the symmetric space GL(n, F )\GL(n, K). Hence their understanding is related to harmonic analysis on GL(n, F )\GL(n, K).

We classify here distinguished generic representations of GL(n, K), in terms of inducing discrete series representations. More precisely we prove the following result.

Theorem 4.2. Let π be a generic representation of the group GL(n, K), obtained by normalized parabolic induction of quasi-square-integrable representations ∆ 1 , . . . , ∆ t . It is distinguished if and only if there exists a reordering of the ∆ i 's, and an integer r between 1 and t/2, such that we have ∆ σ i+1 = ∆ ∨ i for i = 1, 3, .., 2r -1, and ∆ i is distinguished for i > 2r. Distinguished representations of GL(n, K) are also related by a conjecture of Flicker and Rallis, to the base change theory of representations of a unitary group (see for example [A-R]). The main result of this paper could perhaps reduce the proof of this conjecture for generic distinguished representations of GL(n, K), to the case of discrete series representations.

Generic distinguished representations are related to the analytic behaviour of meromorphic functions, called Asai L-functions associated with generic representations. The basic theory of the Asai L-function of a generic representation π of GL(n, K), denoted by L K F (π) and defined as the gcd of functions obtained as meromorphic extension of Rankin-Selberg integrals, such as its functional equation, has first been developed by Flicker in [F1] and [F3].

Then in [K], Kable proves that if the Asai L-function L K F (π) of a discrete series representation π admits a pole at zero, then the representation π is distinguished. This, with the equality of the product of the Asai L-functions of π and ηπ (for a character η of K * extending η K/F ), and of the classical L-function of the pair (π σ , π ∨ ), obtained by a global-local method, allows him to prove the so called Jacquet conjecture for discrete series representations. This result states that a discrete series representation π of GL(n, K) which is Galois autodual (i.e. π ∨ = π σ ), is either distinguished or η K/F -distinguished. This result is specified in [A- K-T], where it is shown that the preceding (either/or) is exclusive, by first proving that the Asai L-function of a tempered distinguished representation has a pole at zero.

For non discrete series representation, the correct statement is that of Theorem 4.2. Actually this theorem can be seen as a generalization of Jacquet's conjecture for discrete series representations, as it says that a generic representation of GL(n, K) is Galois autodual if and only if it is parabolically induced from three representations, one that is distinguished but not η K/Fdistinguished, one that is distinguished and η K/F -distinguished, and one that is distinguished but not η K/F -distinguished. Among these, the distinguished are those with purely η K/F -distinguished part equal to zero. The last step before Theorem 4.2, consisting of showing that the representations described in the theorem are indeed distinguished is the main result of [M4].

Concerning Rankin-Selberg type Asai L-functions, a definitive statement relating their poles and distinction is obtained in [M2], where it is proved that a representation π is distinguished, if and only if its Asai L-function admits a so called (in the terminology of [C-P]) exceptional pole at zero. F (ρ). The second, called the Langlands-Shahidi method, is introduced in [Sh]. We denote by L K,U F (π) the meromorphic function obtained by this process, the study of its poles is this time related to the fact of knowing when a representation π is obtained by base change lift from a unitary group (see [Go]). It is conjectured that these three functions are actually the same (cf. [He], [K], [A-R]). Henniart proved in [He] that the functions L K,U F (π) and L K F (ρ) are equal for every irreducible representation π. Anandavardhanan and Rajan proved in [A-R] that the functions L K F (π) and L K,U F (π) are equal for π in the discrete series of GL(n, K).

In [M3], which can be used as a survey for local Rankin-Selberg type Asai L-functions, Theorem 4.2 is stated as a conjecture. It is then showed using a method of Cogdell and Piatetski-Shapiro and the known equality of L K F (π) and L K F (ρ) for discrete series representations, that the theorem implies the equality of L K F (π) and L K F (ρ) for generic representations. Hence we have the following result.

Theorem 4.3. Let π be a generic representation of the group GL(n, K), and let ρ be the representation of dimension n of the Weil-Deligne group W ′ K of K, corresponding to π through Langlands correspondence. The following equality of L-functions is satisfied:

L K F (π, s) = L K F (ρ, s).
Now the main tool for the proof of Theorem 4.2, classical in this situation, is Mackey theory. For instance the case of principal series representations is treated in section 6 of [JLR].

A generic representation π of the group GL(n, K), is obtained by normalized parabolic induction of a discrete series representation ∆ = ∆ 1 ⊗ • • • ⊗ ∆ t of a standard Levi subgroup of a parabolic subgroup P (K) of GL(n, K). Calling R a set of representatives of the double classes P (K)\GL(n, K)/GL(n, F ), the restriction to GL(n, F ) of the representation π has a factor series, with factors being induced representations of ∆ |P (K)∩uGL(n,F )u -1 to the group uGL(n, F )u -1 , for some u in R. If the representation π is GL(n, F )-distinguished, then it is at least the case for one of the factors. But using Frobenius reciprocity law, such a factor is distinguished, if and only if the representation ∆ is itself χ-distinguished by P (K) ∩ uGL(n, F )u -1 fore some character χ. Studying the structure of this subgroup, implies that the ∆ i 's must be of the requested form. The group structure of P (K) ∩ uGL(n, F )u -1 was studied in [JLR] when the element uu -σ (which is actually an involution in S n ) normalizes the standard Levi subgroup of P . Here we reduce the general case to this particular case.

The first part of Section 1 is about definitions and notations of the basic objects we use. The second part concerns itself with results of Bernstein and Zelevinsky about classification of discrete series representations in terms of segments, and the computation of their Jacquet modules. A set of representatives R of the double classes P (K)\GL(n, K)/GL(n, F ) for a standard parabolic subgroup P (K) of GL(n, K) was already described in [JLR]. In Section 2, we give a geometric way of obtaining this set, which has its advantage. We then show how to reduce the study of the group structure of P (K) ∩ uGL(n, F )u -1 to the admissible case treated in [JLR]. We end by computing the modulus character of this group. We eventually prove Theorem 4.2 in the last section.

Preliminaries

Notations and definitions

We fix until the end of this paper a local field F of characteristic zero. We fix a quadratic extension K of F .

