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Distinction and Asai L-functions for generic representations

of general linear groups over p-adic fields

Nadir Matringe

Abstract

Let K/F be a quadratic extension of p-adic fields, and n a positive integer. A smooth
irreducible representation of the group GL(n, K) is said to be distinguished, if it admits on
its space a nonzero GL(n, F )-invariant linear form. In the present work, we classify distin-
guished representations of the group GL(n, K) in terms of inducing quasi-square integrable
representations. This has as a consequence the truth of the expected equality between the
Rankin-Selberg type Asai L-function of a generic representation, and the Asai L-function of
its Langlands parameter.

Introduction

Given K/F a quadratic extension of p-adic fields, we denote by σ the non trivial element of the
Galois group of K over F . We denote by ηK/F the character of order 2 of F ∗, trivial on the set
of norms of K∗.

A smooth representation of GL(n,K) is said to be distinguished if it admits on its space a
nonzero linear form, which is invariant under GL(n, F ). The pair (GL(n,K), GL(n, F )) is known
to be a generalized Gelfand pair, which means that for an irreducible representation (π, Vπ) of
GL(n,K), the space of GL(n, F )-invariants linear form on Vπ is of dimension at most one. The
unitary distinguished representations are the natural space which support the Plancherel measure
of the symmetric space GL(n, F )\GL(n,K). Hence their understanding is related to harmonic
analysis on GL(n, F )\GL(n,K).

We classify here distinguished generic representations of GL(n,K), in terms of inducing dis-
crete series representations. More precisely we prove the following result.

Theorem 5.2. Let π be a generic representation of the group GL(n,K), obtained by normalised
parabolic induction of quasi-square-integrable representations ∆1, . . . ,∆t. It is distinguished if
and only if there exists a reordering of the ∆i’s, and an integer r between 1 and t/2, such that
we have ∆σ

i+1 = ∆∨
i for i = 1, 3, .., 2r− 1, and ∆i is distinguished for i > 2r.

Distinguished representations of GL(n,K) are also related by a conjecture of Flicker and Ral-
lis, to the base change theory of representations of a unitary group (see for example [A-R]). The
main result of this paper could perhaps reduce the proof of this conjecture for generic distin-
guished representations of GL(n,K), to the case of discrete series representations.

Generic distinguished representations are related to the analytic behaviour of meromorphic
functions, called Asai L-functions associated with generic representations.
The basic theory of the Asai L-function of a generic representation π of GL(n,K), denoted by
LK

F (π) and defined as the gcd of functions obtained as meromorphic extension of Rankin-Selberg
integrals, such as its functional equation, has first been developed by Flicker in [F1] and [F3].

Then in [K], Kable proves that if the Asai L-function LK
F (π) of a discrete series representation

π admits a pole at zero, then the representation π is distinguished. This, with the equality of
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the product of the Asai L-functions of π and ηπ (for a character η of K∗ extending ηK/F ), and
of the classical L function of the pair (πσ, π∨), obtained by a global-local method, allows him to
prove the so called Jacquet conjecture for discrete series representations. This result states that
a discrete series representation π of GL(n,K) which is Galois autodual (i.e. π∨ = πσ), is either
distinguished or ηK/F -distinguished.
This result is precised in [A-K-T], where it is shown that the preceding (either/or) is exclusive,
by first proving that the Asai L-function of a tempered distinguished representation has a pole
at zero.

For non discrete series representation, the correct statement is that of Theorem 5.2. This
fact is first noticed in [M1], where the theorem 5.2 is proved for principal series representation.
Actually this theorem can be seen as a generalization of Jacquet’s conjecture for discrete series
representations, as it says that a generic representation of GL(n,K) is Galois autodual if and only
if it is parabolically induced from three representations, one that is distinguished but not ηK/F -
distinguished, one that is distinguished and ηK/F -distinguished, and one that is distinguished but
not ηK/F -distinguished. Among these, the distinguished are those with purely ηK/F -distinguished
part equal to zero.
The last step before Theorem 5.2, consisting of showing that the representations described in the
theorem are indeed distinguished is the main result of [M4].

Concerning Rankin-Selberg type Asai L-functions, a definitive statement relating their poles
and distinction is obtained in [M2], where it is proved that a representation π is distinguished, if
and only if its Asai L-function admits a so called (in the terminology of [C-P]) exceptional pole
at zero.

There are two other ways to associate an Asai L-function to a representation π of the group
GL(n,K).
The first is by considering the n-dimensional representation ρ of the Weil-Deligne W ′

K of K, asso-
ciated to π by the local Langlands correspondence. One then defines by multiplicative induction
a representation of the Weil-Deligne group W ′

F (which contains W ′
K as a subgroup of index 2),

of dimension n2, denoted by M
W ′

F

W ′
K

(ρ). The Asai L-function corresponding to π, and denoted

by LK,W
F (π, s) is by definition the classical L-function of the representation M

W ′
F

W ′
K

(ρ), which we

denote by LK
F (ρ).

The second, called the Langlands-Shahidi method, is introduced in [Sh]. We denote by LK,U
F (π)

the meromorphic function obtained by this process, the study of its poles is this time related
to the fact of knowing when a representation π is obtained by base change lift from a unitary
group (see [Go]). It is conjectured that these three functions are actually the same (cf. [He], [K],

[A-R]). Henniart proves in [He] that the functions LK,U
F and LK,W

F are equal. Anandavardhanan

and Rajan prove in [A-R] that the functions LK
F and LK,U

F coincide on representations of the
discrete series of GL(n,K).

In [M3], which can be used as a survey for local Rankin-Selberg type Asai L-functions, The-
orem 5.2 is stated as a conjecture. It is then showed using a method of Cogdell and Piatetski-
Shapiro and the known equality of LK,W

F and LK
F for discrete series representations, that the

theorem implies the equality of LK,W
F and LK

F for generic representations.
Hence we have the following result.

Theorem 5.3. Let π be a generic representation of the group GL(n,K), and let ρ be the represen-
tation of dimension n of the Weil-Deligne group W ′

K of K, corresponding to π through Langlands
correspondence. The following equality of L-functions is satisfied:

LK
F (π, s) = LK

F (ρ, s).
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Now the main tool for the proof of Theorem 5.2 is just Mackey theory. A generic representa-
tion π of the group GL(n,K), is obtained by normalized parabolic induction of a discrete series
representation ∆ = ∆1 ⊗ · · · ⊗ ∆t of a standard Levi subgroup of a parabolic subgroup P (K)
of GL(n,K). Calling R a set of representatives of the double classes P (K)\GL(n,K)/GL(n, F ),
the representation π has a factor series, with factors being induced representations of ∆ to
uGL(n, F )u−1 for some u in R, from the subgroup P (K) ∩ uGL(n, F )u−1. If the representa-
tion π is GL(n, F )-distinguished, then it is at least the case for one of the factors. But using
Frobenius reciprocity law, such a factor is distinguished, if and only if the representation ∆ is it-
self (χ)-distinguished by P (K)∩uGL(n, F )u−1. Studying the structure of this subgroup, implies
that the ∆i’s must be of the requested form.

The first part of Section 1 is about definitions and notations of the basic objects we use. The
second part concerns itself with results of Bernstein and Zelevinsky about classification of discrete
series representations in terms of segments, and the computation of their Jacquet modules.

In the Section 2, we give a natural set of representativesR of the double classes P (K)\GL(n,K)/GL(n, F )
for a standard parabolic subgroup P (K) of GL(n,K) for u in R.

The third section is devoted to prove a relation between the modulus characters of the groups
P (K) and P (K) ∩ uGL(n, F )u−1.

We eventually prove Theorem 5.2 in the last section.
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1 Preliminaries

1.1 Notations and definitions

We fix until the end of this paper a local field F of characteristic zero. We fix a quadratic exten-
sion K of F .

If G is a group acting on two vector spaces V and V ′, then HomG(V, V ′) designates the space
of G-equivariant maps from V to V ′.
If E is a finite extension of F , we denote by vE the discrete valuation of E, which verifies that
vE(πE) is 1 if πE is a prime element of E. We denote by qE the cardinality of the residual field of

E. We denote by | |E the absolute value of E defined by |x|E = q
−vE(x)
E , for x in E. We denote

by RE the valuation ring of E, and by PE the maximal ideal of RE . Finally we denote by WE

the Weil group of E (cf. [T]), and by W ′
E the Weil-Deligne group of E. The group W ′

E is the
semidirect product group WE ⋊ SL(2,C), with WE acting by its quotient group qZ

E on SL(2,C),
such that if we take a Frobenius element φE in WE , the action of φE on SL(2,C) is given by

conjugation by the matrix

(
qE 0
0 1

)

.

