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Distinction and Asai L-functions for generic representations

of general linear groups over p-adic fields

Nadir Matringe

Abstract

Let K/F be a quadratic extension of p-adic fields, and n a positive integer. A smooth
irreducible representation of the group GL(n, K) is said to be distinguished, if it admits on its
space a nonzero GL(n, F )-invariant linear form. In the present work, we classify distinguished
generic representations of the group GL(n, K) in terms of inducing quasi-square-integrable
representations. This has as a consequence the truth of the expected equality between the
Rankin-Selberg type Asai L-function of a generic representation, and the Asai L-function of
its Langlands parameter.

Introduction

Given K/F a quadratic extension of p-adic fields, we denote by σ the non trivial element of the
Galois group of K over F . We denote by ηK/F the character of order 2 of F ∗, trivial on the set
of norms of K∗.

A smooth representation of GL(n,K) is said to be distinguished if it admits on its space a
nonzero linear form, which is invariant under GL(n, F ). The pair (GL(n,K), GL(n, F )) is known
to be a generalized Gelfand pair, which means that for an irreducible representation (π, Vπ) of
GL(n,K), the space of GL(n, F )-invariant linear forms on Vπ is of dimension at most one. The
unitary distinguished representations are the natural space which supports the Plancherel measure
of the symmetric space GL(n, F )\GL(n,K). Hence their understanding is related to harmonic
analysis on GL(n, F )\GL(n,K).

We classify here distinguished generic representations of GL(n,K), in terms of inducing dis-
crete series representations. More precisely we prove the following result.

Theorem 4.2. Let π be a generic representation of the group GL(n,K), obtained by normalized
parabolic induction of quasi-square-integrable representations ∆1, . . . ,∆t. It is distinguished if
and only if there exists a reordering of the ∆i’s, and an integer r between 1 and t/2, such that
we have ∆σ

i+1 = ∆∨
i for i = 1, 3, .., 2r− 1, and ∆i is distinguished for i > 2r.

Distinguished representations of GL(n,K) are also related by a conjecture of Flicker and Ral-
lis, to the base change theory of representations of a unitary group (see for example [A-R]). The
main result of this paper could perhaps reduce the proof of this conjecture for generic distin-
guished representations of GL(n,K), to the case of discrete series representations.

Generic distinguished representations are related to the analytic behaviour of meromorphic
functions, called Asai L-functions associated with generic representations.
The basic theory of the Asai L-function of a generic representation π of GL(n,K), denoted by
LK

F (π) and defined as the gcd of functions obtained as meromorphic extension of Rankin-Selberg
integrals, such as its functional equation, has first been developed by Flicker in [F1] and [F3].

Then in [K], Kable proves that if the Asai L-function LK
F (π) of a discrete series representation

π admits a pole at zero, then the representation π is distinguished. This, with the equality of

1



the product of the Asai L-functions of π and ηπ (for a character η of K∗ extending ηK/F ), and
of the classical L-function of the pair (πσ, π∨), obtained by a global-local method, allows him to
prove the so called Jacquet conjecture for discrete series representations. This result states that
a discrete series representation π of GL(n,K) which is Galois autodual (i.e. π∨ = πσ), is either
distinguished or ηK/F -distinguished.
This result is specified in [A-K-T], where it is shown that the preceding (either/or) is exclusive,
by first proving that the Asai L-function of a tempered distinguished representation has a pole
at zero.

For non discrete series representation, the correct statement is that of Theorem 4.2. Actually
this theorem can be seen as a generalization of Jacquet’s conjecture for discrete series represen-
tations, as it says that a generic representation of GL(n,K) is Galois autodual if and only if
it is parabolically induced from three representations, one that is distinguished but not ηK/F -
distinguished, one that is distinguished and ηK/F -distinguished, and one that is distinguished but
not ηK/F -distinguished. Among these, the distinguished are those with purely ηK/F -distinguished
part equal to zero.
The last step before Theorem 4.2, consisting of showing that the representations described in the
theorem are indeed distinguished is the main result of [M4].

Concerning Rankin-Selberg type Asai L-functions, a definitive statement relating their poles
and distinction is obtained in [M2], where it is proved that a representation π is distinguished, if
and only if its Asai L-function admits a so called (in the terminology of [C-P]) exceptional pole
at zero.

There are two other ways to associate an Asai L-function to a representation π of the group
GL(n,K).
The first is by considering the n-dimensional representation ρ of the Weil-Deligne group W ′

K of
K, associated to π by the local Langlands correspondence. One then defines by multiplicative
induction a representation of the Weil-Deligne group W ′

F (which contains W ′
K as a subgroup of

index 2), of dimension n2, denoted by M
W ′

F

W ′

K
(ρ). The Asai L-function corresponding to ρ is by

definition the classical L-function of the representation M
W ′

F

W ′

K
(ρ), which we denote by LK

F (ρ).

The second, called the Langlands-Shahidi method, is introduced in [Sh]. We denote by LK,U
F (π)

the meromorphic function obtained by this process, the study of its poles is this time related to
the fact of knowing when a representation π is obtained by base change lift from a unitary group
(see [Go]). It is conjectured that these three functions are actually the same (cf. [He], [K], [A-R]).

Henniart proved in [He] that the functions LK,U
F (π) and LK

F (ρ) are equal for every irreducible
representation π. Anandavardhanan and Rajan proved in [A-R] that the functions LK

F (π) and

LK,U
F (π) are equal for π in the discrete series of GL(n,K).

In [M3], which can be used as a survey for local Rankin-Selberg type Asai L-functions, The-
orem 4.2 is stated as a conjecture. It is then showed using a method of Cogdell and Piatetski-
Shapiro and the known equality of LK

F (π) and LK
F (ρ) for discrete series representations, that the

theorem implies the equality of LK
F (π) and LK

F (ρ) for generic representations.
Hence we have the following result.

Theorem 4.3. Let π be a generic representation of the group GL(n,K), and let ρ be the represen-
tation of dimension n of the Weil-Deligne group W ′

K of K, corresponding to π through Langlands
correspondence. The following equality of L-functions is satisfied:

LK
F (π, s) = LK

F (ρ, s).