If G is a group acting on two vector spaces V and V ′ , then Hom G (V, V ′ ) designates the space of G-equivariant morphisms from V to V ′ . If E is a finite extension of F , we denote by v E the discrete valuation of E, which verifies that v E (π E ) is 1 if π E is a prime element of E. We denote by q E the cardinality of the residual field of E. We denote by | | E the absolute value of E defined by |x| E = q -vE (x) E , for x in E. We denote by R E the valuation ring of E, and by P E the maximal ideal of R E . Finally we denote by W E the Weil group of E (cf. [T]), and by W ′ E the Weil-Deligne group of E. The group W ′ E is the semi-direct product W E ⋊ SL(2, C), with W E acting by its quotient group q Z E on SL(2, C). A Frobenius element in W E acts on SL(2, C) is by conjugation by the matrix q E 0 0 1 .

Let G be an affine algebraic group defined over the field F . If E is an extension of F , we denote by G(E) the group of the E-points of G. Such a group is locally compact and totally disconnected, we will call it an l-group.

Let n be a positive integer, we denote by M n = M n ( F ) the additive group of n × n matrices with entries in F , and we denote by G n the general linear group GL(n, F ) of invertible matrices of M n ( F ). If M belongs to M n , we denote its determinant by det(M ). We call partition of a positive integer n, a family n = (n 1 , . . . , n t ) of positive integers (for a certain t in N -{0}), such that the sum n 1 + • • • + n t is equal to n. To such a partition, we associate an algebraic subgroup of G n denoted by P n, given by matrices of the form

       g t       
, with g i in G ni for i between 1 and t. We call it the standard parabolic subgroup associated with the partition n. We call parabolic subgroup any conjugate of a standard parabolic subgroup. We denote by N n its unipotent radical subgroup, given by the matrices

   I n1 ⋆ ⋆ . . . ⋆ I nt   
and by M n its standard Levi subgroup given by the matrices

   g 1 . . . g t   
with the g i 's in G ni . The group P n identifies with the semidirect product N n ⋊ M n.

For n = (1, . . . , 1), we denote by B n the Borel subgroup P n, and by T n its standard Levi subgroup. The Lie algebra of Lie(G n ) decomposes as Lie(T n ) ⊕ (⊕ α∈Φ Lie(N α )) under the adjoint action of T n . The group T n acts on each one-dimensional space Lie(N α ) by a non-trivial character α, and by the trivial character on Lie(T n ). The set Φ is the root system of G n with respect to T n . The group N α is the unipotent subgroup of G n with Lie algebra Lie(N α ). We denote by Φ + the roots α such that N α ⊂ B n and by Φ -the other roots. We denote by Φ M or Φ n the set of roots α with

N α ⊂ M for M = M n, by Φ + M and Φ - M the intersections Φ M ∩ Φ + and Φ M ∩ Φ -respectively. The quotient W = N Gn (T n )/T n of the normalizer of T n in G n by T n , is called the Weyl group of G n ,
it identifies with the symmetric group S n , and permutes the roots in Φ. The quotient W M = N Mn (T n )/T n of the normalizer of T n in M n by T n , is called the Weyl group of M n, it identifies with the product group t i=1 S n i , and permutes the roots in Φ M .

Let G be an l-group (i.e. locally compact totally disconnected), we denote by d G g or simply dg if the context is clear, a left Haar measure G. For x in G, we denote by δ G (x) the positive number defined by the relation

d g (gx) = δ -1 G (x)d g (g)
. The modulus character ∆ G defines a morphism from G into R >0 . We denote by δ G (which we also call modulus character) the morphism from

G into R >0 defined by x → ∆ G (x -1 ).
Let G be an l-group, and H a subgroup of G, a representation (π, V ) of G is said to be smooth if for any vector v of the vector space V , there is an open subgroup U v of G stabilizing v through π. We denote by V H the subspace of fixed points of V under H. The category of smooth representations of G is denoted by Alg(G). If (π, V ) is a smooth representation of G, we denote by π ∨ its dual representation in the smooth dual space Ṽ of V . We will only consider smooth complex representations of l-groups.

Definition 1.1. Let G be an l-group, H a closed subgroup of G, and (π, V ) a representation of G. If χ is a character of H, we say that the representation π is χ-distinguished under H, if it admits on its space a nonzero linear form L, verifying

L(π(h)v) = χ(h)L(v) for all v in V and h in H. If χ = 1, we say H-distinguished instead of 1-distinguished. We omit "H-" if the context is clear.
If ρ is a complex representation of H in V ρ , we denote by C ∞ (H\X, ρ, V ρ ) the space of functions f from X to V ρ , fixed under the action by right translation of some compact open subgroup U f of G, and which verify f (hx) = ρ(h)f (x) for h ∈ H, and x ∈ X. We denote by

C ∞ c (H\X, ρ, V ρ ) the subspace of functions with support compact modulo H of C ∞ (H\X, ρ, V ρ ). We denote by Ind G H (ρ) the representation by right translation of G in C ∞ (H\G, ρ, V ρ ) and by ind G H (ρ) the representation by right translation of G in C ∞ c (H\G, ρ, V ρ ). We denote by Ind ′ G H (ρ) the normalized induced representation Ind G H ((∆ G /∆ H ) 1/2 ρ) and by ind ′ G H (ρ) the normalized induced representation ind G H ((∆ G /∆ H ) 1/2 ρ).
Let n be a positive integer, and n = (n 1 , . . . , n t ) be a partition of n, and suppose that we have a representation (ρ i , V i ) of G ni (K) for each i between 1 and t. Let ρ be the extension to

P n of the natural representation ρ 1 ⊗ • • • ⊗ ρ t of M n ≃ G n1 (K) × • • • × G nt (K), trivial on N n. We denote by ρ 1 × • • • × ρ t the representation ind ′ Gn(K) Pn(K) (ρ) = Ind ′ Gn(K) Pn(K) (ρ).

Segments and quasi-square integrable representations

From now on we assimilate representations to their isomorphism classes.

In this subsection, we recall results of Bernstein and Zelevinsky about quasi-square-integrable representations, more precisely their classification in terms of segments associated to supercuspidal representations, and how to compute their Jacquet modules.