Let G be an affine algebraic group defined on the field F . If E is an extension of F , we
denote by G(E) the group of the points of G over E. Such a group is locally compact and totally
disconnected, we will call it an l-group.
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Let n be a positive integer, we denote by Mn = Mn(F̄ ) the additive group of n×n matrices with
entries in F̄ , and we denote by Gn the general linear group GL(n, F̄ ) of invertible matrices of
Mn(F̄ ). If M belongs to Mn, we denote its determinant by det(M).
We call partition of a positive integer n, a family n̄ = (n1, . . . , nt) of positive integers (for a
certain t in N − {0}), such that the sum n1 + · · · + nt is equal to n. To such a partition, we
associate an algebraic subgroup of Gn denoted by Pn̄, given by matrices of the form










g1 ⋆ ⋆ ⋆ ⋆
g2 ⋆ ⋆ ⋆

. . . ⋆ ⋆
gt−1 ⋆

gt










,

with gi in Gni for i between 1 and t. We call it the standard parabolic subgroup associated with
the partition n̄. We call parabolic subgroup any conjugate of a standard parabolic subgroup. We
denote by Nn̄ its unipotent radical subgroup, given by the matrices






In1
⋆ ⋆
. . . ⋆

Int






and by Mn̄ its Levi subgroup given by the matrices






g1
. . .

gt






with the gi’s in Gni . The group Pn̄ identifies with the semidirect product Nn̄ ⋊Mn̄.

Let G be an l-group (i.e. locally compact totally disconnected), we denote by dGg or simply dg
if the context is clear, a left Haar measure G. For x in G, we denote by δG(x) the positive number
defined by the relation dg(gx) = δ−1

G (x)dg(g). The modulus character ∆G defines a morphism
from G into R>0. We denote by δG (which we also call modulus character) the morphism from
G into R>0 defined by x 7→ ∆G(x−1).

Let G be an l-group, and H a subgroup of G, a representation (π, V ) of G is said to be smooth
if for any vector v of the vector space V , there is a subgroup Uv of G stabilizing v through π. We
denote by V H subspace of fixed points of V under H . The category of smooth representations
of G is denoted by Alg(G). If (π, V ) is a smooth representation of G, we denote by π∨ its dual
representation in the smooth dual space Ṽ of V .
We will only consider smooth representations of l-groups.

Definition 1.1. Let G be an l-group, H a closed subgroup of G, and (π, V ) a representation of
G. If χ is a character of H, we say that the representation π is χ-distinguished under H, if it
admits on its space a nonzero linear form L, verifying L(π(h)v) = χ(h)L(v) for all v in V and h
in H. If χ = 1, we say H-distinguished instead of 1-distinguished. We omit “H-” if the context
is clear.

Let X be a locally closed space of an l-group G, and H closed subgroup of G, with H.X ⊂ X .
If ρ is a complex representation of H in Vρ, we denote by C∞

c (H\X, ρ, Vρ) space of smooth func-
tions on G, with value in Vρ, with support compact modulo H which verify f(hx) = ρ(h)f(x) for
h ∈ H , and x ∈ X .
If ρ is a complex representation of H in Vρ, we denote by C∞(H\X, ρ, Vρ) the space of functions
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f from X to Vρ, fixed under the action by right translation of some compact open subgroup Uf

of G, and which verify f(hx) = ρ(h)f(x) for h ∈ H , and x ∈ X . We denote by C∞
c (H\X, ρ, Vρ)

subspace of functions with support compact modulo H of C∞(H\X, ρ, Vρ).
We denote by IndG

H(ρ) the representation by right translation of G in C∞(H\G, ρ, Vρ) and by
indG

H(ρ) the representation by right translation of G in C∞
c (H\G, ρ, Vρ) Let n be a positive

integer, and n̄ = (n1, . . . , nt) be a partition of n, and suppose that we have a representa-

tion (ρi, Vi) of Gni(K) for each i between 1 and t. We denote by Ind′
G
H(ρ) the normalized

induced representation IndG
H((∆G/∆H)1/2ρ) and by ind′

G
H(ρ) the normalized induced represen-

tation indG
H((∆G/∆H)1/2ρ).

Let ρ be the extension to Pn̄ of the natural representation ρ1 ⊗ · · · ⊗ ρt of Mn̄ ≃ Gn1
(K) ×

· · · × Gnt(K), by taking it trivial on Nn̄. We denote by ρ1 × · · · × ρt the representation

ind′
Gn(K)
Pn̄(K) (ρ) = Ind′

Gn(K)
Pn̄(K) (ρ).

1.2 Segments and quasi-square integrable representations

From now on we assimilate representations to their isomorphism classes.
In this subsection, we recall results of Bernstein and Zelevinsky about quasi-square integrable

representations, more precisely their classification in terms of segments associated to supercuspi-
dal representations, and how to compute their Jacquet modules.

If π is an irreducible representation of Gn(K), one denotes by cπ its central character.
We recall that an irreducible representation of Gn(K) is called supercuspidal if all its Jacquet
modules associated to proper standard Levi subgroups are zero, which is equivalent to the fact
that it has a coefficient with support compact modulo the center Zn(K) of the group Gn(K).

An irreducible representation π of the group Gn(K) is called quasi-square-integrable, if there
exists a positive character χ of the multiplicative group K∗, such that one of the coefficients
g 7→ c(g) of π verifies that c(g)χ(det(g)) is a square-integrable function for a Haar measure of
Gn(K)/Zn(K). One says that the representation π is square-integrable (or belongs to the discrete
series of Gn(K)) if one can choose χ to be trivial.
If ρ is a supercuspidal representation of Gr(K) for a positive integer r, one denotes by ρ| |K the
representation obtained by twist with the character | det( )|K .
In general, if E is an extension of F , and χ is a character of E∗, we will denote by χ(g) the
complex number χ(det(g)).
We call segment a list ∆ of supercuspidal representations of the form

∆ = [ρ| |l−1
K , ρ| |l−2

K , . . . , ρ]

for a positive integer l. We call length of the segment the integer rl. We have the following
theorem (Theorem 9.3 of [Z]) who classifies quasi-square integrable representations in terms of
segments.

Theorem 1.1. Let ρ be a supercuspidal representation of Gr(K) for a positive integer r. The
representation ρ× ρ| |F × · · · × ρ| |l−1

F of Grl(K) is reducible, with a unique irreducible quotient

that we denote by [ρ| |l−1
K , ρ| |l−2

K , . . . , ρ]. A representation ∆ of the group Gn(K) is quasi-square-
integrable if and only if there is r ∈ {1, . . . , n} and l ∈ {1, . . . , n} with lr = n, and ρ a supercus-
pidal representation of Gr(K) such that the representation ∆ is equal to [ρ| |l−1

K , ρ| |l−2
K , . . . , ρ],

the representation ρ is unique.

A representation of this type is square-integrable if and only if it is unitarizable, or equiva-

lently if and only if ρ| |
(l−1)/2
F is unitarizable (i.e. its central character is unitary). We say that

two segments are linked if none of them is a subsegment of the other, but their union is still a
segment.
Now we allow ourself to call segment a quasi-square-integrable representation, and to denote such
a representation by its corresponding segment.
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We will also use the following useful notation: if ∆1 and ∆2 are two disjoint segments, which are
linked, and such that ∆1 precedes ∆2 (i.e. the segment ∆1 is of the form [ρ1| |

l1−1
K , ρ1| |

l1−2
K , . . . , ρ1],

the segment ∆2 is of the form [ρ2| |
l2−1
K , ρ1| |

l2−2
K , . . . , ρ2], with ρ1 = ρ2| |

l2
K), we denote by [∆1,∆2]

the segment [ρ1| |
l1−1
K , . . . , ρ2].

Let P be a standard parabolic subgroup of Gn(K), M its standard Levi subgroup, and let P ′

be a standard parabolic subgroup of M , with standard Levi subgroup M ′, and unipotent radical
N ′. We recall that the normalized Jacquet module of a representation (ρ, V ) of M , associated
to M ′, which we denote by rM ′,M (ρ), is the representation of M ′ on the space V/V (N ′) (where
V (N ′) is the subspace of V generated by vectors of the form v− π(n′)v for v in V and n′ in N ′),

defined by rM ′,M (ρ)(m′)(v + V (N ′)) = δ
−1/2
M ′ ρ(m′)v + V (N ′).

The following proposition (Proposition 9.5 of [Z]), explains how to compute normalized Jacquet
modules of segments.

Proposition 1.1. Let ρ a supercuspidal representation of Gr(K) for a positive integer r. Let ∆
be the segment [ρ| |l−1

K , ρ| |l−2
K , . . . , ρ], for a positive integer l. Let M be a standard Levi subgroup

of Glr(K) associated with a partition (n1, . . . , nt) of lr.
The representation rM,G(∆) is zero, unless (n1, . . . , nt) admits (r, . . . , r)

︸ ︷︷ ︸

l times

as a sub partition, in

which case ∆ is of the form [∆1, . . . ,∆t], with ∆i of length ni, and rM,G(∆) is equal to the tensor
product ∆1 ⊗ · · · ⊗ ∆t.

