N
N

N

HAL

open science

A Majorize-Minimize line search algorithm for barrier
functions

Emilie Chouzenoux, Said Moussaoui, J. Idier

» To cite this version:

Emilie Chouzenoux, Said Moussaoui, J. Idier. A Majorize-Minimize line search algorithm for barrier

functions. 2009. hal-00362304v5

HAL Id: hal-00362304
https://hal.science/hal-00362304v5

Preprint submitted on 20 Nov 2009 (v5), last revised 7 Sep 2010 (v7)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00362304v5
https://hal.archives-ouvertes.fr

Technical Report IRRCYN manuscript No.
(will be inserted by the editor)

A Majorize-Minimize line search algorithm for barrier
functions

Emilie Chouzenoux - Said Moussaoui -
Jerdome Idier

Received: date / Revised version: date

Abstract Criteria containing darrier function i.e., an unbounded function at the boundary
of the feasible solution domain are frequently encount@rdtie optimization framework.
When an iterative descent method is used, a search alonméhsulpported by the descent
direction through the minimization of the underlying sedlaction has to be performed at
each iteration. Usual line search strategies use an iterptbcedure to propose a stepsize
value ensuring the fulfillment of sufficient convergenceditans. The iterative scheme is
classically based on backtracking, dichotomy, polynorinitdrpolations or quadratic ma-
jorization of the scalar function. However, since the arfunction introduces a singu-
larity in the criterion, classical line search procedumsdtto be inefficient. In this paper
we propose a majorization-based line search procedureriyrdea nonquadratic form of

a majorant function well suited to approximate a criteri@mtaining a barrier term. Fur-
thermore, we establish the convergence of classical deatgorithms when this strategy
is employed. The efficiency of the proposed line searchegiyais illustrated by means of
numerical examples in the field of signal and image procgssin

Keywords Optimization methods convergence majorize-minimize algorithm barrier
function- line search

1 Introduction

The aim of this paper is to address optimization problemsrted
min{F(z) = P(z) + uB(x)}, p>0 @

wherezx € R", Bis abarrier function having its gradient unbounded at the boundary f th
strictly feasible domain
% ={z|Ci(x) >0,i=1,..m}
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andP is differentiable orf¢’. We consider the case of linear constrai@itgc) = aiTw + 0
with a; € R™ {0}, pi € R and barrier functions that read

B(z) = le.(Q(w)) )
with ; taking one of the following forms:
i (u) = —ki logu, ki >0 3)
¢i(u) = kjulogu, ki > 0 4)
giu)=—ku, re(0,1),k>0 (5)

so that the minimizers* of F fulfill Ci(z*) > 0.
A large family of optimization methods to solve (1) are basedteratively decreasing
the criterion by moving the current solutian along a directionly,

Ty 1 = Tk + Okd, (6)

whereqy > 0 is thestepsizenddy is adescent directione., a vector satisfyingIF (:ck)Tdk <

0. Such iterative descent methods consist in alternatiagadhstruction oély and the deter-
mination ofay (line search). While the direction is computed using the criterion pnties
(gradient, Hessian) at the current valeig the line search is performed by minimizing the
scalar functionf (a) = F(xk + adk). Some iterative methods do not require the line search
step since the direction is calculated such that the optualale of ay would be equal to
one (e.g., trust region algorithms ([6]), subspace optutiin ([36,28]) or variable metric
algorithms ([10, 14])). Our analysis does not cover thisifa@f methods.

Usual line search strategies perform an inexact minimonadf f and propose a stepsize
value that ensures the convergence of the descent algofji#i}). Typically, an iterative
procedure generates a series of stepsize values until lfilbnfent of sufficient conver-
gence conditions such as Wolfe and Goldstein conditior& §2]). The iterative scheme is
classically based on backtracking or dichotomy and mordistipated procedures involve
polynomial interpolations of the scalar function. Anotladternative is to use quadratic ma-
jorizations of the scalar function leading to stepsize falam guaranteeing the overall al-
gorithm convergence ([37,22]). However, since the baffuection in problem (1) has a
singularity at the boundary of’, the derivative of the scalar function is unbounded and
therefore causes the inefficiency of interpolation-basestegies ([27]) and the unsuitabil-
ity of quadratic majorization.

In this paper a majorization-based line search is first psegdy deriving a nonquadratic
form of a majorant function well suited to approximate aegiin containing a barrier term.
Secondly, convergence results are obtained for classésakht algorithms when this strat-
egy is applied. The rest of this paper is organized as folléMiter introducing the frame-
work of the optimization problem i§2, we explain ing3 why special-purpose line search
procedures are called for when dealing with barrier fumstid\ suitable line search strategy
based on majorization is then propose@4ns5 gives the properties of the resulting stepsize
series ang6 presents the convergence results when the proposed énehss associated
with classical descent algorithm&? illustrates the efficiency of the proposed line search
strategy through numerical examples in the field of signdliarage processing.