If π is an irreducible representation of G n (K), one denotes by c π its central character. We recall that an irreducible representation of G n (K) is called supercuspidal if all its Jacquet modules associated to proper standard Levi subgroups are zero, which is equivalent to the fact that it has a coefficient with support compact modulo the center Z n (K) of the group G n (K).

An irreducible representation π of the group G n (K) is called quasi-square-integrable, if there exists a positive character χ of the multiplicative group K * , such that one of the coefficients g → c(g) of π verifies that c(g)χ(det(g)) is a square-integrable function for a Haar measure of G n (K)/Z n (K). One says that the representation π is square-integrable (or belongs to the discrete series of G n (K)) if one can choose χ to be trivial. If ρ is a supercuspidal representation of G r (K) for a positive integer r, one denotes by ρ| | K the representation obtained by twist with the character | det( )| K . In general, if E is an extension of F , and χ is a character of E * , we will still denote by χ the character χ • det. We call segment a list ∆ of supercuspidal representations of the form

∆ = [ρ| | l-1 K , ρ| | l-2 K , . . . , ρ]
for a positive integer l. We call length of the segment the integer rl. We have the following theorem (Theorem 9.3 of [Z]) that classifies quasi-square integrable representations in terms of segments.

Theorem 1.1. Let ρ be a supercuspidal representation of G r (K) for a positive integer r. The

representation ρ × ρ| | F × • • • × ρ| | l-1 F of G rl (K) is reducible, with a unique irreducible quotient that we denote by [ρ| | l-1 K , ρ| | l-2 K , . . . , ρ]. A representation ∆ of the group G n (K)
is quasi-squareintegrable if and only if there is r ∈ {1, . . . , n} and l ∈ {1, . . . , n} with lr = n, and ρ a supercuspidal representation of G r (K), such that the representation ∆ is equal to

[ρ| | l-1 K , ρ| | l-2 K , . . . , ρ].

The representation ρ is then unique.

A representation of this type is square-integrable if and only if it is unitarizable, or equivalently if and only if ρ| | (l-1)/2 F is unitarizable (i.e. its central character is unitary). We say that two segments are linked if none of them is a subsegment of the other, but their union is still a segment. Now we allow ourselves to call segment a quasi-square-integrable representation, and to denote such a representation by its corresponding segment. We will also use the following useful notation: if ∆ 1 and ∆ 2 are two disjoint segments, which are linked, and such that ∆ 1 precedes ∆ 2 (i.e. the segment ∆ 1 is of the form

[ρ 1 | | l1-1 K , ρ 1 | | l1-2 K , . . . , ρ 1 ], the segment ∆ 2 is of the form [ρ 2 | | l2-1 K , ρ 1 | | l2-2 K , . . . , ρ 2 ], with ρ 1 = ρ 2 | | l2 K ), we denote by [∆ 1 , ∆ 2 ] the segment [ρ 1 | | l1-1 K , . . . , ρ 2 ].
Let P be a standard parabolic subgroup of G n (K), M its standard Levi subgroup, and let P ′ be a standard parabolic subgroup of M , with standard Levi subgroup M ′ , and unipotent radical N ′ . We recall that the normalized Jacquet module of a representation (ρ, V ) of M , associated to M ′ , which we denote by r M ′ ,M (ρ), is the representation of M ′ on the space V /V (N ′ ) (where

V (N ′ ) is the subspace of V generated by vectors of the form v -π(n ′ )v for v in V and n ′ in N ′ ), defined by r M ′ ,M (ρ)(m ′ )(v + V (N ′ )) = δ -1/2 M ′ ρ(m ′ )v + V (N ′ ).
The following proposition (Proposition 9.5 of [Z]), explains how to compute normalized Jacquet modules of segments.

Proposition 1.1. Let ρ a supercuspidal representation of G r (K) for a positive integer r. Let ∆ be the segment

[ρ| | l-1 K , ρ| | l-2 K , . . . , ρ],
for a positive integer l. Let M be a standard Levi subgroup of G lr (K) associated with a partition (n 1 , . . . , n t ) of lr. The representation r M,G (∆) is zero, unless (n 1 , . . . , n t ) admits (r, . . . , r) l times as a sub partition, in

which case ∆ is of the form [∆ 1 , . . . , ∆ t ], with ∆ i of length n i , and r M,G (∆) is equal to the tensor product ∆ 1 ⊗ • • • ⊗ ∆ t . 2 Double classes P (K)\G n (K)/G n (F )
Let n be a partition (n 1 , . . . , n t ) of a positive integer n, we denote by P the standard parabolic subgroup P n(K ) of G = G n (K), by M its standard Levi subgroup, by B the group B n (K), by T the group T n (K). By abuse of notation, the group N α will be N α (K). We denote by H the group G n (F ). We study in first place the double classes of H\G/P . This has already been done in Section 6 of [JLR] and one can check that the representatives we obtain are the same they obtain (see Remark 2.1). This set is described in [JLR] as the involutions in the set of left and right W M -reduced elements of W . However we give a more geometric proof in which every representative u of the double classes of H\G/P comes naturally equipped with a sub-partition s of (n 1 , . . . , n t ), or equivalently a standard parabolic subgroup P s of G contained in P . This new standard parabolic subgroup will have the nice property that the representative u is P s -admissible (in the terminology of [JLR], see Definition 1 of section 6). This will then allow us to reduce to the study of the group P ∩ uHu -1 to that of the group P s ∩ uHu -1 , which has been carried out in [JLR].

We identify the quotient space G/P with a flag manifold given by sequences (called n-flags)

0 ⊂ V 1 ⊂ ... ⊂ V t-1 ⊂ V = K n , where V j is a vector subspace of V , of dimension n 1 + • • • + n j .
Studying the double classes of H\G/P , is then equivalent to understand the H-orbits of the flag manifold G/P . This is done in the following theorem.

Theorem 2.1. The H-orbits of the flag manifold G/P , are characterized by the integers dim(

V i ∩ V σ j ), for 1 ≤ i ≤ j ≤ t -1, which means that two n-flags D = 0 ⊂ V 1 ⊂ ... ⊂ V t-1 ⊂ V and D ′ = 0 ⊂ V ′ 1 ⊂ ... ⊂ V ′ t-1 ⊂ V are in the same orbit under H, if and only if dim(V i ∩ V σ j ) = dim(V ′ i ∩ V ′ σ j ) for 1 ≤ i ≤ j ≤ t -1. Proof.
We first state the following classical lemma.

