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Abstract Criteria containing abarrier function i.e., an unbounded function at the
boundary of the feasible solution domain are frequently encountered in the optimiza-
tion framework. When an iterative descent method is used, a search along the line
supported by the descent direction through the minimization of the underlying scalar
function has to be performed at each iteration. Usual line search strategies use an
iterative procedure to propose a stepsize value ensuring the fulfillment of sufficient
convergence conditions. The iterative scheme is classically based on backtracking, di-
chotomy, polynomial interpolations or quadratic majorization of the scalar function.
However, since the barrier function introduces a singularity in the criterion, classical
line search procedures tend to be inefficient. In this paper we propose a majorization-
based line search strategy by deriving a nonquadratic form of a majorant function well
suited to approximate a criterion containing a barrier term. Furthermore, we establish
the convergence of classical descent algorithms when this strategy is employed. The
efficiency of the proposed line search strategy is illustrated by means of numerical
examples in the field of signal and image processing.

Keywords Descent optimization methods· barrier function· line search· majorize-
minimize algorithm· convergence

1 Introduction

The aim of this paper is to address optimization problems that read

min
x

{F(x) = P(x)+ µB(x)} , µ > 0 (1)
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wherex ∈ R
n, B is abarrier function having its gradient unbounded at the boundary

of the strictly feasible domain

C = {x|Ci(x) > 0, i = 1, ...,m}

and P is differentiable onC . We consider the case of linear constraintsCi(x) =
aT

i x+ρi with ai ∈ R
n\{0}, ρi ∈ R and barrier functions that read

B(x) =
m

∑
i=1

ψi(Ci(x)) (2)

with ψi taking one of the following forms:

ψi(u) = −κi logu, κi > 0 (3)

ψi(u) = κi ulogu, κi > 0 (4)

ψi(u) = −κi u
r , r ∈ (0,1), κi > 0 (5)

so that the minimizersx∗ of F fulfill Ci(x
∗) > 0.

A large family of optimization methods to solve (1) are basedon iteratively de-
creasing the criterion by moving the current solutionxk along a directiondk,

xk+1 = xk +αkdk, (6)

whereαk > 0 is thestepsizeanddk is a descent directioni.e., a vector satisfying
∇F(xk)

Tdk < 0. Such iterative descent methods consist in alternating the construc-
tion of dk and the determination ofαk (line search). While the direction is computed
using the criterion properties (gradient, Hessian) at the current valuexk, the line
search is performed by minimizing the scalar functionf (α) = F(xk + αdk). Some
iterative methods do not require the line search step since the direction is calculated
such that the optimal value ofαk would be equal to one (e.g., trust region algorithms
([6]), subspace optimization ([36,28]) or variable metricalgorithms ([10,14])). Our
analysis does not cover this family of methods.

Usual line search strategies perform an inexact minimization of f and propose a
stepsize value that ensures the convergence of the descent algorithm ([31]). Typically,
an iterative procedure generates a series of stepsize values until the fulfillment of suf-
ficient convergence conditions such as Wolfe and Goldstein conditions ([26,31]). The
iterative scheme is classically based on backtracking or dichotomy and more sophis-
ticated procedures involve polynomial interpolations of the scalar function. Another
alternative is to use quadratic majorizations of the scalarfunction leading to stepsize
formulas guaranteeing the overall algorithm convergence ([37,22]). However, since
the barrier function in problem (1) has a singularity at the boundary ofC , the deriva-
tive of the scalar function is unbounded which makes polynomial interpolation-based
strategies inefficient ([27]) and quadratic majorization unsuited.

In this paper a majorization-based line search is firstly proposed by deriving a
nonquadratic form of a majorant function well suited to approximate a criterion con-
taining a barrier term. Secondly, convergence results are obtained for classical descent
algorithms when this strategy is applied. The rest of this paper is organized as fol-
lows: After introducing the framework of the optimization problem in§2, we explain
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in §3 why special-purpose line search procedures are called forwhen dealing with
barrier functions. A suitable line search strategy based onmajorization is then pro-
posed in§4. §5 gives the properties of the resulting stepsize series and§6 presents
the convergence results when the proposed line search is associated with classical
descent algorithms.§7 illustrates the efficiency of the proposed line search strategy
through numerical examples in the field of signal and image processing.

2 Preliminaries

Assumption 1 Let V be a neighborhood of the level setL0 = {x|F(x) 6 F(x0)}.
V is assumed bounded. Moreover, F: R

n → R is differentiable onV and∇F(x) is
Lipschitz continuous onV with the Lipschitz constant L> 0:

‖∇F(x)−∇F(y)‖ 6 L‖x−y‖, ∀x,y ∈ V

The first part of the assumption is not a restrictive condition since it holds ifF is
coercive, that is:

lim
‖x‖→+∞

F(x) = +∞

According to Assumption 1, there existsη > 0 such that

‖∇F(x)‖ 6 η , ∀x ∈ V (7)

Moreover, because the gradient ofB is unbounded at the boundary ofC , (7) leads to
the existence ofε0 > 0 such that

Ci(x) > ε0, ∀x ∈ V , ∀i = 1, . . . ,m, (8)

and the boundedness assumption onV implies that there existsM > 0 such that

Ci(x) 6 M, ∀x ∈ V , ∀i = 1, . . . ,m. (9)

Assumption 2 Assumption 1 holds and F is convex onV : for every(x,y) ∈ V we
have

F(ωx+(1−ω)y) 6 ωF(x)+(1−ω)F(y), ∀ω ∈ [0,1]

Assumption 3 Assumption 1 holds and F is strongly convex onV : there existsλ > 0
such that

[

∇F(x)−∇F(x′)
]T

(x−x′) > λ‖x−x′‖2, ∀x,x′ ∈ V

Definition 1 Let {Mk, k = 1, . . . ,K} a set of symmetric matrices.{Mk} has anon-
negative bounded spectrumwith bounds(νM

1 ,νM
2 ) ∈ R if for all k,

0 6 νM
1 6

xTMkx

‖x‖2 6 νM
2 , ∀x ∈ R

n\{0} (10)

Moreover, the set has apositive bounded spectrumif νM
1 > 0.
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Assumption 4 For all x′ ∈ V , there exists a symmetric matrixM(x′) such that for
all x ∈ V ,

Q(x,x′) = P(x′)+(x−x′)T∇P(x′)+
1
2
(x−x′)TM(x′)(x−x′) > P(x). (11)

Moreover, the set{M(x)|x ∈ V } has a nonnegative bounded spectrum with bounds
(νM

1 ,νM
2 ).

As emphasized in [22, Lem.2.1], Assumption 4 is not a restrictive condition since
it holds if P is gradient Lipschitz onV with constantLp by settingM(x) = Lp for
all x ∈ V . Useful methods for constructingM(x) without requiring the knowledge
of Lp are developped in [5,18,13].

Assumption 5 Assumption 4 holds and at least one of the following conditions is
fulfilled:

1) Ker(A) = {0} with A = [a1, . . . ,am]T

2) νM
1 > 0.