Now the main tool for the proof of Theorem 4.2, classical in this situation, is Mackey theory.
For instance the case of principal series representations is treated in section 6 of [JLR].
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A generic representation π of the group GL(n,K), is obtained by normalized parabolic induc-
tion of a discrete series representation ∆ = ∆1 ⊗ · · · ⊗ ∆t of a standard Levi subgroup of a
parabolic subgroup P (K) of GL(n,K). Calling R a set of representatives of the double classes
P (K)\GL(n,K)/GL(n, F ), the restriction to GL(n, F ) of the representation π has a factor series,
with factors being induced representations of ∆|P (K)∩uGL(n,F )u−1 to the group uGL(n, F )u−1,
for some u in R. If the representation π is GL(n, F )-distinguished, then it is at least the case for
one of the factors. But using Frobenius reciprocity law, such a factor is distinguished, if and only
if the representation ∆ is itself χ-distinguished by P (K) ∩ uGL(n, F )u−1 fore some character χ.
Studying the structure of this subgroup, implies that the ∆i’s must be of the requested form. The
group structure of P (K)∩ uGL(n, F )u−1 was studied in [JLR] when the element uu−σ (which is
actually an involution in Sn) normalizes the standard Levi subgroup of P . Here we reduce the
general case to this particular case.

The first part of Section 1 is about definitions and notations of the basic objects we use.
The second part concerns itself with results of Bernstein and Zelevinsky about classification of
discrete series representations in terms of segments, and the computation of their Jacquet modules.
A set of representativesR of the double classes P (K)\GL(n,K)/GL(n, F ) for a standard parabolic
subgroup P (K) of GL(n,K) was already described in [JLR]. In Section 2, we give a geometric
way of obtaining this set, which has its advantage. We then show how to reduce the study of
the group structure of P (K)∩ uGL(n, F )u−1 to the admissible case treated in [JLR]. We end by
computing the modulus character of this group.
We eventually prove Theorem 4.2 in the last section.
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1 Preliminaries

1.1 Notations and definitions

We fix until the end of this paper a local field F of characteristic zero. We fix a quadratic exten-
sion K of F .

If G is a group acting on two vector spaces V and V ′, then HomG(V, V ′) designates the space
of G-equivariant morphisms from V to V ′.
If E is a finite extension of F , we denote by vE the discrete valuation of E, which verifies that
vE(πE) is 1 if πE is a prime element of E. We denote by qE the cardinality of the residual field of

E. We denote by | |E the absolute value of E defined by |x|E = q
−vE(x)
E , for x in E. We denote

by RE the valuation ring of E, and by PE the maximal ideal of RE . Finally we denote by WE

the Weil group of E (cf. [T]), and by W ′
E the Weil-Deligne group of E. The group W ′

E is the
semi-direct product WE ⋊ SL(2,C), with WE acting by its quotient group qZ

E on SL(2,C). A

Frobenius element in WE acts on SL(2,C) is by conjugation by the matrix

(
qE 0
0 1

)

.

Let G be an affine algebraic group defined over the field F . If E is an extension of F , we
denote by G(E) the group of the E-points of G. Such a group is locally compact and totally
disconnected, we will call it an l-group.
Let n be a positive integer, we denote by Mn = Mn(F̄ ) the additive group of n×n matrices with
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entries in F̄ , and we denote by Gn the general linear group GL(n, F̄ ) of invertible matrices of
Mn(F̄ ). If M belongs to Mn, we denote its determinant by det(M).
We call partition of a positive integer n, a family n̄ = (n1, . . . , nt) of positive integers (for a
certain t in N − {0}), such that the sum n1 + · · · + nt is equal to n. To such a partition, we
associate an algebraic subgroup of Gn denoted by Pn̄, given by matrices of the form










g1 ⋆ ⋆ ⋆ ⋆
g2 ⋆ ⋆ ⋆

. . . ⋆ ⋆
gt−1 ⋆

gt










,

with gi in Gni for i between 1 and t. We call it the standard parabolic subgroup associated with
the partition n̄. We call parabolic subgroup any conjugate of a standard parabolic subgroup. We
denote by Nn̄ its unipotent radical subgroup, given by the matrices






In1 ⋆ ⋆
. . . ⋆

Int






and by Mn̄ its standard Levi subgroup given by the matrices






g1
. . .

gt






with the gi’s in Gni . The group Pn̄ identifies with the semidirect product Nn̄ ⋊Mn̄.

For n̄ = (1, . . . , 1), we denote by Bn the Borel subgroup Pn̄, and by Tn its standard Levi
subgroup. The Lie algebra of Lie(Gn) decomposes as Lie(Tn) ⊕ (⊕α∈ΦLie(Nα)) under the ad-
joint action of Tn. The group Tn acts on each one-dimensional space Lie(Nα) by a non-trivial
character α, and by the trivial character on Lie(Tn). The set Φ is the root system of Gn with
respect to Tn. The group Nα is the unipotent subgroup of Gn with Lie algebra Lie(Nα). We
denote by Φ+ the roots α such that Nα ⊂ Bn and by Φ− the other roots. We denote by ΦM or
Φn̄ the set of roots α with Nα ⊂M for M = Mn̄, by Φ+

M and Φ−
M the intersections ΦM ∩Φ+ and

ΦM ∩ Φ− respectively.
The quotient W = NGn(Tn)/Tn of the normalizer of Tn in Gn by Tn, is called the Weyl group
of Gn, it identifies with the symmetric group Sn, and permutes the roots in Φ. The quotient
WM = NMn̄(Tn)/Tn of the normalizer of Tn in Mn̄ by Tn, is called the Weyl group of Mn̄, it
identifies with the product group

∏t
i=1 Sni

, and permutes the roots in ΦM .

Let G be an l-group (i.e. locally compact totally disconnected), we denote by dGg or simply dg
if the context is clear, a left Haar measure G. For x in G, we denote by δG(x) the positive number
defined by the relation dg(gx) = δ−1

G (x)dg(g). The modulus character ∆G defines a morphism
from G into R>0. We denote by δG (which we also call modulus character) the morphism from
G into R>0 defined by x 7→ ∆G(x−1).

Let G be an l-group, and H a subgroup of G, a representation (π, V ) of G is said to be
smooth if for any vector v of the vector space V , there is an open subgroup Uv of G stabilizing v
through π. We denote by V H the subspace of fixed points of V under H . The category of smooth
representations of G is denoted by Alg(G). If (π, V ) is a smooth representation of G, we denote
by π∨ its dual representation in the smooth dual space Ṽ of V .
We will only consider smooth complex representations of l-groups.

4



Definition 1.1. Let G be an l-group, H a closed subgroup of G, and (π, V ) a representation of
G. If χ is a character of H, we say that the representation π is χ-distinguished under H, if it
admits on its space a nonzero linear form L, verifying L(π(h)v) = χ(h)L(v) for all v in V and h
in H. If χ = 1, we say H-distinguished instead of 1-distinguished. We omit “H-” if the context
is clear.