2 Double classes P (K)\Gn(K)/Gn(F )

Let n̄ be a partition (n1, . . . , nt) of a positive integer n, we denote by P the standard parabolic
subgroup Pn̄(K) of G = Gn(K). We denote by H the group Gn(F ).
We study in first place the double classes of H\G/P . We identify the quotient space G/P with
a flag manifold given by sequences (called n̄-flags) 0 ⊂ V1 ⊂ ... ⊂ Vt−1 ⊂ V = Kn, where Vj is a
vector subspace of V , of dimension n1 + · · ·+ nj . Studying the double classes of H\G/P , is then
equivalent to understand the H-orbits of the flag manifold G/P . This is done in the following
theorem.

Theorem 2.1. The H-orbits of the flag manifold G/P , are characterized by the integers dim(Vi∩
V σ

j ), for 1 ≤ i ≤ j ≤ t − 1, which means that two n̄-flags D = 0 ⊂ V1 ⊂ ... ⊂ Vt−1 ⊂ V and
D′ = 0 ⊂ V ′

1 ⊂ ... ⊂ V ′
t−1 ⊂ V are in the same orbit under H, if and only if dim(Vi ∩ V

σ
j ) =

dim(V ′
i ∩ V ′σ

j ) for 1 ≤ i ≤ j ≤ t− 1.

Proof. We first state the following classical lemma.

Lemma 2.1. Let V = Kn, and VF = Fn ⊂ V , the F -subspace of vectors of V fixed by σ.
A vector subspace V ′ of V verifies that V ′ = V ′σ, if and only if one can choose a basis of V ′

in VF , in which case one says that V ′ is defined over F . Any subspace defined over F , has a
supplementary subspace defined over F .

Now we prove a second lemma about the filtration of V in terms of Vi ∩ V
σ
j for Vi and Vj in

the set of subspaces defining a n̄-flag.
Let D be a n̄-flag, given by the sequence D = 0 ⊂ V1 ⊂ ... ⊂ Vt−1 ⊂ V . We set V0 = 0 and
Vt = V .
For 1 ≤ i ≤ j ≤ t, we denote by Si,j a supplementary space of Vi ∩ V

σ
j−1 + Vi−1 ∩ V

σ
j in Vi ∩ V

σ
j .

If i = j, we add the condition that the supplementary space Si,i we choose is defined over F ,
which is possible according to Lemma 2.1.
Eventually, for 1 ≤ i ≤ j ≤ t, we denote by Sj,i, the space Sσ

i,j , which is a supplementary space
of Vj ∩ V

σ
i−1 + Vj−1 ∩ V

σ
i in Vj ∩ V

σ
i .
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Lemma 2.2. With these notations, if (i, j) belongs to {1, . . . , t}, the space Vi−1 +Vi∩V
σ

j is equal
to the sum

(S1,1 ⊕ . . .⊕ S1,t) ⊕ . . .⊕ (Si−1,1 ⊕ . . .⊕ Si−1,t) ⊕ (Si,1 ⊕ . . .⊕ Si,j).

In particular, the space Vi is equal to the direct sum

(S1,1 ⊕ . . .⊕ S1,t) ⊕ . . .⊕ (Si,1 ⊕ . . .⊕ Si,t).

Proof. Let x belong Vi−1 +Vi ∩V
σ
j , then one can write x = xi−1 + yi,j for vi−1 in Vi−1 and yi,j in

Vi∩V
σ
j . But then yi,j = yi−1,j +yi,j−1 +si,j with yi−1,j in Vi−1∩Vj

σ, yi,j−1 in Vi−1∩Vj
σ and si,j

in Si,j . Hence we have x = x′i−1 + yi,j−1 + si,j , with x′i−1 = xi−1 + yi−1,j belonging to Vi−1. So x
belongs to (Vi−1 +Vi∩V

σ
j−1)+Si,j . But by definition of Si,j , the preceding sum is actually direct,

i.e. x belongs (Vi−1+Vi∩ ¯Vj−1)⊕Si,j . We thus proved that Vi−1+Vi∩Vj
σ = (Vi−1+Vi∩V

σ
j−1)⊕Si,j ,

and the proof ends by induction.

Getting back to the proof of Theorem 2.1, it is obvious that if two n̄-flags D and D′ are in
the same H-orbit, then one must have dim(Vi ∩ V

σ
j ) = dim(V ′

i ∩ V ′σ
j ) for 1 ≤ i ≤ j ≤ t.

Conversely, suppose that two n̄-flagsD andD′, satisfy the condition dim(Vi∩V
σ
j ) = dim(V ′

i ∩V
′σ
j )

for 1 ≤ i ≤ j ≤ t.
The assumption dim(Vi ∩ V

σ
j ) = dim(V ′

i ∩ V ′σ
j ) for 1 ≤ i ≤ j ≤ t, implies that for any couple

(i, j) ∈ {1, . . . , t}
2
, Si,j and S′

i,j have the same dimension. For 1 ≤ i < j ≤ t, we choose a
K-linear isomorphism hi,j between Si,j and S′

i,j . This defines an isomorphism hj,i between Sj,i

and S′
j,i, verifying hj,i(v) = (hi,j(v

σ))σ for all v in Sj,i.
Eventually, for each l between 1 and t, as Sl,l and S′

l,l are defined over F , we choose an isomorphism
hl,l between Sl,l and S′

l,l, verifying that hl,l(v
σ) = hl,l(v)

σ for all v ∈ Vl,l.
As the space V is equal to the sum ⊕

(k,l)∈{1,...,t}2

Sk,l, and V ′ is equal to ⊕
(k,l)∈{1,...,t}2

S′
k,l, the

K-linear isomorphism h = ⊕
(k,l)∈{1,...,t}2

hl,k defines an element of H , sending D to D′, so that D

and D′ are in the same H-orbit.

The proof of the previous theorem has as a consequence the following corollary.

Corollary 2.1. The quotient H\G/P is a finite set, and its cardinality is equal to the number of
sequences of positive or null integers (ni,j)1≤i≤j≤t, such that if we let nj,i be equal to nj,i, then

for i between 1 and t, one has ni =
∑t

j=1 ni,j.

Definition 2.1. We call I(n̄) the set of sequences described in the preceding corollary.

Now to such a sequence, we are going to associate an element of G, which will be a represen-
tative of the corresponding double coset of H\G/P . This will thus achieve the description of the
set H\G/P .
First we recall that we denote by V the space Kn, and that P corresponds to a partition
n̄ = (n1, . . . , nt) of n. We denote by (e1, . . . , en) the canonical basis of V , and by D0 the canonical
n̄-flag defined over F , given by 0 ⊂ V 0

1 ⊂ V 0
2 ⊂ V 0

t−1 ⊂ V , with V 0
i = V ect(e1, . . . , e(n1+...ni)),

corresponding to the sequence ni,j = 0 if i < j and ni,i = ni.

Proposition 2.1. (Representatives for H\G/P ) Let (ni,j)1≤i≤j≤t be an element of I(n̄). We
denote by V 0

i,j the space

V ect(e(n1+···+ni−1+ni,1+···+ni,j−1+1), . . . , e(n1+···+ni−1+ni,1+···+ni,j−1+ni,j)),

and we denote by B0
i,j its canonical basis

{
e(n1+···+ni−1+ni,1+···+ni,j−1+1), . . . , e(n1+···+ni−1+ni,1+···+ni,j−1+ni,j)

}
.
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Hence one has

V = (V 0
1,1 ⊕ · · · ⊕ V 0

1,) ⊕ (V 0
2,1 ⊕ · · · ⊕ V 0

2,t) ⊕ · · · ⊕ (V 0
t,1 ⊕ · · · ⊕ V 0

t,t).

We denote by u′ the element of G sending V 0
i,i onto itself, and V 0

i,j⊕V
0
j,i onto itself for i < j, whose

restriction to V 0
i,i has matrix Ini,i in the basis B0

i,i, and whose restriction to V 0
{i,j} = V 0

i,j ⊕ V 0
j,i

has matrix (
1
2Ini,j

1
2Ini,j

− 1
2δ Ini,j

1
2δ Ini,j

)

in the basis B0
{i,j} = B0

i,j ∪B
0
j,i.

The element u′ is a representative of the double coset of H\G/P associated with (ni,j)1≤i≤j≤t in
I(n̄).

Proof. If B1 = (vi) and B2 = (wi) are two families of vectors of same finite cardinality in V , we
denote by λB1 +µB2 the family (λvi +µwi) for λ and µ in K. With these notations, the element
u′ sends V 0

i,j onto Si,j = V ect(B0
i,j −

1
2δB

0
j,i), and V 0

j,i onto Sj,i = Sσ
i,j . Denoting V 0

i,i by Si,i and

one verifies from our choices that for 1 ≤ i ≤ t, one has Vi = u(V 0
i ) = (S1,1 ⊕ . . .⊕ S1,t) ⊕ . . .⊕

(Si,1 ⊕ . . . ⊕ Si,t), and that Si,j is a supplementary space of Vi ∩ V
σ
j−1 + Vi−1 ∩ V σ

j in Vi ∩ V
σ
j .