Lemma 2.1. Let V = K n , and V F = F n ⊂ V , the F -subspace of vectors of V fixed by σ. A vector subspace V ′ of V verifies that V ′ = V ′σ , if and only if one can choose a basis of V ′ in V F , in which case one says that V ′ is defined over F . Any subspace defined over F , has a supplementary subspace defined over F . Now we prove a second lemma about the filtration of V in terms of V i ∩ V σ j for V i and V j in the set of subspaces defining a n-flag. Let D be a n-flag, given by the sequence

D = 0 ⊂ V 1 ⊂ ... ⊂ V t-1 ⊂ V . We set V 0 = 0 and V t = V . For 1 ≤ i ≤ j ≤ t, we denote by S i,j a supplementary space of V i ∩ V σ j-1 + V i-1 ∩ V σ j in V i ∩ V σ j . If i = j,
we add the condition that the supplementary space S i,i we choose is defined over F , which is possible according to Lemma 2.1. Eventually, for 1 ≤ i ≤ j ≤ t, we denote by S j,i , the space S σ i,j , which is a supplementary space of

V j ∩ V σ i-1 + V j-1 ∩ V σ i in V j ∩ V σ i .
Lemma 2.2. With these notations, if (i, j) belongs to {1, . . . , t} 2 , the space

V i-1 + V i ∩ V σ j is equal to the sum (S 1,1 ⊕ . . . ⊕ S 1,t ) ⊕ . . . ⊕ (S i-1,1 ⊕ . . . ⊕ S i-1,t ) ⊕ (S i,1 ⊕ . . . ⊕ S i,j ).
In particular, the space V i is equal to the direct sum

(S 1,1 ⊕ . . . ⊕ S 1,t ) ⊕ . . . ⊕ (S i,1 ⊕ . . . ⊕ S i,t ). Proof. Let x belong to V i-1 + V i ∩ V σ j , then one can write x = x i-1 + y i,j with x i-1 in V i-1 and y i,j in V i ∩ V σ j . But then y i,j = y i-1,j + y i,j-1 + s i,j with y i-1,j in V i-1 ∩ V j σ , y i,j-1 in V i ∩ V j-1
σ and s i,j in S i,j . Hence we have

x = x ′ i-1 + y i,j-1 + s i,j , with x ′ i-1 = x i-1 + y i-1,j belonging to V i-1 . So x belongs to (V i-1 + V i ∩ V σ j-1 ) + S i,j
. But by definition of S i,j , the preceding sum is actually direct, i.e. x belongs to (V i-1 + V i ∩ V σ j-1 ) ⊕ S i,j . We thus proved that

V i-1 + V i ∩ V j σ = (V i-1 + V i ∩ V σ j-1 ) ⊕ S i,j
, and the proof ends by induction.

Getting back to the proof of Theorem 2.1, it is obvious that if two n-flags D and D ′ are in the same H-orbit, then one must have dim(

V i ∩ V σ j ) = dim(V ′ i ∩ V ′ σ j ) for 1 ≤ i ≤ j ≤ t. Conversely, suppose that two n-flags D and D ′ , satisfy the condition dim(V i ∩V σ j ) = dim(V ′ i ∩V ′ σ j ) for 1 ≤ i ≤ j ≤ t. The assumption dim(V i ∩ V σ j ) = dim(V ′ i ∩ V ′ σ j ) for 1 ≤ i ≤ j ≤ t,
implies that for any couple (i, j) ∈ {1, . . . , t} 2 , S i,j and S ′ i,j have the same dimension. For 1 ≤ i < j ≤ t, we choose a K-linear isomorphism h i,j between S i,j and S ′ i,j . This defines an isomorphism h j,i between S j,i and S ′ j,i , verifying h j,i (v) = (h i,j (v σ )) σ for all v in S j,i . Eventually, for each l between 1 and t, as S l,l and S ′ l,l are defined over F , we choose an isomorphism h l,l between S l,l and S ′ l,l , verifying that h l,l (v σ ) = h l,l (v) σ for all v ∈ S l,l . As the space V is equal to the sum ⊕ (k,l)∈{1,...,t} 2 S k,l , and

V ′ is equal to ⊕ (k,l)∈{1,...,t} 2 S ′ k,l , the K-linear isomorphism h = ⊕ (k,l)∈{1,...,t} 2
h l,k defines an element of H, sending D to D ′ , so that D and D ′ are in the same H-orbit.

The proof of the previous theorem has as a consequence the following corollary.

Corollary 2.1. The quotient H\G/P is a finite set, and its cardinality is equal to the number of sequences of positive or null integers (n i,j ) 1≤i≤j≤t , such that if we let n j,i be equal to n j,i , then for i between 1 and t, one has n i = t j=1 n i,j . Definition 2.1. We call I(n) the set of sequences described in the preceding corollary. Now to such a sequence, we are going to associate an element of G, which will be a representative of the corresponding double coset of H\G/P . This will thus achieve the description of the set H\G/P . First we recall that we denote by V the space K n , and that P corresponds to a partition n = (n 1 , . . . , n t ) of n. We denote by B 0 = (e 1 , . . . , e n ) the canonical basis of V , and by D 0 the canonical n-flag defined over F , given by 0 . . . , e (n1+...ni) ), corresponding to the sequence n i,j = 0 if i < j and n i,i = n i .