Lemma 1 If ψi is given by(3), (4) or (5), then

– ψi is strictly convex
– ψ̇i is strictly concave
– limu→0 ψ̇i(u) = −∞
– −

...ψ i(u)/ψ̈i(u) 6 2/u, ∀u > 0

Proof In all cases, it is straightforward to check the first three conditions. The fourth
also holds since we have:

1. ψi(u) = −κi logu, κi > 0 =⇒ −
...ψ i(u)/ψ̈i(u) = 2/u

2. ψi(u) = κi ulogu, κi > 0 =⇒ −
...ψ i(u)/ψ̈i(u) = 1/u 6 2/u

3. ψi(u) = −κi ur , r ∈ (0,1), κi > 0 =⇒ −
...ψ i(u)/ψ̈i(u) = (2− r)/u 6 2/u

⊓⊔

3 Line search strategies for barrier functions

3.1 Problem statement

The stepsize should satisfy sufficient conditions to ensurethe convergence of the
descent algorithm. The most popular are the Wolfe conditions that state that a stepsize
series{αk} is acceptable if there existsc1, c2 ∈ (0,1) such that for allk and for all
xk ∈ V ,

F(xk +αkdk) 6 F(xk)+c1αkg
T
k dk (12)

|∇F(xk +αkdk)
Tdk| 6 c2|g

T
k dk| (13)

wheregk , ∇F(xk). The barrier termB(x) implies that ḟ tends to−∞ whenα is
such thatCi(xk +αdk) cancels for somei. Since the constraints are linear, functionf
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is undefined outside an interval(α−,α+). Therefore, we must ensure that during the
line search, the stepsize values remain in the interval(α−,α+).

Typical line search schemes in barrier-related optimization methods chooseαk =
θα+, whereθ ∈ (0,1) is close to one ([34,15]). However, this simple approach does
not ensure the convergence of the optimization algorithm and can lead to a sequence
of iterates ‘trapped’ near the singularity ([27]). In [30,20], line search procedures
based on the self-concordancy property of the logarithmic barrier functions are de-
velopped. However, the computation of the stepsize requires the evaluation of the
Hessian matrix which is often expensive or even impossible for large scale problems.
Furthermore, since methods using polynomial interpolation are not suited to interpo-
late function f , due to its behavior atα− andα+, [11,27] propose an interpolating
function of the form

F(x+αd) ≈ f0 + f1α + f2α2−µ log( f3−α) (14)

where the coefficientsfi are chosen to fitf and its derivative at two trial points. The
line search strategy consists in repeating such a specific interpolation process until the
fulfillment of Wolfe conditions. However, the resulting algorithm is not often used in
practice, probably because the proposed interpolating function is difficult to compute.
In contrast, our proposal is not based on interpolation, butrather on majorization, with
a view to propose an analytical stepsize formula and to preserve strong convergence
properties. Furthermore, the majorizing function and the resulting stepsize are easily
computable.

3.2 Majoration-Minimization line search

In Majoration-Minimization (MM) algorithms ([18,19]), the minimization of a func-
tion f is obtained by performing successive minimizations oftangent majorantfunc-
tions for f . Functionh(u,v) is said tangent majorant forf (u) atv if for all u,

{

h(u,v) > f (u)
h(v,v) = f (v)

The initial optimization problem is then replaced by a sequence of easier subprob-
lems, corresponding to the MM update rule

u j+1 = argmin
u

h(u,u j).

Recently, the MM strategy has been used as a line search procedure ([12]) and the
convergence is established in the case of conjugate-gradient ([37,22]), memory-gradient ([25])
and truncated Newton algorithms ([21]). The stepsize valueαk results fromJ succes-
sive minimizations of quadratic tangent majorant functions for the scalar functionf ,
expressed as

q j(α,α j) = f (α j)+(α −α j) ḟ (α j)+
1
2

mj(α −α j)2 (15)
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at α j . It is obtained by the recurrence

α0 = 0; α j+1 = α j −
ḟ (α j)

mj , j = 0, . . . , J−1

and the stepsizeαk corresponds to the last valueαJ. The main advantage of this pro-
cedure is that it gives an analytical formulation of the stepsize value and guarantees
the algorithm convergence whatever the value ofJ ([22]). However, it cannot be ap-
plied in the case of logarithmic barrier function (3) since there is no parametermj

such that the quadratic functionq j(.,α j) majorizesf in the set(α−,α+). Actually, it
would be sufficient to majorizef within the level setLk = {α, F(xk +αdk) 6 F(xk)},
but this set is difficult to determine or even to approximate.In the case of barriers (4)
and (5), f is bounded at the boundary of the set(α−,α+). However, the curvature
of f is unbounded and one can expect suboptimal results by majorizing the scalar
function with a parabola. In particular, very small values of mj will be obtained for
α j close to the singularity.

4 Proposed majorant function

To account for the barrier term, we propose the following form of tangent majorant
function:

h(α) = h0 +h1α +h2α2−h3 log(h4−α),

This form is reminiscent of the interpolation function (14)but here the parameters
hi are chosen to ensure the majorization property. Moreover, its minimizer can be
calculated explicitely.

According to the MM theory, let us define the stepsizeαk by

α0 = 0

α j+1 = argmin
α

h j(α,α j), j = 0, . . . , J−1

αk = αJ

(16)

whereh j(α,α j) is the tangent majorant function

h j(α,α j) = q j(α,α j)+ γ j
[

(ᾱ j −α j) log
( ᾱ j −α j

ᾱ j −α

)

−α +α j
]

(17)

which depends on the value off and its derivative atα j and on three design parame-
tersmj ,γ j , ᾱ j . It is easy to check that

h j(α j ,α j) = f (α j).

Thus, the values ofmj ,γ j , ᾱ j should ensure

h j(α,α j) > f (α), ∀α.
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4.1 Construction of the majorant function

Let x ∈ C , d a search direction andα j ∈ (α−,α+) such thatx+ α jd ∈ V . Let us
derive an expression for the parametersmj ,γ j , ᾱ j such thath j(α,α j) is a tangent ma-
jorant forF(x+ αd) = f (α) at α j . Properties 1 and 2 respectively propose tangent
majorant forp(α) , P(x+αd) and forb(α) , B(x+αd).

Property 1 Under Assumption 5, the functionq j
p(α,α j) given byp(α j)+(α−α j)ṗ(α j)+

1
2mj

p(α −α j)2 is a tangent majorant forp at α j if

mj
p = dTM(x+α jd)d. (18)

Proof Direct consequence of Assumption 5. ⊓⊔

In order to build a tangent majorant for the barrier termb, we define

b1(α) = ∑
i|δi>0

ψi(θi +αδi)

b2(α) = ∑
i|δi<0

ψi(θi +αδi)

with θi = aT
i x + ρi and δi = aT

i d for all i = 1, . . . ,m so thatb = b1 + b2 + cste.
Functionsb1 andb2 present vertical asymptotes respectively atα− < α j andα+ > α j

with






α− = max
i|δi>0

− θi
δi

,

α+ = min
i|δi<0

− θi
δi

.

Property 2 The functionφ j(α,α j) given by

b(α j)+(α −α j)ḃ(α j)+
1
2

mj
b(α −α j)2 + γ j

b

[

(ᾱ j −α j) log
ᾱ j −α j

ᾱ j −α
+α j −α

]

with parameters

mj
b = b̈1(α j), γ j

b = (α+ −α j)b̈2(α j), ᾱ j = α+, for α ∈ [α j ,α+) (19)

and

mj
b = b̈2(α j), γ j

b = (α−−α j)b̈1(α j), ᾱ j = α−, for α ∈ (α−,α j ] (20)

is a tangent majorant forb at α j .
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Proof Let us first prove this property forα > α j . In this case, functionφ j is noted
φ j

+ with parametersmj
+ = mj

b andγ j
+ = γ j

b. The aim is to prove that

{

φ j
+1(α,α j) = b1(α j)+(α −α j)ḃ1(α j)+ 1

2mj
+(α −α j)2

φ j
+2(α,α j) = b2(α j)+(α −α j)ḃ2(α j)+ γ j

+

[

(α+ −α j) log α+−α j

α+−α +α j −α
]

respectively majorizeb1 andb2 for all α > α j .
First, Lemma 1 implies thatb1 is strictly convex anḋb1 is strictly concave. Then,

for all α ∈ [α j ;α+), b̈1(α)6 b̈1(α j)= mj
+. Hence,φ j

+1(.,α
j) majorizesb1 on[α j ;α+).