Hence the n̄-flag D corresponds to the sequence (ni,j)1≤i≤j≤t of I(n̄).

A reformulation of what precedes is the following.

Proposition 2.2. (Representatives for P\G/H) A set of representatives of P\G/H is given by
the elements u = u′−1, where the u′ are as in Proposition 2.1. The representative of the class
associated with the sequence (ni,j)1≤i≤j≤t in I(n̄), restricts to V 0

i,i with matrix Ini,i in the basis

B0
i,i, and to V 0

{i,j} with matrix
(
Ini,j −δIni,j

Ini,j δIni,j

)

in the basis B0
{i,j}.

Definition 2.2. We denote by R(P\G/H) the set of representatives described in Proposition 2.2.

3 Structure of the group P (K) ∩ uGn(F )u−1

Let u be an element of R(P\G/P ), corresponding to a sequence (ni,j)1≤i≤j≤t in I(n̄). We want
to analyze the structure of the group P ∩uHu−1, which is the same set as P ∩uMn(F )u−1. First
we give a bloc decomposition of the group uMn(F )u−1. We denote by MP the standard Levi
subgroup of P .

A matrix M = MB0(a) in Mn(K) can be viewed as a “disjoint union” of blocks M̃{k,l},{i,j} =
MB0

{i,j}
,B0

{k,l}
(a{k,l},{i,j}), for 1 ≤ k ≤ l ≤ t and 1 ≤ i ≤ j ≤ t, where the morphism a{k,l},{i,j}

is the composition of the projection on V 0
{k,l} (where V 0

{t,t} designates V 0
t,t), with respect to the

other spaces V 0
{k′,l′} (for 1 ≤ k′ ≤ l′ ≤ t, and (k′, l′) 6= (k, l)), and of the restriction of a to V 0

{i,j}.

More visually, the four following cases occur.

• If k < l and i < j, then one has M =

ni,j

︷︸︸︷
nj,i

︷︸︸︷

nk,l{

nl,k{













∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗

[
M1

]
∗ ∗

[
M2

]
∗

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗

[
M3

]
∗ ∗

[
M4

]
∗

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗













, and

8



M̃{k,l},{i,j} is the block

[
M1 M2

M3 M4

]

, which we identify with the matrix M{k,l},{i,j} =

ni,j

︷︸︸︷
nj,i

︷︸︸︷

nk,l{

nl,k{













0 0 0 0 0 0 0
0 0

[
M1

]
0 0

[
M2

]
0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0

[
M3

]
0 0

[
M4

]
0

0 0 0 0 0 0 0













.

• If k = l and i < j, one has M =

ni,j

︷︸︸︷
nj,i

︷︸︸︷

nk,k{













∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗

[
M1

]
∗ ∗

[
M2

]
∗

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗













, and M̃{k,k},{i,j}

is the block
[
M1 M2

]
, which we identify with the matrix M{k,k},{i,j} =

ni,j

︷︸︸︷
nj,i

︷︸︸︷

nk,k{













0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0

[
M1

]
0 0

[
M2

]
0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0













,

• If k < l and i = j, one has M =

ni,i

︷︸︸︷

nk,l{

nl,k{













∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

[
M1

]
∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

[
M2

]
∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗













, and M̃{k,l},{i,i} is the

block

[
M1

M2

]

, which we identify with the matrixM{k,l},{i,i} =

ni,i

︷︸︸︷

nk,l{

nl,k{













0 0 0 0 0 0 0
0 0 0 0

[
M1

]
0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0

[
M2

]
0 0

0 0 0 0 0 0 0













.
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• If k = l and i = j, one has M =

ni,i

︷︸︸︷

nk,k{













∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

[
M

]
∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗













, and M̃{k,k},{i,i} is the

block
[
M

]
, which we identify with the matrixM{k,k},{i,i} =

ni,i

︷︸︸︷

nk,k{













0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0

[
M

]
0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0













.

With these notations, a matrix M is the “disjoint union” of the blocks M̃{k,l},{i,j}, or put in
another way, the direct sum of the matrices M{k,l},{i,j}.

Denoting by ũ{i,j} the matrix

(
Ini,j −δIni,j

Ini,j δIni,j

)

if i < j, and Ini,i otherwise, the matrix uMu−1

becomes the ”disjoint union” of the blocks ũ{k,l}M̃{k,l},{i,j}ũ
−1
{i,j}.

If we denote by u{i,j} the matrix
















In1,1

. . .

Ini,j −δIni,j

. . .

Ini,j δIni,j

. . .

Int,t
















of Mn(K) if

i < j, and the identity matrix of Mn(K) otherwise, so that the matrix u is the commutative
product of the matrices u{i,j} for 1 ≤ i ≤ j ≤ t, another way to say this is that uMu−1 is the

direct sum of the matrices u{k,l}M{k,l},{i,j}u
−1
{i,j}.

Proposition 3.1. A matrix M belongs to Mn(F ), if and only if the blocks ũ{k,l}M̃{k,l},{i,j}ũ
−1
{i,j}

are of the form

[
M1 Mσ

2

M2 Mσ
1

]

with M1 and M2 in Mnk,l,ni,j (K) for i < j and k < l, the blocks

ũ{k,k}M̃{k,k},{i,j}ũ
−1
{i,j} are of the form

[
M Mσ

]
with M in Mnk,k,ni,j (K) for i < j, the blocks

ũ{k,l}M̃{k,l},{i,i}ũ
−1
{i,i} are of the form

[
M ′

M ′σ

]

with M ′ in Mnk,l,ni,i(K) for k < l, and the blocks

ũ{k,k}M̃{k,k},{i,i}ũ
−1
{i,i} have coefficients in F .

This completes the description of uMn(F )u−1.

Now let’s see when a matrix of uMn(F )u−1 is in P . To do this, let M be in uMn(F )u−1, it
is more convenient to look at the blocks M̃{k,l,i,j}, which are those corresponding to the matrices
M{k,l,i,j} = M{k,l},{k,l} +M{k,l},{i,j} +M{k,l},{i,j} +M{k,l},{i,j} when (k, l) 6= (i, j). The matrix
M is thus the “union” (but not disjoint anymore) of those blocks.

The configurations are the following:
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A) k < l ≤ i < j: the block M̃{k,l,i,j} has the form

nk,l

︷︸︸︷
nl,k

︷︸︸︷
nj,i

︷︸︸︷
ni,j

︷︸︸︷

nk,l{
nl,k{
ni,j{
nj,i{







[
M1 Mσ

2

M2 Mσ
1

] [
M3 Mσ

4

M4 Mσ
3

]

[
M5 Mσ

6

M6 Mσ
5

] [
M7 Mσ

8

M8 Mσ
7

]







, with

the Mi’s with coefficients in K.

In this case, remembering that two elementary blocks (i.e of the form Mi or Mσ
i ) can occur

in the same Levi block of P , if and only if l = i, in which case the elementary blocks in the
same block of MP are Mσ

1 , M4, M
σ
6 and M7.

From this we deduce that in any case, if M is in P , the block M̃{k,l,i,j} is of the form

nk,l

︷︸︸︷
nl,k

︷︸︸︷
ni,j

︷︸︸︷
nj,i

︷︸︸︷

nk,l{
nl,k{
ni,j{
nj,i{







Ak,l 0
0 Al,k

M M ′σ

M ′ Mσ

0 0
0 0

Ai,j 0
0 Ai,j







with Al,k = Aσ
k,l and Aj,i = Aσ

i,j being invertible.

B) k ≤ i < l ≤ j: the block M̃{k,l,i,j} has the form

nk,l

︷︸︸︷
ni,j

︷︸︸︷
nl,k

︷︸︸︷
nj,i

︷︸︸︷

nk,l{
ni,j{
nl,k{
nj,i{







M1 M3

M5 M7

Mσ
2 Mσ

4

Mσ
6 Mσ

8

M2 M4

M6 M8

Mσ
1 Mσ

3

Mσ
5 Mσ

7







.

In this case, two elementary blocks can occur in the same Levi block of P , if and only if
k = i or l = j. In the first case, the elementary blocks in the same block of MP are M1,
M3, M5 and M7. In the second case the elementary blocks in the same block of MP are
Mσ

1 , Mσ
3 , Mσ

5 ,and Mσ
7 .

Hence in any case, ifM is in P , then M̃{k,l,i,j} is of the form

nk,l

︷︸︸︷
ni,j

︷︸︸︷
nl,k

︷︸︸︷
ni,j

︷︸︸︷

nk,l{
ni,j{
nl,k{
nj,i{







Ak,l M
0 Ai,j

0 0
0 0

0 0
0 0

Al,k Mσ

0 Aj,i







with Al,k = Aσ
k,l and Aj,i = Aσ

i,j being invertible.