If ρ is a complex representation of H in Vρ, we denote by C∞(H\X, ρ, Vρ) the space of
functions f from X to Vρ, fixed under the action by right translation of some compact open
subgroup Uf of G, and which verify f(hx) = ρ(h)f(x) for h ∈ H , and x ∈ X . We denote by
C∞

c (H\X, ρ, Vρ) the subspace of functions with support compact modulo H of C∞(H\X, ρ, Vρ).
We denote by IndG

H(ρ) the representation by right translation of G in C∞(H\G, ρ, Vρ) and by

indG
H(ρ) the representation by right translation of G in C∞

c (H\G, ρ, Vρ). We denote by Ind′
G
H(ρ)

the normalized induced representation IndG
H((∆G/∆H)1/2ρ) and by ind′GH(ρ) the normalized

induced representation indG
H((∆G/∆H)1/2ρ).

Let n be a positive integer, and n̄ = (n1, . . . , nt) be a partition of n, and suppose that we have a
representation (ρi, Vi) of Gni(K) for each i between 1 and t. Let ρ be the extension to Pn̄ of the
natural representation ρ1 ⊗ · · · ⊗ ρt of Mn̄ ≃ Gn1(K) × · · · ×Gnt(K), trivial on Nn̄. We denote

by ρ1 × · · · × ρt the representation ind′
Gn(K)
Pn̄(K) (ρ) = Ind′

Gn(K)
Pn̄(K) (ρ).

1.2 Segments and quasi-square integrable representations

From now on we assimilate representations to their isomorphism classes.

In this subsection, we recall results of Bernstein and Zelevinsky about quasi-square-integrable
representations, more precisely their classification in terms of segments associated to supercuspi-
dal representations, and how to compute their Jacquet modules.

If π is an irreducible representation of Gn(K), one denotes by cπ its central character.
We recall that an irreducible representation of Gn(K) is called supercuspidal if all its Jacquet
modules associated to proper standard Levi subgroups are zero, which is equivalent to the fact
that it has a coefficient with support compact modulo the center Zn(K) of the group Gn(K).

An irreducible representation π of the group Gn(K) is called quasi-square-integrable, if there
exists a positive character χ of the multiplicative group K∗, such that one of the coefficients
g 7→ c(g) of π verifies that c(g)χ(det(g)) is a square-integrable function for a Haar measure of
Gn(K)/Zn(K). One says that the representation π is square-integrable (or belongs to the discrete
series of Gn(K)) if one can choose χ to be trivial.
If ρ is a supercuspidal representation of Gr(K) for a positive integer r, one denotes by ρ| |K the
representation obtained by twist with the character | det( )|K .
In general, if E is an extension of F , and χ is a character of E∗, we will still denote by χ the
character χ ◦ det.
We call segment a list ∆ of supercuspidal representations of the form

∆ = [ρ| |l−1
K , ρ| |l−2

K , . . . , ρ]

for a positive integer l. We call length of the segment the integer rl. We have the following
theorem (Theorem 9.3 of [Z]) that classifies quasi-square integrable representations in terms of
segments.

Theorem 1.1. Let ρ be a supercuspidal representation of Gr(K) for a positive integer r. The
representation ρ× ρ| |F × · · · × ρ| |l−1

F of Grl(K) is reducible, with a unique irreducible quotient

that we denote by [ρ| |l−1
K , ρ| |l−2

K , . . . , ρ]. A representation ∆ of the group Gn(K) is quasi-square-
integrable if and only if there is r ∈ {1, . . . , n} and l ∈ {1, . . . , n} with lr = n, and ρ a supercus-
pidal representation of Gr(K), such that the representation ∆ is equal to [ρ| |l−1

K , ρ| |l−2
K , . . . , ρ].

The representation ρ is then unique.
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A representation of this type is square-integrable if and only if it is unitarizable, or equiva-

lently if and only if ρ| |
(l−1)/2
F is unitarizable (i.e. its central character is unitary). We say that

two segments are linked if none of them is a subsegment of the other, but their union is still a
segment.
Now we allow ourselves to call segment a quasi-square-integrable representation, and to denote
such a representation by its corresponding segment.
We will also use the following useful notation: if ∆1 and ∆2 are two disjoint segments, which are
linked, and such that ∆1 precedes ∆2 (i.e. the segment ∆1 is of the form [ρ1| |

l1−1
K , ρ1| |

l1−2
K , . . . , ρ1],

the segment ∆2 is of the form [ρ2| |
l2−1
K , ρ1| |

l2−2
K , . . . , ρ2], with ρ1 = ρ2| |

l2
K), we denote by [∆1,∆2]

the segment [ρ1| |
l1−1
K , . . . , ρ2].

Let P be a standard parabolic subgroup of Gn(K), M its standard Levi subgroup, and let P ′

be a standard parabolic subgroup of M , with standard Levi subgroup M ′, and unipotent radical
N ′. We recall that the normalized Jacquet module of a representation (ρ, V ) of M , associated
to M ′, which we denote by rM ′,M (ρ), is the representation of M ′ on the space V/V (N ′) (where
V (N ′) is the subspace of V generated by vectors of the form v− π(n′)v for v in V and n′ in N ′),

defined by rM ′,M (ρ)(m′)(v + V (N ′)) = δ
−1/2
M ′ ρ(m′)v + V (N ′).

The following proposition (Proposition 9.5 of [Z]), explains how to compute normalized Jacquet
modules of segments.

Proposition 1.1. Let ρ a supercuspidal representation of Gr(K) for a positive integer r. Let ∆
be the segment [ρ| |l−1

K , ρ| |l−2
K , . . . , ρ], for a positive integer l. Let M be a standard Levi subgroup

of Glr(K) associated with a partition (n1, . . . , nt) of lr.
The representation rM,G(∆) is zero, unless (n1, . . . , nt) admits (r, . . . , r)

︸ ︷︷ ︸

l times

as a sub partition, in

which case ∆ is of the form [∆1, . . . ,∆t], with ∆i of length ni, and rM,G(∆) is equal to the tensor
product ∆1 ⊗ · · · ⊗ ∆t.

2 Double classes P (K)\Gn(K)/Gn(F )

Let n̄ be a partition (n1, . . . , nt) of a positive integer n, we denote by P the standard parabolic
subgroup Pn̄(K) of G = Gn(K), by M its standard Levi subgroup, by B the group Bn(K), by
T the group Tn(K). By abuse of notation, the group Nα will be Nα(K). We denote by H the
group Gn(F ).
We study in first place the double classes of H\G/P . This has already been done in Section 6 of
[JLR] and one can check that the representatives we obtain are the same they obtain (see Remark
2.1). This set is described in [JLR] as the involutions in the set of left and right WM -reduced
elements of W . However we give a more geometric proof in which every representative u of the
double classes of H\G/P comes naturally equipped with a sub-partition s of (n1, . . . , nt), or
equivalently a standard parabolic subgroup Ps of G contained in P . This new standard parabolic
subgroup will have the nice property that the representative u is Ps-admissible (in the terminol-
ogy of [JLR], see Definition 1 of section 6). This will then allow us to reduce to the study of the
group P ∩ uHu−1 to that of the group Ps ∩ uHu

−1, which has been carried out in [JLR].