Then, let us defineT(α) = ḃ2(α)(α+−α) andl(α) = ḃ2(α j)(α+−α)+γ j
+(α−

α j). Givenγ j
+ = (α+ −α j)b̈2(α j), the linear functionl also reads:

l(α) = φ̇ j
+2(α,α j)(α+ −α)

Thus we havel(α j) = T(α j) andl̇(α j) = Ṫ(α j). Moreover:

T̈(α) =
...
b2(α)(α+ −α)−2b̈1(α) = ∑

i|δi<0

δ 3
i

...ψ i(θi +αδi)(α+ −α)−2δ 2
i ψ̈i(θi +αδi)

(21)

According to the definition ofα+:

(α+ −α) < −(θi +αδi)/δi , ∀i such thatδi < 0

According to Lemma 1, the third derivative ofψi is negative, so

T̈(α) < ∑
i|δi<0

δ 2
i

[

−
...ψ i(θi +αδi)(θi +αδi)−2ψ̈i(θi +αδi)

]

< 0

where the last inequality is a consequence of Lemma 1. ThusT is concave. Sincel is
a linear function tangent toT, we have

l(α) > T(α), ∀α ∈ [α j ,α+) (22)

Givenα+ > α, (22) also reads:

φ̇ j
+2(α,α j) > ḃ2(α), ∀α ∈ [α j ,α+) (23)

Therefore,φ j
+2(.,α

j) majorizesb2 over [α j ;α+). Finally, φ j
+(.,α j) = φ j

+1(.,α
j) +

φ j
+2(.,α

j) majorizesb for α > α j .
The same elements of proof apply to the caseα 6 α j . ⊓⊔

Therefore, using Properties 1 and 2, we obtain thath j(α,α j) = q j
p(α,α j) +

µφ j(α,α j) is a tangent majorant forf at α j .
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4.2 Minimization of the tangent majorant

The MM recurrence (16) involves the computation of the minimizer ofh j(α,α j) for
j ∈ {0, . . . ,J−1}. Lemma 2 leads to the strict convexity of the tangent majorant:

Lemma 2 Under Assumption 5, hj(.,α j) is C2 and strictly convex.

Proof First, q j
p(.,α j) is a quadratic function and thusC2 over (α−,α+). Moreover,

h j(.,α j) isC∞ over(α−;α j) and(α j ;α+). Finally, expressions (19) and (20) lead to
the continuity ofh j and of its first and second derivatives atα j . Then,h j(.,α j) is C2

over(α−;α+). According to (19) and (20), the second derivative ofh j(.,α j) is given
by

ḧ j(α,α j) =







mj
p + µ b̈2(α j)+ µ b̈1(α j) (α−−α j )2

(α−−α)2 ∀α ∈ (α−,α j ]

mj
p + µ b̈1(α j)+ µ b̈2(α j) (α+−α j )2

(α+−α)2 ∀α ∈ [α j ,α+)

mj
p is strictly positive according to Assumption 5, andb1 andb2 are strictly convex

according to Lemma 1. Hence,h j(.,α j) is strictly convex. ⊓⊔

Because of strict convexity, the tangent majoranth j(.,α j) has a unique minimizer,
which can be expressed as an explicit function ofḟ (α j) as follows:

α j+1 =























α j −
2q3

q2 +
√

q2
2−4q1q3

if ḟ (α j) 6 0

α j −
2q3

q2−
√

q2
2−4q1q3

if ḟ (α j) > 0
(24)

with






q1 = −mj

q2 = γ j − ḟ (α j)+mj(ᾱ j −α j)
q3 = (ᾱ j −α j) ḟ (α j)

(25)

4.3 Properties of the tangent majorant

Lemma 3 Let j∈ {0, . . . ,J−1}. If ḟ (α j) 6 0, thenα j+1 fulfills:

−
q3

q2
6 α j+1−α j 6 −

2q3

q2
.

where q1, q2 and q3 are given by(25).

Proof Straightforward given (24) witḣf (α j) 6 0. ⊓⊔

Lemma 4 Let j∈{0, . . . ,J−1}. For all α ∈ [α j ,α+), φ̇ j
+(α,α j) majorizes the deriva-

tive ḃ(α).
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Proof For all α j , we have

φ̈ j
+1(α,α j) = b̈1(α j) > b̈1(α),∀α ∈ [α j ,α+)

Thus, functionφ̇ j
+1(α,α j)− ḃ1(α) is increasing on[α j ;α+). Moreover, it vanishes

at α j , so

φ̇ j
+1(α,α j) > ḃ1(α), ∀α ∈ [α j ,α+)

This allows to conclude, given (23). ⊓⊔

Property 3 Let j ∈ {0, . . . ,J−1}. Under Assumptions 1 and 5, there existsνmin,
νmax, 0< νmin 6 νmax, such that for allx ∈ V and for all descent directiond atx:

νmin‖d‖
2 6 ḧ j(α j ,α j) 6 νmax‖d‖

2, ∀ j > 0

Proof According to Lemma 2,

ḧ j(α j ,α j) = mj
p + µ b̈(α j).

The second derivative ofb at α j also reads

b̈(α j) = dT∇2B(x+α jd)d

and Property 1 gives

mj
p = dTM(x+α jd)d.

Moreover,x+α jd∈V . Thus, it is sufficient to show that the set
{

M(x)+ µ∇2B(x)|x ∈ V
}

has a positive bounded spectrum.Letx ∈ V .

∇2B(x) = ATdiag(τiCi(x)−ti )A (26)

with

(τi , ti) =







(2,κi) if φi(u) = −κi logu
(1,1) if φi(u) = ulogu

(−r2 + r,2− r) if φi = −ur

andA = [a1, . . . , am]T . x ∈ V so (9) and (8) yield

dTT (M)d 6 dT∇2B(x)d 6 dTT (ε0)d (27)

with T (m) = ATdiag(τim−ti )A. Matrix T (m) is symmetric and has a nonnegative
bounded spectrum with bounds(νT

min(m), νT
max(m)). Moreover, according to Assump-

tion 4,M(x) has a nonnegative bounded spectrum with bounds(νM
min,ν

M
max). Finally,

according to Assumption 5, eitherνM
min > 0 or Ker(ATA) = {0}. Since the latter

condition impliesνT
min(m) > 0, Property 3 holds withνmin = νM

min + µνT
min(M) > 0

andνmax = νM
max+ µνT

max(ε0). ⊓⊔
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5 Properties of the stepsize series

This section presents essential properties of the stepsizeseries (16) allowing to estab-
lish the convergence conditions of the descent algorithm. Let us considerx ∈ V and
a descent directiond, so that ḟ (0) = dTg < 0. The MM recurrence produces mono-
tonically decreasing values{ f (α j)} and the series{α j} converges to a stationnary
point of f ([18]). Moreover, it is readily seen from (24) that

sgn
(

α j+1−α j) = −sgn
(

ḟ (α j)
)

, ∀ j > 0 (28)

Furthermore, according to [19, Th.6.4], the set[0, α̃] with α̃ = min{α > 0| f (α) = f (0)}
acts as a capture basin, that is

α j ∈ [0, α̃], ∀ j > 0. (29)

Since ḟ (0) < 0, it can easily been shown thatα1 is strictly positive soα j > 0 for all
j > 1 using the capture property (29). We have finally the following result:

Lemma 5 If for all j ∈ {0, . . . ,J−1},

ṗ(α) 6 q̇ j
p(α,α j), ∀α > α j (30)

then

ḟ (α j) 6 0, ∀ j ∈ {0, . . . ,J−1} (31)

and the series
{

α j
}

is nondecreasing.