C) k < i < j < l: the block M̃{k,l,i,j} has the form

nk,l

︷︸︸︷
ni,j

︷︸︸︷
nj,i

︷︸︸︷
nk,l

︷︸︸︷

nk,l{
ni,j{
nj,i{
nk,l{







M1 N1

N ′
1 M ′

1

N2 Mσ
2

M ′σ
2 N ′σ

1

N ′
2 M ′

2

M2 Nσ
1

M ′σ
1 N ′σ

2

Nσ
2 Mσ

1







.

In this case, two elementary blocks can never occur in the same Levi block of P

If M is in P , the block M̃{k,l,i,j} is of the form

nk,l

︷︸︸︷
ni,j

︷︸︸︷
nj,i

︷︸︸︷
nl,k

︷︸︸︷

nk,l{
ni,j{
nj,i{
nl,k{







Ak,l 0
0 Ai,j

0 0
0 0

0 0
0 0

Aj,i 0
0 Al,k







with

Al,k = Aσ
k,l and Aj,i = Aσ

i,j being invertible.
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D) k = l ≤ i < j: the block M̃{k,k,i,j} has the form

nk,k

︷︸︸︷
ni,j

︷︸︸︷
nj,i

︷︸︸︷

nk,k{
ni,j{
nj,i{





H M Mσ

N
Nσ

A Bσ

B Aσ




with H having

its coefficients in F .

In this case, two elementary blocks can occur in the same Levi block of P , if and only if
k = i, in which case the elementary blocks in the same block of MP are H , M , N and A.

In any case, if M is in P , then M̃{k,k,i,j} is of the form

nk,k

︷︸︸︷
ni,j

︷︸︸︷
nj,i

︷︸︸︷

nk,k{
ni,j{
nj,i{





Ak,k M Mσ

0
0

Ai,j 0
0 Aσ

i,j




with

Aj,i = Aσ
i,j invertible, and Ak,k invertible with coefficients in F .

E) i < k = l < j: the block M̃{k,k,i,j} has the form

ni,j

︷︸︸︷
nk,k

︷︸︸︷
nj,i

︷︸︸︷

ni,j{
nk,k{
nj,i{





A M Bσ

N
B

H Nσ

Mσ Aσ




with H having

its coefficients in F .

In this case, two elementary blocks cannot occur in the same Levi block of P . If M is in P ,

then M̃{k,k,i,j} is of the form

ni,j

︷︸︸︷
nk,k

︷︸︸︷
nj,i

︷︸︸︷

ni,j{
nk,k{
nj,i{





Ai,j 0 0
0
0

Ak,k 0
0 Aj,i




with Ak,k = Aσ

k,k and Aj,i = Aσ
i,j

invertible.

F) k < l ≤ i = j: the block M̃{k,l,i,i} has the form

nk,l

︷︸︸︷
nl,k

︷︸︸︷
ni,i

︷︸︸︷

nk,l{
nl,k{
ni,i{





A Bσ M
B Aσ Mσ

N Nσ H




with H having

its coefficients in F .

In this case, two elementary blocks can occur in the same Levi block of P , if and only if
l = i, in which case the elementary blocks in the same block of MP are Aσ, Mσ, Nσ and
H .

In any case, if M is in P , then M̃{k,l,i,j} is of the form

nk,l
︷︸︸︷

nl,k
︷︸︸︷

ni,i

︷︸︸︷

nk,l{
nl,k{
ni,i{





Al,k 0 M
0 Aσ

l,k Mσ

0 0 Ai,i




with

Ak,l = Aσ
l,k invertible, and Ai,i invertible with coefficients in F .

G) k = l < i = j: the block M̃{k,k,i,i} has the form

nk,k

︷︸︸︷
ni,i

︷︸︸︷

nk,k{
ni,i{

[
H1 H2

H3 H4

]
with the Hi’s having

its coefficients in F , and if M is in P , as two elementary blocks can not occur in the same

Levi block of P , the matrix M̃{k,k,i,i} has the form

nk,k

︷︸︸︷
ni,i

︷︸︸︷

nk,k{
ni,i{

[
Ak,k H

0 Ai,i

]
with all coeffi-
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cients in F .

Let Ms be the standard Levi subgroup of MP (or of G), corresponding to the sub partition

s = (n1,1, . . . , n1,t, . . . , nt,1, . . . , nt,t)

of n̄ = (n1, . . . , nt), and Ns the associated standard unipotent subgroup of G.

From the preceding analysis, we deduce:

Proposition 3.2. Let u be an element of R(P\G/H), corresponding to a sequence s = (ni,j)1≤i≤j≤t

in I(n̄). The group P ∩ uHu−1 is the semi-direct product of Ms ∩ uHu
−1 and Ns ∩ uHu

−1.
The group Ms(F ) = Ms ∩ uHu

−1 is given by the matrices




















A1,1

. . .

A1,t

A2,1

. . .

A2,t

At,1

. . .

At,t




















with Aj,i = Aσ
i,j in Mni,j (K).

The group Ns ∩uHu
−1 is equal to

{

In ⊕
k≤l,i≤j

N{k,l},{i,j}

}

, where N{k,l},{i,j} = {0} except in the

following cases:

A) k < l ≤ i < j: then N{k,l},{i,j} is the F -vector subspace of Mn(K) of matrices M{k,l},{i,j}

with M̃{k,l},{i,j} =

[
M Nσ

N Mσ

]

for M and N in Mnk,l,ni,j (K).

B) k ≤ i < l ≤ j: then N{k,l},{i,j} is the F -vector subspace of Mn(K) of matrices M{k,l},{i,j}

with M̃{k,l},{i,j} =

[
M 0
0 Mσ

]

for M in Mnk,l,ni,j (K).

D) k = l ≤ i < j: then N{k,k},{i,j} is the F -vector subspace of Mn(K) of matrices M{k,k},{i,j}

with M̃{k,k},{i,j} =
[
M Mσ

]
for M in Mnk,k,ni,j (K).

F) k < l ≤ i = j: then N{k,l},{i,i} is the F -vector subspace of Mn(K) of matrices M{k,l},{i,i}

with M̃{k,l},{i,i} =

[
M
Mσ

]

for M in Mnk,l,ni,i(K).

G) k = l < i = j: then N{k,k},{i,i} is the F -vector subspace of Mn(K) of matrices M{k,k},{i,i}

with M̃{k,k},{i,i} = M for M in Mnk,k,ni,i(F ).

We will need the following corollary.
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Corollary 3.1. If we denote by P ′
s the standard parabolic subgroup of M associated with the

partition of n corresponding to the sequence s = (ni,j) in I(n̄), by u the element of R(P\G/H)
corresponding to s, and by N ′

s the unipotent radical of P ′
s, then the following inclusion is true:

N ′
s ⊂ (Ns ∩ uHu

−1)N.

Proof. It is enough to prove that for each matrix of the form

M ′ =


















In1,1

. . .

Ini,j M
. . .

Ini,k

. . .

Int,t


















with M in Mni,j,ni,k
(K) with j < k, one can find a matrix in M ′′ in N , such that M ′M ′′ belongs

to Ns ∩ uHu
−1. We choose for M ′′ the matrix


















In1,1

. . .

Inj,i Mσ

. . .

Ink,i

. . .

Int,t


















.

4 Modulus characters

This section will be devoted to the proof of the following relation.

Proposition 4.1. If we denote by P ′
s the standard parabolic subgroup of M associated with the

partition of n given by the sequence s = (ni,j) in I(n̄), then one has the following equality:

(δP δP ′
s
)|Ms(F ) = δ2P∩uHu−1 |Ms(F ).

Proof. Let N ′
s be the unipotent radical of P ′

s.
If A belongs to the groupMs(F ), the positive real δP (A) is the modulus of the automorphism intA
of the groupN , the positive real δP ′

s
(A) is the modulus of the automorphism intA of the groupN ′

s,
and the positive real δP∩uHu−1 is the modulus of the automorphism intA of the groupNs∩uHu

−1.

Each of the characters A 7→ δP (A), A 7→ δP ′
s
(A), and A 7→ δP∩uHu−1(A) of Ms(F ) is given by

a product of integer powers of the |Ai,j |K ’s for 1 ≤ i ≤ j ≤ n (this will become clear during the
proof).
We are going to show that for a fixed couple (i0, j0), with i0 ≤ j0, the number of occurrences of
|Ai0,j0 |K in δP δP ′

s
(A) is the same as the number of its occurrence in δ2P∩uHu−1 (A).