We identify the quotient space G/P with a flag manifold given by sequences (called n̄-flags)
0 ⊂ V1 ⊂ ... ⊂ Vt−1 ⊂ V = Kn, where Vj is a vector subspace of V , of dimension n1 + · · · + nj .
Studying the double classes of H\G/P , is then equivalent to understand the H-orbits of the flag
manifold G/P . This is done in the following theorem.

Theorem 2.1. The H-orbits of the flag manifold G/P , are characterized by the integers dim(Vi∩
V σ

j ), for 1 ≤ i ≤ j ≤ t − 1, which means that two n̄-flags D = 0 ⊂ V1 ⊂ ... ⊂ Vt−1 ⊂ V and
D′ = 0 ⊂ V ′

1 ⊂ ... ⊂ V ′
t−1 ⊂ V are in the same orbit

under H, if and only if dim(Vi ∩ V
σ
j ) = dim(V ′

i ∩ V ′σ
j ) for 1 ≤ i ≤ j ≤ t− 1.

Proof. We first state the following classical lemma.
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Lemma 2.1. Let V = Kn, and VF = Fn ⊂ V , the F -subspace of vectors of V fixed by σ.
A vector subspace V ′ of V verifies that V ′ = V ′σ, if and only if one can choose a basis of V ′

in VF , in which case one says that V ′ is defined over F . Any subspace defined over F , has a
supplementary subspace defined over F .

Now we prove a second lemma about the filtration of V in terms of Vi ∩ V
σ
j for Vi and Vj in

the set of subspaces defining a n̄-flag.
Let D be a n̄-flag, given by the sequence D = 0 ⊂ V1 ⊂ ... ⊂ Vt−1 ⊂ V . We set V0 = 0 and
Vt = V .
For 1 ≤ i ≤ j ≤ t, we denote by Si,j a supplementary space of Vi ∩ V

σ
j−1 + Vi−1 ∩ V

σ
j in Vi ∩ V

σ
j .

If i = j, we add the condition that the supplementary space Si,i we choose is defined over F ,
which is possible according to Lemma 2.1.
Eventually, for 1 ≤ i ≤ j ≤ t, we denote by Sj,i, the space Sσ

i,j , which is a supplementary space
of Vj ∩ V

σ
i−1 + Vj−1 ∩ V

σ
i in Vj ∩ V

σ
i .

Lemma 2.2. With these notations, if (i, j) belongs to {1, . . . , t}
2
, the space Vi−1 + Vi ∩ V

σ
j is

equal to the sum

(S1,1 ⊕ . . .⊕ S1,t) ⊕ . . .⊕ (Si−1,1 ⊕ . . .⊕ Si−1,t) ⊕ (Si,1 ⊕ . . .⊕ Si,j).

In particular, the space Vi is equal to the direct sum

(S1,1 ⊕ . . .⊕ S1,t) ⊕ . . .⊕ (Si,1 ⊕ . . .⊕ Si,t).

Proof. Let x belong to Vi−1 + Vi ∩ V σ
j , then one can write x = xi−1 + yi,j with xi−1 in Vi−1

and yi,j in Vi ∩ V σ
j . But then yi,j = yi−1,j + yi,j−1 + si,j with yi−1,j in Vi−1 ∩ Vj

σ, yi,j−1 in
Vi ∩ Vj−1

σ and si,j in Si,j . Hence we have x = x′i−1 + yi,j−1 + si,j , with x′i−1 = xi−1 + yi−1,j

belonging to Vi−1. So x belongs to (Vi−1 + Vi ∩ V σ
j−1) + Si,j . But by definition of Si,j , the

preceding sum is actually direct, i.e. x belongs to (Vi−1 + Vi ∩ V
σ
j−1)⊕ Si,j . We thus proved that

Vi−1 + Vi ∩ Vj
σ = (Vi−1 + Vi ∩ V

σ
j−1) ⊕ Si,j , and the proof ends by induction.

Getting back to the proof of Theorem 2.1, it is obvious that if two n̄-flags D and D′ are in
the same H-orbit, then one must have dim(Vi ∩ V

σ
j ) = dim(V ′

i ∩ V ′σ
j ) for 1 ≤ i ≤ j ≤ t.

Conversely, suppose that two n̄-flagsD andD′, satisfy the condition dim(Vi∩V
σ
j ) = dim(V ′

i ∩V
′σ
j )

for 1 ≤ i ≤ j ≤ t.
The assumption dim(Vi ∩ V

σ
j ) = dim(V ′

i ∩ V ′σ
j ) for 1 ≤ i ≤ j ≤ t, implies that for any couple

(i, j) ∈ {1, . . . , t}
2
, Si,j and S′

i,j have the same dimension. For 1 ≤ i < j ≤ t, we choose a
K-linear isomorphism hi,j between Si,j and S′

i,j . This defines an isomorphism hj,i between Sj,i

and S′
j,i, verifying hj,i(v) = (hi,j(v

σ))σ for all v in Sj,i.
Eventually, for each l between 1 and t, as Sl,l and S′

l,l are defined over F , we choose an isomorphism
hl,l between Sl,l and S′

l,l, verifying that hl,l(v
σ) = hl,l(v)

σ for all v ∈ Sl,l.
As the space V is equal to the sum ⊕

(k,l)∈{1,...,t}2
Sk,l, and V ′ is equal to ⊕

(k,l)∈{1,...,t}2
S′

k,l, the

K-linear isomorphism h = ⊕
(k,l)∈{1,...,t}2

hl,k defines an element of H , sending D to D′, so that D

and D′ are in the same H-orbit.

The proof of the previous theorem has as a consequence the following corollary.

Corollary 2.1. The quotient H\G/P is a finite set, and its cardinality is equal to the number of
sequences of positive or null integers (ni,j)1≤i≤j≤t, such that if we let nj,i be equal to nj,i, then

for i between 1 and t, one has ni =
∑t

j=1 ni,j.