Proof According to Lemma 5, (30) implies that for allj ∈ {0, . . . ,J−1},

ḟ (α) 6 ḣ j(α,α j), ∀α > α j . (32)

Moreover, (31) holds forj = 0 sinced is a descent direction. Thus,α1 > 0 according
to (28). Let j ∈ {0, . . . ,J−1} and assume thaṫf (α j) 6 0. Thus, according to (28),
α j+1 > α j . Using (32) forα = α j+1, we obtain:

ḟ (α j+1) 6 ḣ j(α j+1,α j)

Moreoverα j+1 is the minimizer ofh j(.,α j) soḣ j(α j+1,α j) = 0, hence the result by
immediate recurrence onj. ⊓⊔

5.1 Lower and upper bounds for the stepsize

Property 4 Under Assumptions 1 and 5, there existν ,ν ′ > 0 such that

−gTd

ν ‖d‖2 6 α1 6
−gTd

ν ′ ‖d‖2 . (33)
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Proof d is a descent direction, sȯf (0) < 0 andh0(.,0) has a barrier at̄α0 = α+.
If α+ = +∞ thenh0(.,0) is a quadratic function with curvaturem0. This majorant

is minimized atα1 = − ḟ (0)/m0 and according to Property 3, we have:

−gTd

νmax‖d‖2 6 α1 6
−gTd

νmin‖d‖2

If α+ < +∞, according to Lemma 3:

−gTd

γ0

α+
− gTd

α+
+m0

6 α1 6
−2gTd

γ0

α+
− gTd

α+
+m0

Using Property 3 and the positivity of−gTd, we obtain

νmin‖d‖
2 6

γ0

α+
−

gTd

α+
+m0 (34)

On the other hand, takingι = argmaxi −aT
i d, we deduce from (8) that

α+ >
ε0

|aT
ι d|

.

Thus, using Cauchy-Schwartz inequality and (7),

−gTd

α+
=

|gTd|

α+
6 |gTd|.|aT

ι d|
1
ε0

6 ‖g‖‖aι‖‖d‖
2 1

ε0

6
ηA

ε0
‖d‖2 (35)

with A = max
i

‖ai‖ > 0. Moreover, Property 3 implies that there existsνmax such

that

m0 +
γ0

α+
6 νmax‖d‖

2 (36)

Therefore (34), (35) and (36) allow to check that Property 4 holds for

ν = νmax+ηA /ε0

ν ′ = νmin/2

⊓⊔
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5.2 Sufficient decrease condition

The first Wolfe condition (12) measures whether the stepsizevalue induces a suffi-
cient decrease ofF . It also reads

f (α)− f (0) 6 c1α ḟ (0). (37)

wherec1 ∈ (0,1) is a constant with respect to the iteration number.
In this section, we show that (37) holds with the stepsize value produced by the

proposed MM strategy. First, we need the following lemmas.

Lemma 6 Let j∈ {0, . . . ,J−1}. If ḟ (α j) 6 0, then:

f (α j)− f (α j+1)+
1
2
(α j+1−α j) ḟ (α j) > 0 (38)

Proof The property is trivial if ḟ (α j) = 0. Assume thatḟ (α j) < 0 so thatα+ >
α j+1 > α j . Let define the functionξ : u→− log(1−u)−u. A straightforward anal-
ysis ofξ shows that

ξ (u)

uξ̇ (u)
6

1
2
, ∀u∈ (0,1) (39)

Takingu = α−α j

α+−α j in (39) and denotingϕ(α) = ξ (u):

ϕ(α)

(α −α j)ϕ̇(α)
6

1
2
, ∀α ∈ (α j ;α+). (40)

Moreover, let us defineQ(α) = 1
2mj(α −α j)2 so that

Q(α) =
1
2
(α −α j)Q̇(α). (41)

Let τ(α) = Q(α)+ γ j(α+ −α j)ϕ(α) so the majorant function reads

h j(α,α j) = f (α j)+(α −α j) ḟ (α j)+ τ(α), ∀α ∈ [α j ,α+)

and, using (40) and (41),

τ(α)

(α −α j)τ̇(α)
6

1
2
, ∀α ∈ (α j ;α+) (42)

h j(.,α j) is a tangent majorant forf so

h j(α,α j)− f (α) = f (α j)− f (α)+(α −α j) ḟ (α j)+ τ(α) > 0 (43)

Takingα = α j+1 > α j in (42) and (43), we obtain

f (α j)− f (α j+1)+(α j+1−α j) ḟ (α j)+
1
2
(α j+1−α j)τ̇(α j+1) > 0

Hence the result using

τ̇(α j+1) = ḣ j(α j+1,α j)− ḟ (α j)

= − ḟ (α j)

⊓⊔
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Lemma 7 Under Assumptions 1 and 5, for all j∈ {1, . . . ,J},

α j 6 c j
maxα1, (44)

where

c j
max =

(

1+
2νmaxL

ν2
min

) j−1
(

1+
ν
L

)

−
ν
L

> 1. (45)

Proof It is easy to check (44) forj = 1, with c1
max = 1. Let us prove that (44) holds

for j > 1. Assume thaṫf (α j) < 0. Thenᾱ j = α+ and we can deduce from Lemma 3
that

α j+1−α j 6
−2 ḟ (α j)

(γ j − ḟ (α j))/(α+ −α j)+mj

6
−2 ḟ (α j)

γ j/(α+ −α j)+mj (46)

According to Property 3:

‖d‖2 >
(

γ0/α+ +m0)/νmax (47)

and
γ j/(α+ −α j)+mj > νmin‖d‖

2

thus we have

γ j/(α+ −α j)+mj > νmin
(

γ0/α+ +m0)/νmax > 0

Then, from (46):

α j+1 6 α j + | ḟ (α j)|
2νmax

(γ0/α+ +m0)νmin
(48)

If ḟ (α j) > 0, α j+1 is lower thanα j so (48) still holds. According to Assumption 1,
∇F is Lipschitz, so that:

| ḟ (α j)− ḟ (0)| 6 L‖d‖2α j

Using the fact that| ḟ (α j)| 6 | ḟ (α j)− ḟ (0)|+ | ḟ (0)|, and ḟ (0) < 0, we get:

| ḟ (α j)| 6 Lα j‖d‖2− ḟ (0) (49)

Using Property 4 and (47):

− ḟ (0) 6 α1ν‖d‖2

6 α1ν(m0 + γ0/α+)/νmin (50)

Given (47)- (50), we get:

α j+1 6 α j +
2νmax

(m0 + γ0/α+)νmin

[

Lα j
(

m0 + γ0/α+

νmin

)

+α1 ν
νmin

(m0 + γ0/α+)

]
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Hence

α j+1 6 α j
(

1+
2νmaxL

ν2
min

)

+2α1 νmaxν
ν2

min

This corresponds to a recursive definition of the series(c j
max) with:

c j+1
max = c j

max

(

1+2
νmaxL

ν2
min

)

+2
ννmax

ν2
min

Givenc1
max = 1, (45) is the general term of the series. ⊓⊔

Property 5 (first Wolfe condition)Under Assumptions 1 and 5, the iterates of (16)
fulfill

f (α j)− f (0) 6 c j
1α j ḟ (0) (51)

for all j > 1, with c j
1 = (2c j

max)
−1 ∈ (0,1).