First we treat the case i0 < j0 :
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The occurrence of |Ai0,j0 |K in δP (A)δP ′
s
(A) is:

L1: −n1−...−ni0−1+ 0 +ni0+1+...+nj0−1+ nj0 +nj0+1+...+nt

L2: −n1−...−ni0−1− ni0 −ni0+1−...−nj0−1− 0 +nj0+1+...+nt

L3: −ni0,1−···−ni0,j0−1+0+ni0,j0+1+···+ni0,t

L4: −nj0,1−···−nj0,i0−1+0+nj0,i0+1+···+nj0,t

where the line L1 corresponds to the number of occurrences of |Ai0,j0 |K in δP (A), the line
L2 corresponds to the number of occurrences of |Aj0,i0 |K in δP (A), the line L3 corresponds to
the the number of occurrences of |Ai0,j0 |K in δP ′

s
(A), the line L3 corresponds to the number of

occurrences of |Aj0,i0 |K in δP ′
s
(A).

Finally, remembering the equality ni =
∑
ni,j , one gets that the number of occurrences of

|Ai0,j0 |K in the product δP (A)δP ′
s
(A) is equal to

S = (−2n1−· · ·−2ni0−1)+(−2ni0,1−. . .−2ni0,j0−1)+(2nj0,i0+1+. . .+2nj0,t)+(2nj0+1+· · ·+2nt).

For k ≤ l, we are going to count the number of occurrence of nl,k in the sum S. We de-
note by S1, S2, S3 and S4 the partial sums (−2n1 − · · · − 2ni0−1), (−2ni0,1 − . . . − 2ni0,j0−1),
(2nj0,i0+1 + . . .+ 2nj0,t), and (2nj0+1 + · · · + 2nt).

As a first observation, the integer ni0,j0 does not occur in this sum, so we treat the case
(k, l) 6= (i0, j0).

A) If k < l ≤ i0 < j0: then nk,l and nl,k occur with multiplicity −2 in S1 if l < i0, and nk,l and
nl,k occur with multiplicity −2 in S1 and S2 respectively if l = i0. In both cases, nk,l occur
with multiplicity −4 in S exactly.

A’) If i0 < j0 ≤ k < l: then nk,l and nl,k occur with multiplicity 2 in S4 if j0 < k, and nk,l and
nl,k occur with multiplicity 2 in S3 and S4 respectively if j0 = k. In both cases, nk,l occur
with multiplicity 4 in S exactly.

B) If k ≤ i0 < l ≤ j0: then nk,l occurs with multiplicity −2 in S1 if k < i0 and l < j0, nk,l occurs
with multiplicity −2 in S2 if k = i0 (l < j0), and nk,l occurs with multiplicity −2 in S1 if
l = j0 (k < i0). In each cases, nk,l occurs with multiplicity −2 in S exactly.

B’) If i0 ≤ k < j0 ≤ l: then nl,k occurs with multiplicity 2 in S4 if i0 < k and j0 < l, nl,k occurs
with multiplicity 2 in S4 if k = i0 and j0 < l, and nl,k occurs with multiplicity 2 in S3 if
i0 < k and j0 = l.

C) If k < i0 < j0 < l: then nk,l occurs with multiplicity −2 in S1, and multiplicity 2 in S4, hence
it doesn’t occur in S.

C’) If i0 < k < l < j0: then nk,l occurs in none of the Si’s, hence it doesn’t occur in S.

D) If k = l ≤ i0 < j0: then nk,k occurs with multiplicity −2 in S1 if k < i0, and with multiplicity
−2 in S2 if k = i0. In both cases, nk,k occurs with multiplicity −2 in S.

D’) If i0 < j0 ≤ k = l: then nk,k occurs with multiplicity 2 in S3 if k = j0, and with multiplicity
2 in S4 if k = j0. In both cases, nk,k occurs with multiplicity 2 in S.

E) If i0 < k = l < j0: then nk,k occurs in none of the Si’s, hence it doesn’t occur in S.

Now let’s look at the occurrence of |Ai0,j0 |K in δP∩uHu−1 (A). We recall that the group of

matrices of the form

[
A 0
0 Aσ

]

for A in Gt(K), is conjugate by the matrix

[
It −δIt
It δIt

]

to the

group of invertible matrices of the form

[
X ∆Y
Y X

]

for X nd Y in Mt(F ).
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As the action of such matrices on the space of vectors of the form

[
V1

V2

]

with Vi in Mt,1(F ), is

given by | |F , the module of the action of M =

[
A 0
0 Aσ

]

on the space of vectors of the form
[
V
V σ

]

with V in Mt,1(K), is equal to |M |F = |A|K , as | |F ◦NK/F equals | |K .

We then recall that from Proposition 3.2, the group P ∩ uHu−1, is the semi direct product

of the group Ms(F ), and the group Nu ∩uHu−1 =

{

In ⊕
k≤l,i≤j

N{k,l},{i,j}

}

. Hence δP∩uHu−1 (A)

which is the modulus of the automorphism intA of the group Nu ∩ uHu−1, is the product of the
modulus δ{k,l},{i,j}(A) of the automorphism intA of the vector spaces N{k,l},{i,j}.
But |Ai0,j0 |K contributes with non zero multiplicity only in the modulus δ{k,l},{i0,j0}(A) or
δ{i0,j0},{k,l}(A) with k ≤ l. We are going to count these multiplicities.

A) If k < l ≤ i0 < j0: according to configuration A of the Section 3, |Ai0,j0 |K occurs with
multiplicity −2nk,l in δ{k,l},{i0,j0}(A), and N{i0,j0},{k,l} is null from Proposition 3.2.

A’) If i0 < j0 ≤ k < l: according to configuration A of the Section 3, |Ai0,j0 |K occurs with
multiplicity 2nk,l in δ{i0,j0},{k,l}(A), and N{k,l},{i0,j0} is null from Proposition 3.2.

B) If k ≤ i0 < l ≤ j0: according to configuration B of the Section 3, |Ai0,j0 |K occurs with
multiplicity −nk,l in δ{k,l},{i0,j0}(A), and N{i0,j0},{k,l} is null from Proposition 3.2.

B’) If i0 ≤ k < j0 ≤ l: according to configuration B of the Section 3, |Ai0,j0 |K occurs with
multiplicity nk,l in δ{i0,j0},{k,l}(A), and N{k,l},{i0,j0} is null from Proposition 3.2.

C) If k < i0 < j0 < l: both spaces N{k,l},{i0,j0} and N{i0,j0},{k,l} are null from Proposition 3.2.

C’) If i0 < k < l < j0: both spaces N{k,l},{i0,j0} and N{i0,j0},{k,l} are null from Proposition 3.2.

D) If k = l ≤ i0 < j0: according to configuration D of the Section 3, |Ai0,j0 |K occurs with
multiplicity −nk,l in δ{k,l},{i0,j0}(A), and N{i0,j0},{k,l} is null from Proposition 3.2.

D’) If i0 < j0 ≤ k = l: according to configuration D of the Section 3, |Ai0,j0 |K occurs with
multiplicity nk,l in δ{i0,j0},{k,l}(A), and N{k,l},{i0,j0} is null from Proposition 3.2.

E) If i0 < k = l < j0: both spaces N{k,l},{i0,j0} and N{i0,j0},{k,l} are null from Proposition 3.2.

Eventually, by comparison, the positive real |Ai0,j0 |K occurs with same multiplic-
ity in δPδP′

s
(A) and in δ2

P∩uHu−1(A), when i0 < j0.

Now we treat the case i0 = j0 :

The occurrence of |Ai0,i0 |K in δP (A)δP ′
s
(A) is equal to the sum S = S1 + S2 + S3 + S4,

with S1 = −n1 − · · · − ni0−1, S2 = −ni0,1 − · · · − ni0,i0−1, S3 = ni0,i0+1 + · · · + ni0,t, and
S4 = ni0+1 + · · · + nt. For k ≤ l, we count the number of occurrence of nl,k in the sum S. We
suppose (k, l) 6= (i0, i0) because ni0,i0 doesn’t occur in S.

D) If i0 ≤ k < l: then nk,l occurs with multiplicity 2 in S4 if i0 < k, and multiplicity 1 in S3

and in S4 if i0 = k. In both cases it occurs with multiplicity −2 in S.

E) If k < i0 < l: then nk,l occurs with multiplicity −1 in S1, and multiplicity 1 in S4, hence
with multiplicity 0 in S.

F) If k < l ≤ i0: then nk,l occurs with multiplicity −2 in S1 if l < i0, and multiplicity −1 in S1

and in S2 if l = i0. In both cases it occurs with multiplicity −2 in S.
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G) If k = l < i0: then nk,k occurs with multiplicity −1 in S1, and in S.

G’) If i0 < k = l: then nk,k occurs with multiplicity 1 in S4, and in S.

Now, as previously, we are going to compute the multiplicity of |Ai0,i0 |K in the modulus
δ{k,l},{i0,i0}(A) or δ{i0,i0},{k,l}(A) with k ≤ l. We are going to count these multiplicities.