Definition 2.1. We call I(n̄) the set of sequences described in the preceding corollary.
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Now to such a sequence, we are going to associate an element of G, which will be a represen-
tative of the corresponding double coset of H\G/P . This will thus achieve the description of the
set H\G/P .
First we recall that we denote by V the space Kn, and that P corresponds to a partition n̄ =
(n1, . . . , nt) of n. We denote by B0 = (e1, . . . , en) the canonical basis of V , and by D0 the canoni-
cal n̄-flag defined over F , given by 0 ⊂ V 0

1 ⊂ V 0
2 ⊂ V 0

t−1 ⊂ V , with V 0
i = V ect(e1, . . . , e(n1+...ni)),

corresponding to the sequence ni,j = 0 if i < j and ni,i = ni.

Proposition 2.1. (Representatives for H\G/P ) Let (ni,j)1≤i≤j≤t be an element of I(n̄). We
denote by V 0

i,j the space

V ect(e(n1+···+ni−1+ni,1+···+ni,j−1+1), . . . , e(n1+···+ni−1+ni,1+···+ni,j−1+ni,j)),

and we denote by B0
i,j its canonical basis

{
e(n1+···+ni−1+ni,1+···+ni,j−1+1), . . . , e(n1+···+ni−1+ni,1+···+ni,j−1+ni,j)

}
.

Hence one has

V = (V 0
1,1 ⊕ · · · ⊕ V 0

1,t) ⊕ (V 0
2,1 ⊕ · · · ⊕ V 0

2,t) ⊕ · · · ⊕ (V 0
t,1 ⊕ · · · ⊕ V 0

t,t).

We denote by u′ the element of G sending V 0
i,i onto itself, and V 0

i,j⊕V
0
j,i onto itself for i < j, whose

restriction to V 0
i,i has matrix Ini,i in the basis B0

i,i, and whose restriction to V 0
{i,j} = V 0

i,j ⊕ V 0
j,i

has matrix (
1
2Ini,j

1
2Ini,j

− 1
2δ Ini,j

1
2δ Ini,j

)

in the basis B0
{i,j} = B0

i,j ∪B
0
j,i.

The element u′ is a representative of the double coset of H\G/P associated with (ni,j)1≤i≤j≤t in
I(n̄).

Proof. If B1 = (vi) and B2 = (wi) are two families of vectors of same finite cardinality in V , we
denote by λB1 +µB2 the family (λvi +µwi) for λ and µ in K. With these notations, the element
u′ sends V 0

i,j onto Si,j = V ect(B0
i,j −

1
2δB

0
j,i), and V 0

j,i onto Sj,i = Sσ
i,j . Denoting V 0

i,i by Si,i and

one verifies from our choices that for 1 ≤ i ≤ t, one has Vi = u(V 0
i ) = (S1,1 ⊕ . . .⊕ S1,t) ⊕ . . .⊕

(Si,1 ⊕ . . . ⊕ Si,t), and that Si,j is a supplementary space of Vi ∩ V
σ
j−1 + Vi−1 ∩ V σ

j in Vi ∩ V
σ
j .

Hence the n̄-flag D corresponds to the sequence (ni,j)1≤i≤j≤t of I(n̄).

A reformulation of what precedes is the following.

Proposition 2.2. (Representatives for P\G/H) A set of representatives of P\G/H is given by
the elements u = u′−1, where the u′ are as in Proposition 2.1. The representative of the class
associated with the sequence (ni,j)1≤i≤j≤t in I(n̄), restricts to V 0

i,i with matrix Ini,i in the basis

B0
i,i, and to V 0

{i,j} with matrix
(
Ini,j −δIni,j

Ini,j δIni,j

)

in the basis B0
{i,j}.

Definition 2.2. We denote by R(P\G/H) the set of representatives described in Proposition 2.2.

Each element in this set of representatives has the following property, which is immediate to
check:

Proposition 2.3. If the element u of R(P\G/H) corresponds to s = (ni,j)1≤i≤j≤t, we write the
set {1, . . . , n} as the ordered disjoint union of intervals I1,1 ∪ I1,2 ∪ · · · ∪ It,t−1 ∪ It,t, with Ii,j of
cardinality ni,j. Then the element w = uu−σ is the involution of Sn which fixes the intervals Ii,i,
and exchanges the intervals Ii,j and Ij,i for different i and j.

Moreover u is Ps-admissible, i.e. the Levi subgroup Ms is normalized by w.
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Remark 2.1. To see that we obtain the same set as in [JLR], according to Proposition 1.1.3 of
[C], it is enough to check the inclusion w(Φ+

M ) ⊂ Φ+. For α in Φ+
M , two cases occur: either α

belongs to Φ+
s , i.e. Lie(Nα) lies in a diagonal block ni,j ×ni,j , which is exchanged by w with the

diagonal block nj,i×nj,i without changing the coefficients inside the block, hence w(α) belongs to
Φ+

s , otherwise Lie(Nα) lies in a block ni,j × ni,k with j < k, which is sent by w to the sub-block
nj,i × nk,i of the block nj × nk, hence w(α) belongs to Φ+ − Φ+

M in this case.
Another consequence of the preceding discussion is that Ms is actually M ∩Mw (so this is how
s would appear in [JLR]).

3 Structure of the group P (K) ∩ uGn(F )u−1 and modulus

characters

Let u be an element of R(P\G/H), corresponding to a sequence s = (ni,j)1≤i≤j≤t in I(n̄). We
want to analyze the structure of the group P ∩ uHu−1. If u is P -admissible (which is if s equals
(n1, . . . , nt)), it is done in [JLR]. However, the group P ∩uHu−1 is actually equal to Ps∩uHu

−1,
we then refer to [JLR], as u is Ps-admissible.

Proposition 3.1. Let u be an element of R(P\G/P ), corresponding to a sequence s = (ni,j)1≤i≤j≤t

in I(n̄), the group P ∩ uHu−1 is equal to Ps ∩ uHu
−1.

Proof. Denoting by w the element uu−σ, the group uHu−1 is the subgroup of G fixed by the
involution θ : x 7→ w−1xσw, we denote it by G<θ>, and we more generally denote by S<θ> the
fixed points of θ in S, for any subset S of G. Hence we need to show the equality P<θ> = P<θ>

s ,
which is equivalent to the inclusion P<θ> ⊂ Ps. We actually show the stronger inclusion P∩Pw ⊂
Ps (here Pw denotes w−1Pw which is equal to θ(P ) as σ fixes P ). As we are dealing with GL(n),
it is enough to show the inclusion of Lie algebras Lie(P ) ∩ Lie(P )w ⊂ Lie(Ps) as the groups in
question are the invertible elements of their Lie algebra. But then Lie(P ) = Lie(N−

s ) ⊕ Lie(Ps)
and Lie(P ) ∩ Lie(P )w = Lie(N−

s ) ∩ Lie(P )w ⊕ Lie(Ps) ∩ Lie(P )w, because as w belongs to W ,
all of these algebras decompose as a direct sum of subspaces Lie(Nα) for some α in Φ and maybe
of the Lie algebra Lie(T ).
We show that Lie(N−

s ) ∩ Lie(P )w is zero by showing that Lie(N−
s )w ∩ Lie(P ) is zero, as w is

an involution. But if α is such that we have Lie(Nα) ⊂ Lie(N−
s ), then α belongs to Φ−

M − Φ−
s .