Proof For j = 1, (51) holds according to Lemma 6, since it identifies with (38) when
j = 0, given c1

max = 1. For all j > 1, (51) holds by immediate recurrence, given
Lemma 7. ⊓⊔

Property 5 corresponds to a strong result related to the proposed MM line search
since it implies that the computed stepsize leads to a sufficient decrease of the crite-
rion at each iteration, independently from the number of line search iteratesJ.

5.3 Stepsize minoration

Condition (12) alone is not sufficient to ensure that the algorithm makes reasonable
progress since it holds for arbitrary small values forα and thus can yield convergence
to a non-stationnary point ([31]). In order to avoid too short steps, a second condition
is required, for example the second Wolfe condition (13). Itturned out difficult or
even impossible to establish the curvature condition (13) for any value ofJ. Fortu-
nately, we can obtain a direct minoration of the stepsize values that is sufficient to
yield convergence results.

Property 6 Under Assumptions 1 and 5, for allj > 1,

α j > cminα1 (52)

and

α j > cmin
−gTd

ν‖d‖2 (53)

for somecmin > 0.
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Proof First, let us show that (52) holds for allj > 1 with

cmin =

√

1+2L/νmin−1
2L/νmin

∈ (0,1/2) (54)

Let φ be the concave quadratic function:

φ(α) = f (0)+α ḟ (0)+m
α2

2

with m= −L(m0 + γ0/α+)/νmin. We haveφ(0) = f (0) andφ̇(0) = ḟ (0) < 0, soφ
is decreasing onR+. Let us considerα ∈ [0,α j ], so thatx+ αd ∈ V . According to
Assumption 1, we have

| ḟ (α)− ḟ (0)| 6 ‖d‖2L|α|

and according to Property 3,

| ḟ (α)− ḟ (0)| 6 Lα(m0 + γ0/α+)/νmin

Then we obtain:
| ḟ (α)| 6 Lα(m0 + γ0/α+)/νmin− ḟ (0)

Hence:
φ̇(α) 6 ḟ (α), ∀α ∈ [0,α j ] (55)

Integrating (55) between 0 andα j yields

φ(α j) 6 f (α j) (56)

On the other hand, the expression ofφ atαmin = cminα1 can be written as follows:

φ(αmin) = f (0)+Cα1 ḟ (0)

where

C = cmin−c2
minLα1 m0 + γ0/α+

2 ḟ (0)νmin
.

According to (46):

α1 6
−2 ḟ (0)

m0 + γ0/α+
,

so that

C 6 cmin +c2
min

L
νmin

=
1
2
,

where the latter equality directly stems from the expression of cmin. Sinceφ is de-
creasing onR+, we get

φ(αmin) > f (0)+
1
2

α1 ḟ (0) > f (α1), (57)

where the last inequality is the first Wolfe condition (51) for j = 1.
Finally, α j > 0 for all j > 1. Assume that there existsj such thatα j < αmin.

According to (56) and given thatφ is decreasing onR+, we get:

f (α j) > φ(α j) > φ(αmin) > f (α1),

which contradicts the fact thatf (α j) is nonincreasing. Thus, (52) holds. So does (53),
according to Property 4. ⊓⊔
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6 Convergence results

This section discusses the convergence of the iterative descent algorithm

xk+1 = xk +αkdk, k = 1, . . . , K

whendk satisfiesgT
k dk < 0 and the line search is performed using the proposed MM

strategy.

6.1 Zoutendijk condition

The global convergence of a descent direction method is not only ensured by a ‘good
choice’ of the step but also by well-chosen search directionsdk. Convergence proofs
often rely on the fulfillment of Zoutendijk condition

∞

∑
k=0

‖gk‖
2cos2 θk < ∞, (58)

whereθk is the angle betweendk and the steepest descent direction−gk:

cosθk =
−gT

k dk

‖gk‖‖dk‖
.

Inequality (58) implies that‖gk‖cosθk vanishes for large values ofk. Moreover, pro-
vided thatdk is not orthogonal to−gk (i.e., cosθk > 0), condition (58) implies the
convergence of the algorithm in the sense

lim
k→∞

‖gk‖ = 0. (59)

Zoutendijk condition holds when the line search procedure is based on the fulfillment
of the sufficient conditions (12),(13) ([31]). In the case ofthe proposed line search,
the following result holds.

Property 7 Let αk be defined by (16). Under Assumptions 1 and 5, Zoutendijk con-
dition (58) holds.

Proof Let us first remark that for allk, dk 6= 0, sincegT
k dk < 0. According to Prop-

erty 5, the first Wolfe condition holds forc1 = cJ
1:

F(xk)−F(xk+1) > −cJ
1αkg

T
k dk

According to Property 6:

αk > cmin
−gT

k dk

ν‖dk‖2

Hence:

0 6 c0
(gT

k dk)
2

‖dk‖2 6 F(xk)−F(xk+1)
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with c0 = (cmincJ
1)/ν > 0. According to Assumption 1, the level setL0 is bounded,

so limk→∞ F(xk) is finite. Therefore:

∞

∑
k=0

(gT
k dk)

2

‖dk‖2 6
1
c0

[

lim
k→∞

F(xk)−F(x0)

]

< ∞ (60)

⊓⊔

6.2 Gradient related algorithms

A general convergence result can be established by using theconcept ofgradient
relateddirection ([1]).

Definition 2 A direction sequence{dk} is said gradient related to{xk} if the fol-
lowing property holds: for any subsequence{xk}K

that converges to a nonstationary
point, the corresponding subsequence{dk}K

is bounded and satisfies

limsup
k→∞,k∈K

gT
k dk < 0.

Theorem 1 ([35]) Let {xk} a sequence generated by a descent methodxk+1 =
xk + αkdk. Assume that the sequence{dk} is gradient related to{xk} and that
Zoutendijk condition(58) holds. Then, the descent algorithm converges in the sense
limk→∞ ‖gk‖ = 0.

The gradient norm converging to zero does not imply that the optimization method
converges to a minimizer, but only that it is attracted by a stationary point. However,
under certain sufficient conditions, this can guarantee convergence to a local or global
minimum.

Corollary 1 Let{xk} a sequence generated by a descent methodxk+1 = xk +αkdk.
Assume that the sequence{dk} is gradient related to{xk} and that Zoutendijk condi-
tion (58)holds. Iflimk→∞ ∇2F(xk) is positive definite then{xk} converges to a strict
local minimizer of F.

Proof Direct consequence of the sufficient condition for local minimization ([31]).

Corollary 2 Let{xk} a sequence generated by a descent methodxk+1 = xk +αkdk.
Assume that the sequence{dk} is gradient related to{xk} and that Zoutendijk con-
dition (58) holds. If Assumption 2 holds then{xk} converges to a global minimizer
of F.

Proof Direct consequence of the sufficient condition for global minimization ([31]).

In the sequel, we will show that Theorem 1 yields convergenceof classical de-
scent optimization schemes such as the truncated Newton method and the projected
gradient method for constrained optimization when such schemes are combined with
our line search strategy.
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6.2.1 Preconditioned gradient, Newton and inexact Newton algorithms

Let us consider the family of descent algorithms when the search direction has the
form

dk = −Dkgk (61)

with Dk a symmetric and positive definite (SPD) matrix. In the steepest descent
methodDk is simply the identity matrixI, while in Newton’s methodDk is the
inverse of the Hessian∇2F(xk). In quasi-Newton methods such as BFGS algorithm
([31]) and its limited memory version ([23]),Dk is an iterative approximation of the
inverse Hessian. SinceDk is positive definite,dk is a descent direction. Moreover,
we have the following property:

Property 8 ([2]) Let {xk} a sequence generated byxk+1 = xk + αkdk wheredk is
given by (61). If the set{Dk, k = 1, . . . ,K} has a positive bounded spectrum, then the
direction sequence{dk} is gradient related to{xk}.