⊂ V 0 1 ⊂ V 0 2 ⊂ V 0 t-1 ⊂ V , with V 0 i = V ect(e 1 ,
Proposition 2.1. (Representatives for H\G/P ) Let (n i,j ) 1≤i≤j≤t be an element of I(n). We denote by V 0 i,j the space

V ect(e (n1+•••+ni-1+ni,1+•••+ni,j-1+1) , . . . , e (n1+•••+ni-1+ni,1+•••+ni,j-1+ni,j ) ),
and we denote by B 0 i,j its canonical basis

e (n1+•••+ni-1+ni,1+•••+ni,j-1+1) , . . . , e (n1+•••+ni-1+ni,1+•••+ni,j-1+ni,j ) .
Hence one has

V = (V 0 1,1 ⊕ • • • ⊕ V 0 1,t ) ⊕ (V 0 2,1 ⊕ • • • ⊕ V 0 2,t ) ⊕ • • • ⊕ (V 0 t,1 ⊕ • • • ⊕ V 0 t,t ).
We denote by u ′ the element of G sending V 0 i,i onto itself, and V 0 i,j ⊕V 0 j,i onto itself for i < j, whose restriction to V 0 i,i has matrix I ni,i in the basis B 0 i,i , and whose restriction to

V 0 {i,j} = V 0 i,j ⊕ V 0 j,i
has matrix

1 2 I ni,j 1 2 I ni,j -1 2δ I ni,j 1 2δ I ni,j in the basis B 0 {i,j} = B 0 i,j ∪ B 0 j,i . The element u ′ is a representative of the double coset of H\G/P associated with (n i,j ) 1≤i≤j≤t in I(n).
Proof. If B 1 = (v i ) and B 2 = (w i ) are two families of vectors of same finite cardinality in V , we denote by λB 1 + µB 2 the family (λv i + µw i ) for λ and µ in K. With these notations, the element u ′ sends V 0 i,j onto S i,j = V ect(B 0 i,j -1 2δ B 0 j,i ), and V 0 j,i onto S j,i = S σ i,j . Denoting V 0 i,i by S i,i and one verifies from our choices that for 1 ≤ i ≤ t, one has V i = u(V 0 i ) = (S 1,1 ⊕ . . . ⊕ S 1,t ) ⊕ . . . ⊕ (S i,1 ⊕ . . . ⊕ S i,t ), and that S i,j is a supplementary space of

V i ∩ V σ j-1 + V i-1 ∩ V σ j in V i ∩ V σ j .
Hence the n-flag D corresponds to the sequence (n i,j ) 1≤i≤j≤t of I(n).

A reformulation of what precedes is the following. Proposition 2.2. (Representatives for P \G/H) A set of representatives of P \G/H is given by the elements u = u ′-1 , where the u ′ are as in Proposition 2.1. The representative of the class associated with the sequence (n i,j ) 1≤i≤j≤t in I(n), restricts to V 0 i,i with matrix I ni,i in the basis B 0 i,i , and to V 0 {i,j} with matrix

I ni,j -δI ni,j I ni,j δI ni,j
in the basis B 0 {i,j} .

Definition 2.2. We denote by R(P \G/H) the set of representatives described in Proposition 2.2.

Each element in this set of representatives has the following property, which is immediate to check:

Proposition 2.3. If the element u of R(P \G/H) corresponds to s = (n i,j ) 1≤i≤j≤t , we write the set {1, . . . , n} as the ordered disjoint union of intervals I 1,1 ∪ I 1,2 ∪ • • • ∪ I t,t-1 ∪ I t,t , with I i,j of cardinality n i,j . Then the element w = uu -σ is the involution of S n which fixes the intervals I i,i , and exchanges the intervals I i,j and I j,i for different i and j.

Moreover u is P s -admissible, i.e. the Levi subgroup M s is normalized by w.

Remark 2.1. To see that we obtain the same set as in [JLR], according to Proposition 1.1.3 of [C], it is enough to check the inclusion w(Φ + M ) ⊂ Φ + . For α in Φ + M , two cases occur: either α belongs to Φ + s , i.e. Lie(N α ) lies in a diagonal block n i,j × n i,j , which is exchanged by w with the diagonal block n j,i × n j,i without changing the coefficients inside the block, hence w(α) belongs to Φ + s , otherwise Lie(N α ) lies in a block n i,j × n i,k with j < k, which is sent by w to the sub-block n j,i × n k,i of the block n j × n k , hence w(α) belongs to Φ + -Φ + M in this case. Another consequence of the preceding discussion is that M s is actually M ∩ M w (so this is how s would appear in [JLR]).

3 Structure of the group P (K) ∩ uG n (F )u -1 and modulus characters

Let u be an element of R(P \G/H), corresponding to a sequence s = (n i,j ) 1≤i≤j≤t in I(n). We want to analyze the structure of the group P ∩ uHu -1 . If u is P -admissible (which is if s equals (n 1 , . . . , n t )), it is done in [JLR]. However, the group P ∩ uHu -1 is equal to P s ∩ uHu -1 , we then refer to [JLR], as u is P s -admissible.

Proposition 3.1. Let u be an element of R(P \G/P ), corresponding to a sequence s = (n i,j ) 1≤i≤j≤t in I(n), the group P ∩ uHu -1 is equal to P s ∩ uHu -1 .

Proof. Denoting by w the element uu -σ , the group uHu -1 is the subgroup of G fixed by the involution θ : x → w -1 x σ w, we denote it by G <θ> , and we more generally denote by S <θ> the fixed points of θ in S, for any subset S of G. Hence we need to show the equality P <θ> = P <θ> s , which is equivalent to the inclusion P <θ> ⊂ P s . We actually show the stronger inclusion P ∩P w ⊂ P s (here P w denotes w -1 P w which is equal to θ(P ) as σ fixes P ). As we are dealing with GL(n), it is enough to show the inclusion of Lie algebras Lie(P ) ∩ Lie(P ) w ⊂ Lie(P s ) as the groups in question are the invertible elements of their Lie algebra. But then Lie(P ) = Lie(N - s ) ⊕ Lie(P s ) and Lie(P ) ∩ Lie(P ) w = Lie(N - s ) ∩ Lie(P ) w ⊕ Lie(P s ) ∩ Lie(P ) w , because as w belongs to W , all of these algebras decompose as a direct sum of subspaces Lie(N α ) for some α in Φ and maybe of the Lie algebra Lie(T ). We show that Lie(N - s ) ∩ Lie(P ) w is zero by showing that Lie(N - s ) w ∩ Lie(P ) is zero, as w is an involution. But if α is such that we have Lie(N α ) ⊂ Lie(N - s ), then α belongs to Φ - M -Φ - s . As Φ s = Φ M∩M w , we must have w(α) outside Φ M , but because of Remark 2.1, we know that

w(Φ - M ) ⊂ Φ -, hence w(α) lies in Φ --Φ - M .
Now Lemma 21 of [JLR] applies, and we deduce:

Proposition 3.2. Let u be an element of R(P \G/H), corresponding to a sequence s = (n i,j ) 1≤i≤j≤t in I(n), and let w be the involution uu -σ of the Weyl group of G. We denote by θ the involution x → w -1 x σ w of G. The group

P <θ> = P ∩ uHu -1 is the semi-direct product of M <θ> s = M s ∩ uHu -1 and N <θ> s = N s ∩ uHu -1 . The group M <θ> s is given by the matrices                  A 1,1 . . . A 1,t A 2,1 . . . A 2,t A t,1 . . . A t,t                  with A j,i = A σ i,j in M ni,j (K).
We will use the following fact later.