As Φs = ΦM∩Mw , we must have w(α) outside ΦM , but because of Remark 2.1, we know that
w(Φ−

M ) ⊂ Φ−, hence w(α) lies in Φ−−Φ−
M .

Now Lemma 21 of [JLR] applies, and we deduce:

Proposition 3.2. Let u be an element of R(P\G/H), corresponding to a sequence s = (ni,j)1≤i≤j≤t

in I(n̄), and let w be the involution uu−σ of the Weyl group of G. We denote by θ the in-
volution x 7→ w−1xσw of G. The group P<θ> = P ∩ uHu−1 is the semi-direct product of
M<θ>

s = Ms ∩ uHu
−1 and N<θ>

s = Ns ∩ uHu
−1.

The group M<θ>
s is given by the matrices




















A1,1

. . .

A1,t

A2,1

. . .

A2,t

At,1

. . .

At,t



















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with Aj,i = Aσ
i,j in Mni,j (K).

We will use the following fact later.

Proposition 3.3. If we denote by P ′
s the standard parabolic subgroup of M associated with the

partition of n corresponding to the sequence s = (ni,j) in I(n̄), by u the element of R(P\G/H)
corresponding to s, and by N ′

s the unipotent radical of P ′
s, then the following inclusion is true:

N ′
s ⊂ N<θ>

s N.

Proof. Let x be an element of an elementary unipotent subgroup Nα of N ′
s. We already saw

the inclusion w(Φ+
M − Φ+

s ) ⊂ Φ+ − Φ+
M , which implies θ(N ′

s) ⊂ N , so θ(x) belongs to N . The
elements of Nα and Nw(α) commute. If it wasn’t the case, then α+ w(α) would be a (positive)
root. But w is an involution in Sn, writing α as ei − ej for i < j, so that w(α) = ew(i) − ew(j), if
α+w(α) was a root, one would have w(i) = j, i.e. w would exchange i and j, and w(α) wouldn’t
be positive.
The consequence of this is that xθ(x) is fixed by θ, which implies that x belongs to N<θ>

s N .
Now suppose we know that all y in N ′

s of the form xn . . . x1, for xi in an elementary unipotent
subgroup of N ′

s, belong to N<θ>
s N . Let z be of the form z = xn+1y for y of the form described

just before, and xn+1 in an elementary unipotent subgroup Nα of N ′
s. Then by hypothesis, there

is y′ in N such that h = yy′ belongs to N<θ>
s . But θ(xn+1) belongs to N , and as h belongs to

N<θ>
s ⊂ P , the element h−1θ(xn+1)h is in N . Finally zy′h−1θ(xn+1)h = xn+1θ(xn+1)h belongs

to N<θ>
s , and y′h−1θ(xn+1)h belongs to N , so z belongs to N<θ>

s N . This concludes the proof
as any element of N ′

s is a product of elements in root subgroups of N ′
s.

Proposition 3.4. One has the following equality:

(δP δP ′

s
)|M<θ>

s
= δ2P <θ> |M<θ>

s
.

Proof. The group M<θ>
s is the F -points of a reductive group (as it is the fixed points of Ms

under an involution defined over F ). As this is an equality of positive characters, by Lemma 1.10
of [KT], it is enough to check the equality on the (F -points of the) F -split component Z<θ>

s (the
maximal F -split torus in the center of Ms) of M<θ>

s . In our case, the group Z<θ>
s is given by

the matrices



















λ1,1I1,1

. . .

λ1,tI1,t

λ2,1I1,1

. . .

λ2,tI2,t

λt,1It,1
. . .

λt,tIt,t




















with λi,j = λj,i in F ∗.
The characters δP and δP ′

s
verify δP (x) = |det(Ad(x)|Lie(N))|K and δP ′

s
(x) = |det(Ad(x)|Lie(N ′

s))|K ,

hence the equality δP δP ′

s
= δPs holds as we have Lie(Ns) = Lie(N ′

s) ⊕ Lie(N). But Z<θ>
s is

a subgroup of Ps(F ), and one has the relation δPs(t) = δ2Ps(F )(t) for t in Pn(F ), because | |K

restricts as | |2F to F . So finally we only need to prove the equality δPs(F ) = δP <θ> = δP <θ>
s

on

Z<θ>
s .

We denote by Nα,w(α) the F -vector space {x ∈ Lie(Nα) + Lie(Nw(α)) : θ(x) = x} of dimen-

sion |{α,w(α)}|, so that Lie(N<θ>
s ) is the direct sum of the subspaces Nα,w(α) for {α,w(α)} ⊂
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Φ+ − Φ+
s .

Let t be in Z<θ>
s , one has:

δP <θ>
s

(t) =
∏

{α,w(α)}⊂Φ+−Φ+
s

|det(Ad(t)|Nα,w(α)
)|F =

∏

{α∈Φ+−Φ+
s : w(α)∈Φ+−Φ+

s }

|α(t)|F .

But we also have

∏

{α∈Φ+−Φ+
s : w(α)/∈Φ+−Φ+

s }

|α(t)|F =
∏

{α∈Φ+−Φ+
s : w(α)∈Φ−−Φ−

s }

|α(t)|F = 1.

The firs equality comes from the equality w(Φs) = Φs. The second comes from the fact that
as t belongs to Z<θ>

s (so that tw = tσ = t), we have |α(t)|F | − w(α)(t)|F = 1 if α 6= −w(α),
otherwise α(t) = −w(α)(t) = α(t)−1 implies |α(t)|F = 1.

Multiplying both equalities, we finally get:

δP <θ>
s

(t) =
∏

{α∈Φ+−Φ+
s }

|α(t)|F = δPs(F )(t).