Then, according to Theorem 1, the descent algorithm converges in the sense limk→∞ ‖gk‖=
0.

6.2.2 Truncated versions

Let Hk a SPD approximation of the Hessian ofF . Thus, a good choice would be
to take the preconditionerDk = H−1

k in (61). However, the calculation of the exact
inverse ofHk may be prohibitive, especially when the dimensionn is large. One may
have to be satisfied with only an approximate solution obtained by using an iterative
method. This approach is used in the truncated Newton (TN) algorithm ([29]) where
the search direction is computed by applying the conjugate gradient (CG) method to
the Newton equations. Here, we consider the more general case whendk results from
CG iterations solving approximately the linear systemHkd = −gk, which will be
refered as truncated pseudo-Newton (TPN) algorithms. Then, we have the following
property:

Property 9 Let {xk} a sequence generated byxk+1 = xk + αkdk wheredk results
from Ik CG iterations on the systemHkd = −gk. If the set{Hk, k = 1, . . . ,K} has
a positive bounded spectrum, then the direction sequence{dk} is gradient related to
{xk}.

Proof According to [8, Th.A.1] and [8, Lem.A.2], there exist positive constantsτ,T
so that

gT
k dk 6 −τ‖gk‖

2 (62)

and
‖dk‖ 6 T ‖gk‖ (63)

According to [2, Chap.1], (62) and (63) are sufficient conditions to ensure that{dk}
is gradient related to{xk}. ⊓⊔

Property 9 is extended to the case when the linear system is solved using precon-
ditioned CG (PCG) iterations:
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Corollary 3 Let {xk} a sequence generated byxk+1 = xk + αkdk wheredk re-
sults from Ik PCG iterations on the systemHkd = −gk preconditioned withMk. If
{Hk, k = 1, . . . ,K} and{Mk, k = 1, . . . ,K} have a positive bounded spectrum, then
the direction sequence{dk} is gradient related to{xk}.

Proof Let Ck such thatMk = CT
k Ck. SolvingHkd =−gk with PCG preconditioned

by Mk amounts to compute vectord such that

C−T
k HkCk d̂ = −C−T

k gk (64)

d̂ = Ckd (65)

using CG iterations ([31]). According to [8, Th.A.1] and [8,Lem.A.2], there exist
positive constantsτ ′,T ′ so that

(C−T
k gk)

T d̂k 6 −τ ′‖C−T
k gk‖

2 (66)

and
‖d̂k‖ 6 T

′‖C−T
k gk‖. (67)

Using (65),
(C−T

k gk)
T d̂k = gT

k dk. (68)

Moreover, according to the boundness assumption on the spectrum of{Mk, k = 1, . . . ,K},

−‖C−T
k gk‖

2 6 −
1

νM
2

‖gk‖
2, (69)

‖C−T
k gk‖ 6

1
√

νM
1

‖gk‖, (70)

√

νM
1 ‖dk‖ 6 ‖Ckdk‖ = ‖d̂k‖, (71)

where(νM
1 ,νM

2 ) > 0 denote the spectral bounds of{Mk}. Thus, (62) and (63) hold
with τ = τ ′ 1

νM
1

andT = T ′ 1
νM

2
, hence the result using the gradient related sufficient

condition in [2, Chap.1]. ⊓⊔

As a conclusion, the convergence of both TPN-CG and TPN-PCG holds, when
the proposed line seach is used, according to Theorem 1.

6.2.3 Feasible directions methods for constrained optimization

Consider the constrained problem:

minimize F(x) subject tox ∈ D

whereD is a nonempty, closed, and convex set. Let us examine the convergence
properties of algorithms belonging to the class of feasibledirection methods.

Definition 3 ([2])
Given a feasible vectorx, a feasible direction atx is a vectord 6= 0 such thatx+αd

is feasible for all sufficiently smallα > 0.
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Starting withx0 ∈ D , the method generates a sequence of feasible vectors according
to

xk+1 = xk +αkdk

whereαk ∈ (0,1] anddk is a feasible direction that can be written in the form

dk = x′
k−xk (72)

with

x′
k ∈ D , gT

k (x′
k−xk) < 0.

Convergence analysis of feasible direction methods is veryclose to that of descent
direction methods in the unconstrained case. In particular, we have the following
property:

Property 10 ([2]) Let {dk} generated by (72) withx′
k given either by:

– conditionnal gradient

x′
k = argmin

x∈D

gT
k (x−xk) (73)

– gradient projection with constant parameters> 0

x′
k = PD [xk−sgk] (74)

– scaled gradient projection with constant parameters > 0 and scaling matrices
{Dk} with bounded spectrum

x′
k = argmin

x∈D

{

gT
k (x−xk)+

1
2s

(x−xk)
TDk(x−xk)

}

(75)

In all these cases, the direction sequence{dk} is gradient related to{xk}.

Thus, Theorem 1 implies the convergence of the constrained optimization algorithms
defined by (73), (74) and (75), respectively, in conjunctionwith the proposed line
search.

6.3 Convergence of conjugate gradient methods

This section discusses the convergence of the nonlinear conjugate gradient algorithm
(NLCG) defined by the following recurrence

xk+1 = xk +αkdk

ck+1 = −gk+1 +βk+1dk

dk+1 = −ck+1sign(gT
k+1ck+1)

(76)

for some conjugacy formulas.
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6.3.1 Methods withgT
k yk−1 in the numerator ofβk

Let us consider the conjugacy formulas of the form ([7]):

β0 = 0, βk = β µk,ωk
k = gT

k yk−1/Dk, ∀k > 0 (77)

with
Dk = (1−µk−ωk)‖gk−1‖

2 + µkd
T
k−1yk−1−ωkd

T
k−1gk−1

yk−1 = gk−gk−1

µk ∈ [0,1], ωk ∈ [0,1−µk]

Expression (77) covers the following conjugate gradient methods:

β 1,0
k = gT

k yk−1/dT
k−1yk−1 Hestenes-Stiefel (HS)

β 0,0
k = gT

k yk−1/‖gk−1‖
2 Polak-Ribìere-Polyak (PRP)

β 0,1
k = −gT

k yk−1/dT
k−1gk−1 Liu-Storey (LS)

The following convergence result holds:

Theorem 2 Let Assumption 1 and 5 hold. The NLCG algorithm is convergentin the
senseliminfk→∞ gk = 0 whenαk is defined by(16)andβk is chosen according to the
PRP and LS methods, and more generally forµk = 0 and ωk ∈ [0,1]. Moreover, if
Assumption 3 holds, then we haveliminf k→∞ gk = 0 in all cases.

Proof We have previously established:

– the inequality (33) onα1
k

– the stepsize minorization (44)αk 6 cmax
J α1

k
– the stepsize majorization (52) 06 cminα1

k 6 αk

– the fulfillment of Zoutendijk condition (58)

Thus, the proof of Theorem 2 is identical to that developped in [22, Part 4]. This result
can be viewed as an extension of [22, Th. 4.1] for a new form of tangent majorant.