Proposition 3.3. If we denote by P ′ s the standard parabolic subgroup of M associated with the partition of n corresponding to the sequence s = (n i,j ) in I(n), by u the element of R(P \G/H) corresponding to s, and by N ′ s the unipotent radical of P ′ s , then the following inclusion is true:

N ′ s ⊂ N <θ> s N.
Proof. Let x be an element of an elementary unipotent subgroup N α of N ′ s . We already saw the inclusion w(Φ + M -Φ + s ) ⊂ Φ + -Φ + M , which implies θ(N ′ s ) ⊂ N , so θ(x) belongs to N . The elements of N α and N w (α) commute. If it wasn't the case, then α + w(α) would be a (positive) root. But w is an involution in S n , writing α as e i -e j for i < j, so that w(α) = e w(i) -e w(j) , if α + w(α) was a root, one would have w(i) = j, i.e. w would exchange i and j, and w(α) wouldn't be positive. The consequence of this is that xθ(x) is fixed by θ, which implies that x belongs to N <θ> s N . Now suppose we know that all y in N ′ s of the form x n . . . x 1 , for x i in an elementary unipotent subgroup of N ′ s , belong to N <θ> s N . Let z be of the form z = x n+1 y for y of the form described just before, and x n+1 in an elementary unipotent subgroup N α of N ′ s . Then by hypothesis, there is y ′ in N such that h = yy ′ belongs to N <θ> s . But θ(x n+1 ) belongs to N , and as h belongs to

N <θ> s ⊂ P , the element h -1 θ(x n+1 )h is in N . Finally zy ′ h -1 θ(x n+1 )h = x n+1 θ(x n+1 )h belongs to N <θ> s
, and y ′ h -1 θ(x n+1 )h belongs to N , so z belongs to N <θ> s N . This concludes the proof as any element of N ′ s is a product of elements in root subgroups of N ′ s .

Proposition 3.4. One has the following equality:

(δ P δ P ′ s ) |M <θ> s = δ 2 P <θ> |M <θ> s .
Proof. The group M <θ> s is the F -points of a reductive group (as it is the fixed points of M s under an involution defined over F ). As this is an equality of positive characters, by Lemma 1.10 of [KT], it is enough to check the equality on the (F -points of the) F -split component Z <θ> s (the maximal F -split torus in the center of M s ) of M <θ> s . In our case, the group Z <θ> s is given by the matrices

                 λ 1,1 I 1,1 . . . λ 1,t I 1,t λ 2,1 I 1,1 . . . λ 2,t I 2,t λ t,1 I t,1 . . . λ t,t I t,t                  with λ i,j = λ j,i in F * .
The characters δ P and δ P ′ 

δ P <θ> s (t) = {α,w(α)}⊂Φ + -Φ + s |det(Ad(t) |N α,w(α) )| F = {α∈Φ + -Φ + s : w(α)∈Φ + -Φ + s } |α(t)| F .
But we also have

{α∈Φ + -Φ + s : w(α) / ∈Φ + -Φ + s } |α(t)| F = {α∈Φ + -Φ + s : w(α)∈Φ --Φ - s } |α(t)| F = 1.
The firs equality comes from the equality w(Φ s ) = Φ s . The second comes from the fact that as t belongs to Z <θ> s (so that t w = t σ = t), we have

|α(t)| F | -w(α)(t)| F = 1 if α = -w(α), otherwise α(t) = -w(α)(t) = α(t) -1 implies |α(t)| F = 1.
Multiplying both equalities, we finally get:

δ P <θ> s (t) = {α∈Φ + -Φ + s } |α(t)| F = δ Ps(F ) (t).

Distinguished generic representations and Asai L-functions

We recall that an irreducible representation π of G n (K) is called generic if there is a non trivial character ψ of (K, +), such that the space of linear forms λ on V , which verify λ(π(n)v) = ψ(n)v (where by abuse of notation, we denote by ψ(n

) the complex number ψ(n 1,2 + • • • + n n-1,n ) for n in N n (K) and v in V , is of dimension 1.
If π is generic, the previous invariance property holds for any non trivial character ψ of K. A generic representation is isomorphic, up to unique (modulo scalars) isomorphism to a submodule of Ind Gn(K)

Nn(K) (ψ). We denote W (π, ψ) this model of π on which G n (K) acts by right translation, and call it the Whittaker model of π. In [F4], the Asai L-function L K F (π) of a generic representation π is defined "à la Rankin-Selberg" as the gcd of a family of integrals of functions in W (π, ψ) depending on a complex parameter s, for ψ trivial on F . We refer to Sections 3 and 4 of [M3] for a survey of the main properties of the Rankin-Selberg type Asai L-function of a generic representation. The following theorem due to Zelevinsky (Th. 9.7 of [Z]), classifies the generic representations of the group G n (K) in terms of quasi-square-integrable ones: Theorem 4.1. Let n = (n 1 , . . . , n t ) be a partition of n, and let ∆ i be a quasi-square-integrable representation of G ni (K) for i between 1 and t, the representation π

= ∆ 1 × • • • × ∆ t of the group G n (K) is irreducible if and only if no ∆ i 's are linked, in which case π is generic. If (m 1 , . . . , m t ′ )
is another partition of n, and if the ∆ ′ j 's are unlinked segments of length m j for j between 1 and t ′ , then the representation π equals ∆ [F2], an irreducible distinguished representation π of the group G n (K) is Galois-autodual, which means that the smooth dual π ∨ is isomorphic to π σ . A consequence of this fact and of Theorem 4.1 is the following. If π = ∆ 1 × • • • × ∆ t is a generic representation as in the statement of Theorem 4.1 and if it is distinguished, then there exists a reordering of the ∆ i 's, and an integer r between 1 and t/2, such that ∆ σ i+1 = ∆ ∨ i for i = 1, 3, .., 2r -1, and ∆ σ i = ∆ ∨ i for i > 2r. According to Theorem 6 of [K], this means that there exists a reordering of the ∆ i 's, and an integer r between 1 and t/2, such that ∆ σ i+1 = ∆ ∨ i for i = 1, 3, .., 2r -1, and such that ∆ i is distinguished or η K/F -distinguished for i > 2r. We recall that from Corollary 1.6 of [A-K-T], a discrete series representation cannot be distinguished, and η K/F -distinguished at the same time.