4 Distinguished generic representations and Asai L-functions

We recall that an irreducible representation π of Gn(K) is called generic if there is a non trivial
character ψ of (K,+), such that the space of linear forms λ on V , which verify λ(π(n)v) = ψ(n)v
(where by abuse of notation, we denote by ψ(n) the complex number ψ(n1,2 + · · · + nn−1,n) for
n in Nn(K) and v in V , is of dimension 1.
If π is generic, the previous invariance property holds for any non trivial character ψ of K. A
generic representation is isomorphic, up to unique (modulo scalars) isomorphism to a submodule

of Ind
Gn(K)
Nn(K)(ψ). We denote W (π, ψ) this model of π on which Gn(K) acts by right translation,

and call it the Whittaker model of π.
In [F4], the Asai L-function LK

F (π) of a generic representation π is defined “à la Rankin-Selberg”
as the gcd of a family of integrals of functions in W (π, ψ) depending on a complex parameter s,
for ψ trivial on F . We refer to Sections 3 and 4 of [M3] for a survey of the main properties of the
Rankin-Selberg type Asai L-function of a generic representation.
The following theorem due to Zelevinsky (Th. 9.7 of [Z]), classifies the generic representations of
the group Gn(K) in terms of quasi-square-integrable ones:

Theorem 4.1. Let n̄ = (n1, . . . , nt) be a partition of n, and let ∆i be a quasi-square-integrable
representation of Gni(K) for i between 1 and t, the representation π = ∆1×· · ·×∆t of the group
Gn(K) is irreducible if and only if no ∆i’s are linked, in which case π is generic. If (m1, . . . ,mt′)
is another partition of n, and if the ∆′

j ’s are unlinked segments of length mj for j between 1 and
t′, then the representation π equals ∆′

1 × · · · × ∆′
t′ if and only if t = t′, and ∆i = ∆′

s(i) for a

permutation s of {1, . . . , t}. Eventually, every generic representation of Gn(K) is obtained this
way.

Now from Proposition 12 of [F2], an irreducible distinguished representation π of the group
Gn(K) is Galois-autodual, which means that the smooth dual π∨ is isomorphic to πσ. A conse-
quence of this fact and of Theorem 4.1 is the following. If π = ∆1×· · ·×∆t is a generic represen-
tation as in the statement of Theorem 4.1 and if it is distinguished, then there exists a reordering
of the ∆i’s, and an integer r between 1 and t/2, such that ∆σ

i+1 = ∆∨
i for i = 1, 3, .., 2r− 1, and

∆σ
i = ∆∨

i for i > 2r. According to Theorem 6 of [K], this means that there exists a reordering
of the ∆i’s, and an integer r between 1 and t/2, such that ∆σ

i+1 = ∆∨
i for i = 1, 3, .., 2r− 1, and
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such that ∆i is distinguished or ηK/F -distinguished for i > 2r. We recall that from Corollary 1.6
of [A-K-T], a discrete series representation cannot be distinguished, and ηK/F -distinguished at
the same time.

Theorem 4.2. Let π = ∆1 × · · · × ∆t be a generic representation of the group Gn(K) as in
Theorem 4.1, it is distinguished if and only if if there is a reordering of the ∆i’s, and an integer r
between 1 and t/2, such that ∆σ

i+1 = ∆∨
i for i = 1, 3, .., 2r− 1, and ∆i is distinguished for i > 2r.

It is a consequence of Proposition 26 of [F3], and of the main result of [M4] that representations
of the form ∆1 × · · · ×∆t with ∆σ

i+1 = ∆∨
i for i = 1, 3, .., 2r− 1, and ∆i distinguished for i > 2r,

are distinguished.
Before proving the converse fact (i.e. Theorem 4.2), we recall that from the main result of [M3],

this result is known to imply the equality of the Rankin-Selberg type Asai L-function LK
F (π) for a

generic representation π of Gn(K), and of the Asai L-function LK
F (ρ) of the Langlands parameter

ρ of π (see definition 2.4 of [M3]). Hence the following result is also true.

Theorem 4.3. Let π be a generic representation of the group Gn(K), and let ρ be the represen-
tation of dimension n of the Weil-Deligne group W ′

K of K, corresponding to π through Langlands
correspondence. Then we have the following equality of L-functions:

LK
F (π, s) = LK

F (ρ, s).

From the discussion before and after Theorem 4.2, the proof is then reduced to showing the
following fact.

Theorem 4.4. Let π = ∆1 × · · · × ∆t be Galois autodual generic representation of the group
Gn(K), if it is distinguished, then there is a reordering of the ∆i’s, and an integer r between 1
and t/2, such that ∆σ

i+1 = ∆∨
i for i = 1, 3, .., 2r− 1, and ∆i is distinguished for i > 2r.

Proof. Let n̄ = (n1, . . . , nt) be the partition of n corresponding to π. We suppose that the ∆i’s
are ordered by length. Moreover as π is Galois autodual, we suppose that inside a subsequence of
same length representations, the first to occur are the non Galois autodual, and that at the first
occurrence of such a ∆i0 , its successors are alternatively isomorphic to ∆∨σ

i0 and ∆i0 , until no
representation among the ∆i’s is isomorphic to ∆i0 (hence such a sub subsequence begins with a
∆i isomorphic to ∆i0 , and ends with a ∆i isomorphic to ∆∨σ

i0
).

Let ∆ be the representation ∆1 ⊗ · · · ⊗ ∆t of P , from Lemma 4 of [F4], the H-module π

has a factor series with factors the representations indH
u−1Pu∩H((δ

1/2
P ∆)u) (with (δ

1/2
P ∆)u(x) =

δ
1/2
P ∆(uxu−1)) when u describes R(P\G/H). Hence if π is distinguished, one of these represen-

tations admits a nonzero H-invariant linear form on its space. This implies that there is u in

R(P\G/H) such that the representation induHu−1

P∩uHu−1 (δ
1/2
P ∆) admits a nonzero uHu−1-invariant

linear form on its space. Then Frobenius reciprocity law says thatHomuHu−1(induHu−1

P∩uHu−1 (δ
1/2
P ∆), 1)

is isomorphic as a vector space, toHomP∩uHu−1 (δ
1/2
P ∆, δP∩uHu−1) = HomP∩uHu−1 (δ

1/2
P /δP∩uHu−1∆, 1).

Hence there is on the space V∆ of ∆ a linear nonzero form L, such that for every p in P ∩uHu−1

and for every v in V∆, one has L(χ(p)∆(p)v) = L(v), where χ(p) =
δ
1/2
P

δP∩uHu−1
(p). As both

δ
1/2
P and δP∩uHu−1 are trivial on Ns ∩ uHu−1, so is χ. Now, if s is the element of I(n̄)

corresponding to u, let n′ belong to N ′
s, from Proposition 3.3, we can write n′ as a prod-

uct nsn0, with ns in Ns ∩ uHu−1, and n0 in N . As N is included in Ker(∆), one has
L(∆(n′)(v)) = L(∆(nsn0)(v)) = L(∆(ns)(v)) = L(χ(ns)∆(ns)v) = L(v). Hence L is actu-
ally a nonzero linear form on the Jacquet module of V∆ associated with N ′

s. But we also
know that L(χ(ms)∆(ms)v) = L(v) for m in Ms(F ), which reads according to Lemma 3.4:

L(δ
−1/2
P ′

s
(ms)∆(ms)v) = L(v).