⊓⊔

6.3.2 Other conjugacy formulas

Let consider the following conjugacy formulas:

βk = max(gT
k+1(gk+1−gk)/‖gk‖,0) modified Polak-Ribìere-Polyak (PRP+)

βk = ‖gk+1‖
2/‖gk‖

2 Fletcher-Reeves (FR)

βk = ‖gk+1‖
2/dT

k (gk+1−gk) Dai-Yuan (DY)

The convergence of the CG algorithm with these conjugacy formulas is obtained
under an additional assumption on the tangent majorant.
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Theorem 3 Let αk be defined by the recurrence(16). According to Assumptions 1
and 5, if for all j∈ {0, . . . ,J−1}, (30) holds, then we have convergence in the sense
liminfk→∞ gk = 0 for the PRP+ and FR methods. Moreover, under Assumption 2, we
have convergence in the same sense for the DY method.

Proof We will prove by recurrence onk thatdk is a sufficient descent direction for
F , i.e., there existsη > 0 such that

gT
k dk 6 −η‖gk‖

2. (78)

Let xk ∈ V and letdk a sufficient descent direction. Let us prove thatdk+1 is a
sufficient descent direction. According to Lemma 5, (30) implies that ḟ (α j) < 0 for
all j. ThusgT

k+1dk 6 0. From (76),

gT
k+1ck+1 = −‖gk+1‖

2 +βk+1g
T
k+1dk

Let us consider the case of FR and PRP+ methods:

β FR
k =

‖gk+1‖
2

‖gk‖2 > 0 (79)

β PRP+
k = max(β PRP

k ,0) > 0 (80)

Thus,gk+1ck+1 6 −‖gk+1‖
2, sodk+1 = ck+1 is a sufficient descent direction. Now,

consider the case of DY conjugacy:

β DY
k =

‖gk+1‖
2

dT
k (gk+1−gk)

The conjugacy parameter takes the sign ofdT
k (gk+1−gk). Under Assumption 2 and

given (76), the convexity ofF leads to

|gT
k+1dk| 6 |gT

k dk| (81)

Sincedk is a descent direction,β DY
k > 0, sodk+1 = ck+1 is a sufficient descent direc-

tion. Then, (78) holds for allk for FR, DY and PRP+ methods. Finally, according to
[16, Th. 4.2, Th. 5.1], Property 7 and (78) yield the convergence of the PRP+, FR and
DY methods. ⊓⊔

7 Experimental results

This section presents three application examples illustrating the practical efficiency
of the proposed line search procedure. The examples are chosen from the field of
image and signal processing.
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7.1 Image reconstruction under Poisson noise

We consider a simulated positron emission tomography (PET)([32]) reconstruction
problem. The measurements in PET are modeled as Poisson random variables:

y ∼ Poisson(Hx+r)

where theith entry ofx represents the radioisotope amount in pixeln andH is the
projection matrix whose elementsHmn model the contribution of thenth pixel to the
mth datapoint. The components ofy are the counts measured by the detector pairs
andr models the background events (scattered events and accidental coincidences).
The aim is to reconstruct the imagex > 0 from the noisy measurementsy.

7.1.1 Objective function

According to the noise statistics, the neg-log-likelihoodof the emission data is

J(x) =
M

∑
m=1

([Hx]m+ rm−ym log([Hx]m+ rm)) .

The penalization term resulting from modelling the pixel intensity distribution using
a gamma-mixture density is ([17]):

R(x) = −
N

∑
n=1

(

(an−1) logxn−
an

bn
xn

)

.

Here, the parametersan > 1 andbn > 0 of the gamma priors are assumed to take
known values1. The estimated image is the minimizer of the following objective func-
tion

F(x) = J(x)+R(x). (82)

The first part of the criterion implies the presence of a logarithmic barrier inJ. The
second part corresponds to a gamma-mixture prior that enforces positivity into ac-
count and favors the clustering of pixel intensities. It induces a second type of log bar-
rier, at the boundary of the positive orthant. A classical approach for solving the opti-
mization problem is to use the NLCG algorithm ([17]) with theMoré and Thuente’s
(MT) line search procedure ([26]). We propose to compare theperformance of the
algorithm when our MM line search procedure is used.

7.1.2 Optimization strategy

The NLCG algorithm is employed with PRP+ conjugacy. The convergence of the al-
gorithm with the proposed line search is established in Theorem 3 under Assumptions
1, 5 and condition (30). LetJ = P+B with

B(x) =
M

∑
m=1

−ym log([Hx]m+ rm)+
N

∑
n=1

(an−1) logxn,

1 Hyperparameters estimation is discussed in ([17]). However,the resulting algorithm does not fall
within the application of our convergence theory and the adaptation would require a specific analysis.
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and

P(x) =
M

∑
m=1

[Hx]m+ rm+
N

∑
n=1

an

bn
xn.

It is straightforward that Assumption 1 holds for allx0 > 0. Moreover, Assumption 5
holds forM(x) = 0,A = [Id H]T andρ = [0 r]T . Finally, sinceP is linear, condition
(30) reads:

0 6 mj
p(α −α j), ∀α > α j

and holds formj
p = M(x+ α jd) = 0. Theorem 3 does not cover the preconditioned

case. However, we have noticed that, in practice, the use of adiagonal preconditioner
substantially speeds up the algorithm convergence.

The algorithm is initialized with a uniform positive objectand the convergence is
checked using the following stopping rule ([31])

‖gk‖∞ < ε(1+ |F(xk)|), (83)

whereε is set to 10−7.

7.1.3 Results and discussion

We present a simulated example using data generated with J.A. Fessler’s code avail-
able athttp://www.eecs.umich.edu/~fessler. For this simulation, we consider
an imagexo of sizeN = 128×128 pixels andM = 24924 pairs of detectors. Table 1
summarizes the performance results in terms of iteration numberK and computation
time T on an Intel Pentium 4, 3.2 GHz, 3 GB RAM. The design parametersare the
Wolfe condition constants(c1,c2) for the MT method and the number of subiterations
J for the MM procedure.

N
LC

G
-M

T

c1 c2 K T(s)

10−3 0.5 97 361
10−3 0.9 107 337
10−3 0.99 102 317
10−3 0.999 102 313

N
LC

G
-M

M

J K T(s)
1 96 266
2 111 464
5 138 1526
10 138 3232

Table 1 Comparison between MM and MT line search strategies for a PET reconstruction problem solved
with NLCG algorithm, in terms of iteration numberK and timeT before convergence. Convergence is
considered in the sense of (83).

It can be noted that the NLCG algorithm with MM line search (NLCG-MM)
requires less iterations than the MT method (NLCG-MT), evenwhen the parameters
(c1,c2) are optimally chosen. Moreover, NLCG-MM is faster because of a smaller
computational cost per iteration. Furthermore, the proposed MM procedure admits a
unique tuning parameter, namely the subiteration numberJ, and the simplest choice
J = 1 appears the best one.
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7.2 Nuclear magnetic resonance reconstruction

We consider a mono-dimensional nuclear magnetic resonance(NMR) reconstruction
problem. The NMR decays(t) associated with a continuous distribution of relaxation
constantsx(T) is described in terms of a Fredholm integral of the first kind:

s(t) =
∫ Tmax

Tmin

x(T)k(t,T)dT. (84)

with k(t,T) = e−t/T . In practice, the measured signals is a set of discrete experimen-
tal noisy data pointssm = s(tm) modeled as

s = Kx+ ε (85)

whereK andx are discretized versions ofk(t,T) andx(T) with dimensionsM×N
andN×1, andε is an additive noise assumed centered white Gaussian. Givens, the
aim is to determinex > 0. This problem is equivalent to a numerical inversion of the
Fredholm integral (84) and is known as very ill-conditioned([4]).