D) If i0 ≤ k < l: according to configuration D of the Section 3, |Ai0,i0 |K occurs with multiplicity
nk,l in δ{i0,i0},{k,l}(A), and N{k,l},{i0,i0} is null from Proposition 3.2.

E) If k < i0 < l: both spaces N{k,l},{i0,i0} and N{i0,i0},{k,l} are null from Proposition 3.2.

F) If k < l ≤ i0: according to configuration F of the Section 3, |Ai0,j0 |K occurs with multiplicity
−nk,l in δ{k,l},{i0,i0}(A), and N{i0,i0},{k,l} is null from Proposition 3.2.

G) If k = l < i0: according to configuration G of the Section 3, |Ai0,i0 |F occurs with multiplicity
−nk,k in δ{k,l},{i0,i0}(A), and N{i0,i0},{k,l} is null from Proposition 3.2.

G’) If i0 < k = l: according to configurationD of the Section 3, |Ai0,i0 |F occurs with multiplicity
nk,k in δ{i0,i0},{k,k}(A), and N{k,k},{i0,i0} is null from Proposition 3.2.

Reminding that | |2F equals | |K on F ∗, by comparison again, the positive real
|Ai0,i0 |K occurs with same multiplicity in δPδP′

s
(A) and in δ2

P∩uHu−1(A).

This concludes the proof.

5 Distinguished generic representations and Asai L-functions

We recall that an irreducible representation π of Gn(K) is called generic if there is a non trivial
character ψ of (K,+), such that the space of linear forms λ on V , which verify λ(π(n)v) = ψ(n)v
for n in Nn(K) and v in V , is of dimension 1.
If π is generic, the previous invariance property holds for any non trivial character ψ of K. Hence
a generic representation is isomorphic, up to unique (modulo scalars) isomorphism to a submodule

of Ind
Gn(K)
Nn(K)(ψ). We denote W (π, ψ) this model of π on which Gn(K) acts by right translation,

and call it the Whittaker model of π.
In [F4], the Asai L-function LK

F (π) of a generic representation π is defined “à la Rankin-Selberg”
as the gcd of a family of integrals of functions in W (π, ψ) depending on a complex parameter s,
for ψ trivial on F . We refer to Sections 3 and 4 of [M3] for a survey of the main properties the
Rankin-Selberg type Asai L-function of a generic representation.
The following theorem due to Zelevinsky (Th. 9.7 of [Z]), classifies the generic representations of
the group Gn(K) in terms of quasi-square-integrable ones:

Theorem 5.1. Let n̄ = (n1, . . . , nt) be a partition of n, and let ∆i be a quasi-square-integrable
of Gni(K) for i between 1 and t, the representation π = ∆1 × · · · × ∆t of the group Gn(K)
is irreducible if and only if no ∆i’s are linked , in which case π is generic. If (m1, . . . ,mt′) is
another partition of n, and if the ∆′

j’s are unlinked segments of length mj for j between 1 and
t′, then the representation π equals ∆′

1 × · · · × ∆′
t′ if and only if t = t′, and ∆i = ∆′

s(i) for a

permutation s of {1, . . . , t}. Eventually, every generic representation of Gn(K) is obtained this
way.

Now from Proposition 12 of [F2], an irreducible distinguished representation π of the group
Gn(K) is Galois-autodual, which means that the smooth dual π∨ is isomorphic to πσ. A conse-
quence of this fact and of Theorem 5.1 is the following. If π = ∆1×· · ·×∆t is a generic represen-
tation as in the statement of Theorem 5.1 and if it is distinguished, then there exists a reordering
of the ∆i’s, and an integer r between 1 and t/2, such that ∆σ

i+1 = ∆∨
i for i = 1, 3, .., 2r− 1, and
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∆σ
i = ∆∨

i for i > 2r. According to Theorem 6 of [K], this means that there exists a reordering of
the ∆i’s, and an integer r between 1 and t/2, such that ∆σ

i+1 = ∆∨
i for i = 1, 3, .., 2r−1, and such

that ∆i is distinguished or ηK/F -distinguished for i > 2r. We are going to prove the following
result. We recall that from Corollary 1.6 of [A-K-T], a discrete series representation cannot be
distinguished, and ηK/F -distinguished at the same time.

Theorem 5.2. Let π = ∆1×· · ·×∆t a generic representation of the group Gn(K) as in Theorem
5.1, it is distinguished if and only if if there is a reordering of the ∆i’s, and an integer r between
1 and t/2, such that ∆σ

i+1 = ∆∨
i for i = 1, 3, .., 2r− 1, and ∆i is distinguished for i > 2r.

It is a consequence of Proposition 26 of [F3], and of the main result of [M4] that representations
of the form ∆1 × · · · ×∆t with ∆σ

i+1 = ∆∨
i for i = 1, 3, .., 2r− 1, and ∆i distinguished for i > 2r,

are distinguished.
Before proving the converse fact (i.e. Theorem 5.2), we recall that from the main result of [M3],

this result is known to imply the equality of the Rankin-Selberg type Asai L-function LK
F (π) for a

generic representation π of Gn(K), and of the Asai L-function LK
F (ρ) of the Langlands parameter

ρ of π (see definition 2.4 of [M3]). Hence the following result is also true.

Theorem 5.3. Let π be a generic representation of the group Gn(K), and let ρ be the represen-
tation of dimension n of the Weil-Deligne group W ′

K of K, corresponding to π through Langlands
correspondence. Then we have the following equality of L-functions:

LK
F (π, s) = LK

F (ρ, s).

From the discussion before and after theorem 5.2, its proof is reduced to show the following
fact.

Theorem 5.4. Let π = ∆1 × · · · × ∆t be Galois autodual generic representation of the group
Gn(K), if it is distinguished, then there is a reordering of the ∆i’s, and an integer r between 1
and t/2, such that ∆σ

i+1 = ∆∨
i for i = 1, 3, .., 2r− 1, and ∆i is distinguished for i > 2r.

Proof. Let n̄ = (n1, . . . , nt) be the partition of n corresponding to π. We suppose that the ∆i’s
are ordered by length. Moreover as π is Galois autodual, we suppose that inside a subsequence of
same length representations, the first to occur are the non Galois autodual, and that at the first
occurrence of such a ∆i0 , its successors are alternatively isomorphic to ∆∨σ

i0 and ∆i0 , until no
representation among the ∆i’s is isomorphic to ∆i0 (hence such a sub subsequence begins with a
∆i isomorphic to ∆i0 , and ends with a ∆i isomorphic to ∆∨σ

i0
).

Now from Lemma 4 of [F4], the H-module π has a factor series with factors of the representa-

tions indH
u−1Pu∩H((δ

1/2
P ∆)u) (with (δ

1/2
P ∆)u(x) = δ

1/2
P ∆(uxu−1)) when u describes R(P\G/H),

where ∆ is the representation ∆1 ⊗ · · · ⊗∆t of P . Hence if π is distinguished, one of these repre-
sentations admits a nonzero H-invariant linear form on its space. This implies that there is u in

R(P\G/H) such that the representation induHu−1

P∩uHu−1 (δ
1/2
P ∆) admits a nonzero uHu−1-invariant

linear form on its space. Then Frobenius reciprocity law says thatHomuHu−1(induHu−1

P∩uHu−1 (δ
1/2
P ∆), 1)

is isomorphic as a vector space, toHomP∩uHu−1 (δ
1/2
P ∆, δP∩uHu−1) = HomP∩uHu−1 (δ

1/2
P /δP∩uHu−1ρ, 1).

Hence there is on the space V∆ of ∆ a linear nonzero form L, such that for every p in P ∩uHu−1,

such that for every v in V∆, one has L(χ(p)∆(p)v) = L(v), where χ(p) =
δ
1/2

P

δP∩uHu−1
(p). As

both δ
1/2
P and δP∩uHu−1 are trivial on Ns ∩ uHu−1, so is χ. Now, if s is the element of

I(n̄) corresponding to u, let n′ belong to N ′
s, from Corollary 3.1, we can write n′ as a prod-

uct nsn0, with ns in Ns ∩ uHu−1, and n0 in N . As N is included in Ker(∆), one has
L(∆(n′)(v)) = L(∆(nsn0)(v)) = L(∆(ns)(v)) = L(χ(ns)∆(ns)v) = L(v). Hence L is actu-
ally a nonzero linear form on the Jacquet module of V∆ associated with N ′

s. But we also
know that L(χ(ms)∆(ms)v) = L(v) for m in Ms(F ), which reads according to Lemma 4.1:

L(δ
−1/2
P ′

s
(ms)∆(ms)v) = L(v).
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This says that the linear form L is Mu(F )-distinguished on the normalized Jacquet module
rMs,M (∆) (as Ms is also the standard Levi subgroup associated with N ′

s).

The following lemma will conclude the proof of Theorem 5.4.