′ 1 × • • • × ∆ ′ t ′ if
Theorem 4.2. Let π = ∆ 1 × • • • × ∆ t be a generic representation of the group G n (K) as in Theorem 4.1, it is distinguished if and only if if there is a reordering of the ∆ i 's, and an integer r between 1 and t/2, such that ∆ σ i+1 = ∆ ∨ i for i = 1, 3, .., 2r -1, and ∆ i is distinguished for i > 2r. It is a consequence of Proposition 26 of [F3], and of the main result of [M4] that representations of the form ∆ 1 × • • • × ∆ t with ∆ σ i+1 = ∆ ∨ i for i = 1, 3, .., 2r -1, and ∆ i distinguished for i > 2r, are distinguished.

Before proving the converse fact (i.e. Theorem 4.2), we recall that from the main result of [M3], this result is known to imply the equality of the Rankin-Selberg type Asai L-function L K F (π) for a generic representation π of G n (K), and of the Asai L-function L K F (ρ) of the Langlands parameter ρ of π (see definition 2.4 of [M3]). Hence the following result is also true.

Theorem 4.3. Let π be a generic representation of the group G n (K), and let ρ be the representation of dimension n of the Weil-Deligne group W ′ K of K, corresponding to π through Langlands correspondence. Then we have the following equality of L-functions: L K F (π, s) = L K F (ρ, s). From the discussion before and after Theorem 4.2, the proof is then reduced to showing the following fact.

Theorem 4.4. Let π = ∆ 1 × • • • × ∆ t be Galois autodual generic representation of the group G n (K), if it is distinguished, then there is a reordering of the ∆ i 's, and an integer r between 1 and t/2, such that ∆ σ i+1 = ∆ ∨ i for i = 1, 3, .., 2r -1, and ∆ i is distinguished for i > 2r. Proof. Let n = (n 1 , . . . , n t ) be the partition of n corresponding to π. We suppose that the ∆ i 's are ordered by length. Moreover as π is Galois autodual, we suppose that inside a subsequence of same length representations, the first to occur are the non Galois autodual, and that at the first occurrence of such a ∆ i0 , its successors are alternatively isomorphic to ∆ ∨σ i0 and ∆ i0 , until no representation among the ∆ i 's is isomorphic to ∆ i0 (hence such a sub subsequence begins with a ∆ i isomorphic to ∆ i0 , and ends with a ∆ i isomorphic to ∆ ∨σ i0 ).

Let ∆ be the representation ∆ 1 ⊗ • • • ⊗ ∆ t of P , from Lemma 4 of [F4], the H-module π has a factor series with factors the representations ind H u -1 P u∩H ((δ 1/2 P ∆) u ) (with (δ 1/2 P ∆) u (x) = δ 1/2 P ∆(uxu -1 )) when u describes R(P \G/H). Hence if π is distinguished, one of these representations admits a nonzero H-invariant linear form on its space. This implies that there is u in R(P \G/H) such that the representation ind uHu -1 P ∩uHu -1 (δ 1/2 P ∆) admits a nonzero uHu -1 -invariant linear form on its space. Then Frobenius reciprocity law says that Hom uHu -1 (ind uHu -1 P ∩uHu -1 (δ 1/2 P ∆), 1) is isomorphic as a vector space, to Hom P ∩uHu -1 (δ 1/2 P ∆, δ P ∩uHu -1 ) = Hom P ∩uHu -1 (δ 1/2 P /δ P ∩uHu -1 ∆, 1). Hence there is on the space V ∆ of ∆ a linear nonzero form L, such that for every p in P ∩ uHu -1 and for every v in V ∆ , one has L(χ(p)∆(p)v) = L(v), where χ(p) = δ 1/2 P δ P ∩uHu -1 (p). As both δ 1/2 P and δ P ∩uHu -1 are trivial on N s ∩ uHu -1 , so is χ. Now, if s is the element of I(n) corresponding to u, let n ′ belong to N ′ s , from Proposition 3.3, we can write n ′ as a product n s n 0 , with n s in N s ∩ uHu -1 , and n 0 in N . As N is included in Ker(∆), one has L(∆(n ′ )(v)) = L(∆(n s n 0 )(v)) = L(∆(n s )(v)) = L(χ(n s )∆(n s )v) = L(v). Hence L is actually a nonzero linear form on the Jacquet module of V ∆ associated with N ′ s . But we also know that L(χ(m s )∆(m s )v) = L(v) for m in M s (F ), which reads according to Lemma 3.4:

L(δ -1/2 P ′ s (m s )∆(m s )v) = L(v).
This says that the linear form L is M s (F )-distinguished on the normalized Jacquet module r Ms,M (∆) (as M s is also the standard Levi subgroup associated with N ′ s ).

The following lemma will conclude the proof of Theorem 4.4.

hypothesis to the family ∆ 2 , . . . , ∆ i0-1 , ∆ i0+1 , . . . , ∆ t , the integer n -n 1 -n i0 with partition (n 2 , . . . , n i0-1 , n i0+1 , . . . , n t ), and sub-partition s ′ = (n i,j | i = i 0 , j = 1), or ∆ j0 = ∆ 1 , in which case we conclude by applying our induction hypothesis to the family (∆ j | j = 2 and j 0 ), the integer n -n 2 -n j0 with partition (n j | j = 2 and j 0 ), and sub partition s ′ = (n i,j | i = 2, j = j 0 ).