7.2.1 Objective function

In order to get a stabilized solution, an often used method minimizes the expression

F(x) = J(x)+λR(x) (86)

under positivity constraints, whereJ is a fidelity to data term:

J(x) =
1
2
‖s−Kx‖2

2,

andR is an entropic regularization term, e.g., the Shannon entropy measure ([24]):

R(x) = ∑
n

xn lnxn

Moreover, the positivity constraint is implicitely handled because of the barrier prop-
erty of the entropy function.

7.2.2 Optimization strategy

The TN algorithm is employed for solving (86). The directiondk is computed by
approximately solving the Newton system∇2F(xk)d = −gk using PCG iterations.
We propose a preconditioning matrixMk built as an approximation of the inverse
Hessian ofF atxk:

Mk =
[

V DV T +λdiag(xk)
−1]−1

,

whereUTΣV is a truncated singular value decomposition ofK and D = ΣTΣ .
The convergence of the TN algorithm with the proposed line search is established
in Theorem 1 using Corollary 3 under Assumptions 1 and 5. The verification of the
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latter is straightforward forM(x) = KTK, A = Id andρ = 0. The fulfillment of
Assumption 1 is more difficult to check since the level setL0 may contain an element
x with zero components, contradicting the gradient Lipshitzassumption. In practice,
we initialized the algorithm withx0 > 0 and we never noticed convergence issues
in our practical tests. The extension of the convergence results under a weakened
version of Assumption 1 remains an open issue in our convergence analysis.

The algorithm is initialized with a uniform positive objectand the convergence
is checked using (83) withε = 10−9. Following [29], the PCG iterations are stopped
when:

‖∇F(xk)+∇2F(xk)dk‖ 6 10−5‖F(xk)‖.

We propose to compare the performances of the MM line search and of the interpolation-
based MT method [26].

7.2.3 Results and discussion

Let x(T) a distribution to estimate. We consider the resolution of (85) when data
s are simulated fromx(T) via the NMR model (85) over sampled timestm, m =
1, ...,10000, with a SNR of 25 dB (Figure 1). The regularization parameterλ is set to
λ = 7,2 ·10−4 to get the best result in terms of similarity between the simulated and
the estimated spectra (in the sense of quadratic error).
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(a) Simulated NMR measurement with SNR
= 25dB
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(b) NMR reconstruction with similarity error
8.5%.

Fig. 1 Simulated NMR reconstruction with maximum entropy method

According to Table 2, the TN algorithm with the MM line searchperforms better
than with TN with the best settings forc1 andc2. Concerning the choice of the sub-
iteration number, it appears thatJ = 1 leads again to the best results in terms of
computation time.



28

T
N

-M
T

c1 c2 K T(s)

10−3 0.5 34 12
10−3 0.9 42 13
10−3 0.99 71 20
10−2 0.99 71 19
10−2 0.5 34 13
10−1 0.99 71 19
10−1 0.5 34 14

T
N

-M
M

J K T(s)
1 36 8
2 40 9
5 40 10
10 40 14

Table 2 Comparison between MM and MT line search strategies for a maximum entropy NMR recon-
struction problem solved with TN algorithm, in terms of iteration numberK and timeT before conver-
gence. Convergence is considered in the sense of (83).

7.3 Constrained quadratic programming

Let consider the following quadratically constrained quadratic optimization problem

min
x

{

F0(x) =
1
2
xTA0x+aT

0 x+ρ0

}

(87)

subject to:Ci(x) = −
1
2
xTAix+aT

i x+ρi > 0, i = 1, . . . , m

whereAi , i = 0, . . . , m are SPD matrices ofRn×n. We propose to solve (87) with the
primal interior point algorithm of [3]: for a decreasing sequence of barrier parameters
µ , the augmented criterion

Fµ(x) = F0(x)−µ
m

∑
i=1

logCi(x).

is minimized using Newton iterations

xk+1 = xk +αkdk, with dk = −∇2F−1
µ (xk)∇Fµ(xk)

that are stopped when(dT
k gk)

2 6 2ε.
The stepsizeαk must belong to an interval(α−,α+) that corresponds to the defi-

nition domain ofFµ(xk+αdk). Since the constraints are quadratic inx, they are also
quadratic inα:

Ci(xk +αdk) = Q1
i α2 +Q2

i α +Q3
i

with Q1
i = −1

2dT
k Aidk, Q2

i = −xT
k Aidk +aT

i dk andQ3
i = −1

2xT
k Aixk +aT

i xk + ρi .
As a consequence,α− and α+ can be computed exactly for any (xk,dk). For ex-
ample,α+ is the smallest positive root of the concave polynomesCi(xk + αdk). In
[3], the stepsize strategy is based on backtracking. Starting with the feasible step
α = 0.99α+, the stepsize is reduced until it fulfills the first Wolfe condition (12). As
an alternative in the context of interior point methods, adamped Newtonapproach
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is developped in [30] to minimize the augmented criterionFµ . The Newton direction
dk is damped by a factorαk ∈ (0,1] ensuring thatxk + αkdk is feasible and that the
criterion decreases by a minimal fixed amount. The damping factor is given by

αk =
1

1+‖dk‖xk

where‖ · ‖x is the Hessian norm defined by‖u‖x =
√

uT∇2Fµ(x)u.
The convergence properties of this interior point algorithm are based on the self

concordancy ofFµ ([30]). Our aim here is only to evaluate the practical relevance
of the MM line search when it is used instead of the backtracking and the damping
procedures.

7.4 Results and discussion

In order to analyse the performance of the interior point algorithm, we apply it onto 50
problems withAi ,ρi andai generated randomly takingn = 400,m= 200 as in [20].
x is initialized in the constrained domainC . The barrier parameterµ is initially set
to 1 and decreases following a geometric series of ratio 0.2. The algorithm is stopped
whenµ 6 µmin. Table 3 reports the performances of the interior point algorithm for
the different line search procedures usingc1 = 0.01 andJ = 1.

Backtracking Damping MM
K 273±27 135±4 64±3

T(s) 5637±1421 465±26 225±8

Table 3 Comparison between different line search strategies for theinterior point algorithm over 50 ran-
dom quadratic programming problems.K denotes the sum of inner iterations andT the time before con-
vergence, with tolerance parametersµmin = 10−8 andε = 10−5. The results are given in terms of mean
and standard deviation.

It can be noted that the interior point algorithm with MM linesearch requires less
iterations than the backtracking and damped Newton approaches. Moreover, even if
the MM procedure requires the exact computation of(α−,α+), it is faster than the
two other approaches. It can also be remarked that the damping strategy is dedicated
to the particular case whend is the Newton direction. Therefore, it must be modified
when the minimization ofFµ is obtained by means of other algorithms (see [20] for
the conjugate gradient case). On the contrary, the proposedline search can be applied
independently of the descent algorithm used. To conclude, the MM procedure seems
an efficient alternative to line search strategies widely used in primal interior point
algorithms.

8 Conclusion

This paper extends the line search strategy of [22] to the case of criteria containing
barrier functions, by proposing a non-quadratic majorant approximation of the func-
tion in the line search direction. This majorant has the sameform as the one proposed
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in [27], whereas the latter follows an interpolation-basedapproach. However, in the
majorization-based approach, the construction of the approximation is easier and its
minimization leads to an analytical stepsize formula, guaranteeing the convergence
of several descent algorithms. Moreover, numerical experiments indicate that this ap-
proach outperforms standard line search methods based on backtracking, damping or
cubic interpolation.

Two extensions of this work are envisaged. On the one hand, the case of nonlinear
constraints can be handled by using the procedure describedin [27]. On the other
hand, the analysis can be performed for additionnal forms ofbarrier functions such
as cross-entropy ([33]) or inverse function ([9]).
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