Lemma 5.1. Let ∆1, . . . , ∆t be unlinked segments of respectively Gn1
(K), . . . , Gnt(K), such

that the set {∆1, . . . ,∆t}, is stable under the involution ∆ 7→ ∆∨σ, call n the integer n1+ · · ·+nt,
and n̄ the sequence (n1, . . . , nt). Suppose moreover that the ∆i’s are ordered by length, and that
inside a subsequence of same length representations, the first to occur are the non Galois autodual,
and that at the first occurrence of such a segment ∆i0 , its successors are alternatively isomorphic
to ∆∨σ

i0
and ∆i0 , until no segment among the ∆i’s is isomorphic to ∆i0 . Then if there is s =

(ni,j)1≤i≤j≤t in I(n̄), such that rMs,M (⊗i∆i) is Ms(F )-distinguished, there exists a reordering of
the ∆i’s, and an integer r between 1 and t/2, such that ∆σ

i+1 = ∆∨
i for i = 1, 3, .., 2r− 1, and ∆i

is distinguished for i > 2r.

Proof of the Lemma. We do this by induction on t. The result for t = 1 follows from Theorem 6
of [K].
Now suppose the result to be true for any t′ < t.
If there is s in I(n̄), such that rMs,M (∆) is Ms(F )-distinguished, in particular rMs,M (∆) is
nonzero, which from Proposition 1.1, implies that one can write each ∆i under the the form
[∆i,1, . . . ,∆i,t], with ∆i,j a subsegment of ∆i of length ni,j . With these notations, rMs,M (∆)
is equal to the tensor product ∆1,1 ⊗ · · · ⊗ ∆t,t. Hence the fact that rMs,M (∆) is distinguished
by the group Ms(F ) is equivalent to the fact that ∆i,i is Gni,i(F )-distinguished if ni,i 6= 0, and
∆j,i = ∆i, j∨σ if i < j and ni,j 6= 0.
Let i0 be the smallest i, such that ∆1,i (or equivalently n1,i) is nonzero.

1. i0 = 1: the representation ∆1,1 is distinguished, hence Galois autodual. If ∆1 = [∆1,1, . . . ,∆1,t]
was not equal to ∆1,1, then one would have ∆∨σ

1 = [∆∨σ
1,t , . . . ,∆1,1] 6= ∆1. But the segment

∆∨σ
1 would also occur, and ∆1 and ∆∨σ

1 would be linked, which is absurd. Hence ∆1 = ∆1,1

is distinguished, and n1,i = 0 if i > 1. We conclude by applying our induction hypothesis
to the family ∆2, . . . ,∆t, the integer n− n1 with partition (n2, . . . , nt), and sub partition
s′ = (ni,j | i ≥ 2, j ≥ 2).

2. i0 > 1: one has ∆i0,1 = ∆∨σ
1,i0 . As the representation ∆i0 is either Galois autodual, or

coupled with ∆∨σ
i0

, the representation ∆∨σ
i0

= [∆∨σ
i0,t, . . . ,∆1,i0 ] occurs. But because the

representation ∆1 has the smallest length among the ∆i’s, the segments ∆1 and ∆∨σ
i0

would
be linked unless ∆1 = ∆1,i0 , which thus must be the case. In particular one has n1,i = 0
for i 6= i0.
Two cases occur.

a) ∆1 = ∆1,i0 is Galois autodual: if ∆i0 wasn’t equal to ∆i0,1, then the two occurring
segments ∆i0 = [∆i0,1, . . . ,∆i0,t] and ∆∨σ

i0
= [∆∨σ

i0,t, . . . ,∆i0,1] would be linked, and
that is not the case. Hence we have ∆i0 = ∆i0,1 = ∆1, and ni0,j = 0 for j 6= 1. We con-
clude by applying our induction hypothesis to the family ∆2, . . . ,∆i0−1,∆i0+1, . . . ,∆t,
the integer n−n1 −ni0 with partition (n2, . . . , ni0−1, ni0+1, . . . , nt), and sub partition
s′ = (ni,j | {i, j} 6= {i0, 1}).

b) ∆1 = ∆1,i0 is not Galois autodual: in this case ∆2 is ∆∨σ
1 because of our ordering.

Let j0 be the smallest j, such that ∆2,j (or equivalently n2,j) is nonzero. If j0 = 2, as
in the case i0 = 1, one has ∆2 = ∆2,2, and we conclude by applying our induction hy-
pothesis to the family ∆1,∆3, . . . ,∆t, the integer n−n2 with partition (n1, n3, . . . , nt),
and sub partition s′ = (ni,j | i 6= 2, j 6= 2).
If j0 6= 2, then ∆2 must be equal to ∆2,j0 , otherwise ∆2 and ∆∨σ

j0 would be linked.
This implies that n2,j = 0 for j 6= j0. Thus we have ∆2 = ∆2,j0 = ∆∨σ

1,i0
= ∆∨σ

1 . But
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the two occurring segments ∆∨σ
i0 = [∆i0,t, . . . ,∆1] and ∆j0 = [∆j0,2 = ∆1, . . . ,∆j0,t]

will be linked unless ∆i0 = ∆∨σ
1 , in which case we conclude by applying our induction

hypothesis to the family ∆2, . . . ,∆i0−1,∆i0+1, . . . ,∆t, the integer n − n1 − ni0 with
partition (n2, . . . , ni0−1, ni0+1, . . . , nt), and sub partition s′ = (ni,j | {i, j} 6= {i0, 1}),
or ∆j0 = ∆1, in which case we conclude by applying our induction hypothesis to the
family (∆j | j 6= 2 and j0), the integer n− n2 − nj0 with partition (nj | j 6= 2 and j0),
and sub partition s′ = (ni,j | {i, j} 6= {2, j0}).

References

[A-K-T] U. K. Anandavardhanan, A.C. Kable and R.Tandon, Distinguished representations and
poles of twisted tensor L-functions, Proc. Amer. Math. Soc., 132 (2004), No. 10, 2875-2883.

[A-R] U.K. Anandavardhanan and C.S. Rajan, Distinguished representations, base change, and
reducibility for unitary groups, Int. Math. Res. Not., 14 (2005), No. 14, 841-854.

[B-Z] I.N. Bernstein and A.V.Zelevinsky, Representations of the group GL(n, F ) where F is a
non-archimedean local field, Russian Math. Surveys 31:3, (1976), 1-68.

[C-P] J. W. Cogdell, I.I. Piatetski-Shapiro, Derivatives and L-functions for GL(n), to appear in
The Heritage of B. Moishezon, IMCP.

[F1] Y. Flicker, Twisted tensors and Euler products, Bull. Soc. Math. France, 116 no.3, (1988),
295-313.

[F2] Y. Flicker, On distinguished representations, J. Reine Angew. Math., 418 (1991), 139-172.

[F3] Y. Flicker, Distinguished representations and a Fourier summation formula, Bull. Soc. Math.
France, 120 (1992), 413-465.

[F4] Y. Flicker, Appendix of On zeroes of the twisted tensor L-function, Math. Ann., 297, (1993),
199-219.

[Go] D. Goldberg, Some results on reducibility for unitary groups and local Asai L-functions, J.
Reine Angew. Math., 448, (1994), 65-95.

[He] G. Henniart, Correspondance de Langlands et fonctions L des carres exterieur et symetrique,
preprint, 2003, Institut des Hautes Etudes Scientifiques.

[K] A. C. Kable, Asai L-functions and Jacquet’s conjecture, Amer. J. Math., 126, (2004), 789-
820.

[M1] N. Matringe, Distinguished principal series representations for GLn over a p-adic field,
Pacific J.Math., Vol. 239, No. 1, Jan 2009.

[M2] N. Matringe, Distinguished representations and exceptional poles of the Asai-L-function,
preprint, http://hal.archives-ouvertes.fr/hal-00299528/fr/, arXiv:0807.2748

[M3] N. Matringe, Conjectures about distinction and Asai L-functions of generic representations
of general linear groups over local fields, to appear in IMRN

[M4] N. Matringe, Distinction of some induced representations, preprint,
http://arxiv.org/abs/0811.3733.

20



[Sh] F. Shahidi , A proof of Langlands conjecture on Plancherel measures; Complementary series
for p-adic groups, Ann. of Math., 132 (1990), 273-330.

[T] J. Tate, Number theoritic background, in Automorphic Forms, Representations and
L−functions, Proc. Symp. Pure. Math., 33, part 2 (1979), 3-26.

[Z] A.V. Zelevinsky, induced representations of reductive p-adic groups II, Ann.Sc.E.N.S., 1980.

21


	Preliminaries
	Notations and definitions
	Segments and quasi-square integrable representations

	Double classes P(K)"026E30F Gn(K)/Gn(F)
	Structure of the group P(K)uGn(F)u-1
	Modulus characters
	Distinguished generic representations and Asai L-functions