  There are two other ways to associate an Asai L-function to a representation π of the group GL(n, K). The first is by considering the n-dimensional representation ρ of the Weil-Deligne group W ′ K of K, associated to π by the local Langlands correspondence. One then defines by multiplicative induction a representation of the Weil-Deligne group W ′ F (which contains W ′ K as a subgroup of index 2), of dimension n 2 , denoted by M . The Asai L-function corresponding to ρ is by definition the classical L-function of the representation M , which we denote by L K

  s verify δ P (x) = |det(Ad(x) |Lie(N ) )| K and δ P ′ s (x) = |det(Ad(x) |Lie(N ′ s ) )| K , hence the equality δ P δ P ′ s = δ Ps holds as we have Lie(N s ) = Lie(N ′ s ) ⊕ Lie(N ). But Z <θ> s is a subgroup of P s (F ), and one has the relation δ Ps (t) = δ 2 Ps(F ) (t) for t in P n (F ), because | | K restricts as | | 2 F to F . So finally we only need to prove the equality δ Ps (F ) = δ P <θ> = δ P <θ> s on Z <θ> s . We denote by N α,w(α) the F -vector space {x ∈ Lie(N α ) + Lie(N w(α) ) : θ(x) = x} of dimension |{α, w(α)}|, so that Lie(N <θ> s ) is the direct sum of the subspaces N α,w(α) for {α, w(α)} ⊂ Φ + -Φ + s . Let t be in Z <θ> s , one has:

  and only if t = t ′ , and ∆ i = ∆ ′ s(i) for a permutation s of {1, . . . , t}. Eventually, every generic representation of G n (K) is obtained this way.

	Now from Proposition 12 of

g 1 ⋆ ⋆ ⋆ ⋆ g 2 ⋆ ⋆ ⋆ . . . ⋆ ⋆ g t-1 ⋆
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Lemma 4.1. Let ∆ 1 , . . . , ∆ t be unlinked segments of respectively G n1 (K), . . . , G nt (K), such that the set {∆ 1 , . . . , ∆ t }, is stable under the involution ∆ → ∆ ∨σ , call n the integer n 1 + • • • + n t , and n the sequence (n 1 , . . . , n t ). Suppose moreover that the ∆ i 's are ordered by length, and that inside a subsequence of same length representations, the first to occur are the non Galois autodual, and that at the first occurrence of such a segment ∆ i0 , its successors are alternatively isomorphic to ∆ ∨σ i0 and ∆ i0 , until no segment among the ∆ i 's is isomorphic to ∆ i0 . Then if there is s = (n i,j ) 1≤i≤j≤t in I(n), such that r Ms,M (⊗ i ∆ i ) is M s (F )-distinguished, there exists a reordering of the ∆ i 's, and an integer r between 1 and t/2, such that ∆ σ i+1 = ∆ ∨ i for i = 1, 3, .., 2r -1, and ∆ i is distinguished for i > 2r.

Proof of the Lemma. We do this by induction on t. It is clear for t = 1. Now suppose the result to be true for any t ′ < t. If there is s in

was not equal to ∆ 1,1 , then one would have

1 would also occur, and ∆ 1 and ∆ ∨σ 1 would be linked, which is absurd. Hence ∆ 1 = ∆ 1,1 is distinguished, and n 1,i = 0 if i > 1. We conclude by applying our induction hypothesis to the family ∆ 2 , . . . , ∆ t , the integer n -n 1 with partition (n 2 , . . . , n t ), and sub-partition

2. i 0 > 1: one has ∆ i0,1 = ∆ ∨σ 1,i0 . As the representation ∆ i0 is either Galois autodual, or coupled with ∆ ∨σ i0 , the representation ∆ ∨σ i0 = [∆ ∨σ i0,t , . . . , ∆ 1,i0 ] occurs. But because the representation ∆ 1 has the smallest length among the ∆ i 's, the segments ∆ 1 and ∆ ∨σ i0 would be linked unless ∆ 1 = ∆ 1,i0 , which thus must be the case. In particular one has n 1,i = 0 for i = i 0 .

Two cases occur. a) ∆ 1 = ∆ 1,i0 is Galois autodual: if ∆ i0 wasn't equal to ∆ i0,1 , then the two occurring segments ∆ i0 = [∆ i0,1 , . . . , ∆ i0,t ] and ∆ ∨σ i0 = [∆ ∨σ i0,t , . . . , ∆ i0,1 ] would be linked, and that is not the case. Hence we have ∆ i0 = ∆ i0,1 = ∆ 1 , and n i0,j = 0 for j = 1. We conclude by applying our induction hypothesis to the family ∆ 2 , . . . , ∆ i0-1 , ∆ i0+1 , . . . , ∆ t , the integer n -n 1 -n i0 with partition (n 2 , . . . , n i0-1 , n i0+1 , . . . , n t ), and sub partition

1 because of our ordering. Let j 0 be the smallest j, such that ∆ 2,j (or equivalently n 2,j ) is nonzero. If j 0 = 2, as in the case i 0 = 1, one has ∆ 2 = ∆ 2,2 , and we conclude by applying our induction hypothesis to the family ∆ 1 , ∆ 3 , . . . , ∆ t , the integer n-n 2 with partition (n 1 , n 3 , . . . , n t ), and sub partition s ′ = (n i,j | i = 2, j = 2). If j 0 = 2, then ∆ 2 must be equal to ∆ 2,j0 . It is indeed clear for j 0 > 2, otherwise ∆ 2 and ∆ ∨σ j0 would be linked, and in the case j 0 = 1, then one has i 0 = 2, and ∆ 2 is equal to [∆ 2,1 , . . . , ∆ 2,t ] but also to ∆ ∨σ 1 = [. . . , ∆ 2,1 ], so that ∆ 2 is ∆ 2,1 . This implies n 2,j = 0 for j = j 0 . Thus we have ∆ 2 = ∆ 2,j0 = ∆ ∨σ 1,i0 = ∆ ∨σ 1 . But the two occurring segments ∆ ∨σ i0 = [∆ ∨σ i0,t , . . . , ∆ 1 ] and ∆ j0 = [∆ j0,2 = ∆ 1 , . . . , ∆ j0,t ] will be linked unless either ∆ i0 = ∆ ∨σ 1 , in which case we conclude by applying our induction