This says that the linear form L is Ms(F )-distinguished on the normalized Jacquet module
rMs,M (∆) (as Ms is also the standard Levi subgroup associated with N ′

s).

The following lemma will conclude the proof of Theorem 4.4.

12



Lemma 4.1. Let ∆1, . . . , ∆t be unlinked segments of respectively Gn1(K), . . . , Gnt(K), such
that the set {∆1, . . . ,∆t}, is stable under the involution ∆ 7→ ∆∨σ, call n the integer n1+ · · ·+nt,
and n̄ the sequence (n1, . . . , nt). Suppose moreover that the ∆i’s are ordered by length, and that
inside a subsequence of same length representations, the first to occur are the non Galois autodual,
and that at the first occurrence of such a segment ∆i0 , its successors are alternatively isomorphic
to ∆∨σ

i0
and ∆i0 , until no segment among the ∆i’s is isomorphic to ∆i0 . Then if there is s =

(ni,j)1≤i≤j≤t in I(n̄), such that rMs,M (⊗i∆i) is Ms(F )-distinguished, there exists a reordering of
the ∆i’s, and an integer r between 1 and t/2, such that ∆σ

i+1 = ∆∨
i for i = 1, 3, .., 2r− 1, and ∆i

is distinguished for i > 2r.

Proof of the Lemma. We do this by induction on t. It is clear for t = 1.
Now suppose the result to be true for any t′ < t.
If there is s in I(n̄), such that rMs,M (∆) is Ms(F )-distinguished, in particular rMs,M (∆) is
nonzero, which from Proposition 1.1, implies that one can write each ∆i under the the form
[∆i,1, . . . ,∆i,t], with ∆i,j a subsegment of ∆i of length ni,j . With these notations, rMs,M (∆)
is equal to the tensor product ∆1,1 ⊗ · · · ⊗ ∆t,t. Hence the fact that rMs,M (∆) is distinguished
by the group Ms(F ) is equivalent to the fact that ∆i,i is Gni,i(F )-distinguished if ni,i 6= 0, and
∆j,i = ∆∨σ

i,j if i < j and ni,j 6= 0.
Let i0 be the smallest i, such that ∆1,i (or equivalently n1,i) is nonzero.

1. i0 = 1: the representation ∆1,1 is distinguished, hence Galois autodual. If ∆1 = [∆1,1, . . . ,∆1,t]
was not equal to ∆1,1, then one would have ∆∨σ

1 = [∆∨σ
1,t , . . . ,∆1,1] 6= ∆1. But the segment

∆∨σ
1 would also occur, and ∆1 and ∆∨σ

1 would be linked, which is absurd. Hence ∆1 = ∆1,1

is distinguished, and n1,i = 0 if i > 1. We conclude by applying our induction hypothesis
to the family ∆2, . . . ,∆t, the integer n − n1 with partition (n2, . . . , nt), and sub-partition
s′ = (ni,j | i ≥ 2, j ≥ 2).

2. i0 > 1: one has ∆i0,1 = ∆∨σ
1,i0 . As the representation ∆i0 is either Galois autodual, or

coupled with ∆∨σ
i0

, the representation ∆∨σ
i0

= [∆∨σ
i0,t, . . . ,∆1,i0 ] occurs. But because the

representation ∆1 has the smallest length among the ∆i’s, the segments ∆1 and ∆∨σ
i0

would
be linked unless ∆1 = ∆1,i0 , which thus must be the case. In particular one has n1,i = 0
for i 6= i0.

Two cases occur.

a) ∆1 = ∆1,i0 is Galois autodual: if ∆i0 wasn’t equal to ∆i0,1, then the two occurring
segments ∆i0 = [∆i0,1, . . . ,∆i0,t] and ∆∨σ

i0
= [∆∨σ

i0,t, . . . ,∆i0,1] would be linked, and
that is not the case. Hence we have ∆i0 = ∆i0,1 = ∆1, and ni0,j = 0 for j 6= 1. We con-
clude by applying our induction hypothesis to the family ∆2, . . . ,∆i0−1,∆i0+1, . . . ,∆t,
the integer n−n1 −ni0 with partition (n2, . . . , ni0−1, ni0+1, . . . , nt), and sub partition
s′ = (ni,j | i 6= i0, j 6= 1).

b) ∆1 = ∆1,i0 is not Galois autodual: in this case ∆2 is ∆∨σ
1 because of our ordering.

Let j0 be the smallest j, such that ∆2,j (or equivalently n2,j) is nonzero. If j0 = 2, as
in the case i0 = 1, one has ∆2 = ∆2,2, and we conclude by applying our induction hy-
pothesis to the family ∆1,∆3, . . . ,∆t, the integer n−n2 with partition (n1, n3, . . . , nt),
and sub partition s′ = (ni,j | i 6= 2, j 6= 2).
If j0 6= 2, then ∆2 must be equal to ∆2,j0 . It is indeed clear for j0 > 2, otherwise ∆2

and ∆∨σ
j0

would be linked, and in the case j0 = 1, then one has i0 = 2, and ∆2 is equal
to [∆2,1, . . . ,∆2,t] but also to ∆∨σ

1 = [. . . ,∆2,1], so that ∆2 is ∆2,1.
This implies n2,j = 0 for j 6= j0. Thus we have ∆2 = ∆2,j0 = ∆∨σ

1,i0
= ∆∨σ

1 . But the
two occurring segments ∆∨σ

i0
= [∆∨σ

i0,t, . . . ,∆1] and ∆j0 = [∆j0,2 = ∆1, . . . ,∆j0,t] will
be linked unless either ∆i0 = ∆∨σ

1 , in which case we conclude by applying our induction
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hypothesis to the family ∆2, . . . ,∆i0−1,∆i0+1, . . . ,∆t, the integer n − n1 − ni0 with
partition (n2, . . . , ni0−1, ni0+1, . . . , nt), and sub-partition s′ = (ni,j | i 6= i0, j 6= 1),
or ∆j0 = ∆1, in which case we conclude by applying our induction hypothesis to the
family (∆j | j 6= 2 and j0), the integer n− n2 − nj0 with partition (nj | j 6= 2 and j0),
and sub partition s′ = (ni,j | i 6= 2, j 6= j0).
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