2 Preliminaries

Assumption 1 Let ¥ be a neighborhood of the level sép = {z|F(x) < F(zo)}. ¥ is
assumed bounded. Moreover,: R" — R is differentiable ony” and OF (x) is Lipschitz
continuous or¥” with the Lipschitz constant & O:

I0F (@) — OF (y)[| < L[|z —yll, o,y € 7

The first part of the assumption is not a restrictive condisince it holds ifF is coercive,
that is:
lim F(x)=+
[l —-+e
According to Assumption 1, there exis{s> 0 such that
IOF ()| < n, Ve e ¥ (7)

Moreover, because the gradient®is unbounded at the boundary ®f, (7) leads to the
existence o0&y > 0 such that

Ci(z) > &,V eV, Vi=1,....m (8)
and the boundedness assumptior¥oimplies that there existsl > 0 such that
Ci(z) <MYz e, Vi=1,....m 9)
Assumption 2 Assumption 1 holds and F is convex#ihfor every(z,y) € ¥ we have
Flowz+ (1- w)y) < wF(z)+ (1—- w)F(y), Vw € [0,1]

Assumption 3 Assumption 1 holds and F is strongly convexfonthere existsA > 0 such
that
[OF (2) - OF (2)] " (z — ') > Al|z — 2|2, Vo,a’ € ¥/

Definition 1 Let { My, k=1,...,K} a set of symmetric matrice§M,} has anonnegative
bounded spectrumvith bounds(v;”,v5?) € R if for all K,

Y% " Myx

xr

Moreover, the set haspositive bounded spectruifnv{’ > 0.

Assumption 4 For all =’ € ¥, there exists a symmetric matrixf (z’) such that for all
zeV,

Q(z,2') =P(z') + (z —2')TOP(z') + %(m —2)TM(2')(z —2') > P(a). (11)

Moreover, the sefM (z) |z € 7'} has a nonnegative bounded spectrum with boymg, vs7).



As emphasized in [22, Lem.2.1], Assumption 4 is not a resteccondition since it
holds if P is gradient Lipschitz or¢” with constant, by settingM (x) =Ly forallz € 7.
Useful methods for constructingl(x) without requiring the knowledge df, are devel-
opped in [5,18,13].

Assumption 5 Assumption 4 holds and at least one of the following condiitis fulfilled:

1) Ker(A) = {0} with A = [ay,...,am|"
2) vi? >0.

Lemma 1 If ¢4 is given by(3), (4) or (5), then

— Y is strictly convex
— ; is strictly concave
= limy o ¢i(u) = —o

— —Wi(u)/Pi(u) <2/u,Yu>0

Proof In all cases, it is straightforward to check the first threaditions. The fourth also
holds since we have:

1. ¢i(u) = —ki logu, ki > 0 = —i(u)/ i (u) = 2/u
2. ¢i(u) = kjulogu, ki >0 = —¥i(u)/Pi(u) =1/u<2/u
3. Yi(u)=—Kku',re(0,1),ki >0 = —i(u)/P(u)=(2—-r)/u<2/u

3 Line search strategies for barrier functions
3.1 Problem statement

The stepsize should satisfy sufficient conditions to enslueeconvergence of the descent
algorithm. The most popular are the Wolfe conditions thatesthat a stepsize seriésy}
is acceptable if there exists, ¢, € (0,1) such that for alk and for allzy € ¥,

F(zk+ oxdx) <F (wk)+clakgldk (12)
|OF (zk+ adi) T di| < C2|gx di] (13)

wheregy £ OF (k). The barrier ternB(xx) implies thatf tends to—e whena is such that
Ci(xzx + ady) cancels for somé Since the constraints are linear, functibns undefined
outside an intervala_,a. ), wherea_ anda. are the lowest and highest feasible values of
a. Therefore, we must ensure that during the line search tépsige values remain in the
interval (a_, o).

Typical line search schemes in barrier-related optimiratethods choose = 6a.,
whereb € (0,1) is close to one ([34, 15]). However, this simple approactsdm ensure the
convergence of the optimization algorithm and can lead teqaence of iterates ‘trapped’
near the singularity ([27]). In [30,20], line search progess based on the self-concordancy
property of the logarithmic barrier functions are develegpHowever, the computation of
the stepsize requires the evaluation of the Hessian matrighnis often expensive or even



impossible for large scale problems. Furthermore, sindbods using polynomial interpo-
lation are not suited to interpolate functidn due to its behavior atr— anda., [11,27]
propose an interpolating function of the form

F(z+ad) ~ fo+ fia + fa® — plog(fz — a) (14)

where the coefficient$; are chosen to fif and its derivative at two trial points. The line
search strategy consists in repeating such a specific olétign process until the fulfillment
of Wolfe conditions. However, the resulting algorithm ig néien used in practice, probably
because the proposed interpolating function is difficuttdmpute. In contrast, our proposal
is not based on interpolation, but rather on majorizatidth) eview to propose an analytical
stepsize formula and to preserve strong convergence pieger

3.2 Majoration-Minimization line search

In Majoration-Minimization (MM) algorithms ([18,19]), #thminimization of a functiorf
is obtained by performing successive minimizationgasfgent majoranfunctions for f.
Functionh(u, v) is said tangent majorant fd{w) atw if for all «,

{h(um) > f(u)
h(v,v) = f(v)

The initial optimization problem is then replaced by a seweaeof easier subproblems, cor-
responding to the MM update rule

wl ™l = argminh(u, u}).
u
Recently, the MM strategy has been used as a line searchdurec12]) and the con-
vergence is established in the case of conjugate-grad&h©R]), memory-gradient ([25])
and truncated Newton algorithms ([21]). The stepsize valueesults fromJ successive
minimizations of quadratic tangent majorant functionstf@ scalar functiorf, expressed
as

o (a,al)= f(aj)+(afai)f(a")+%m"(a—aj)2
atal. Itis obtained by the recurrence

a®=0; aj+1:aj—w,j=07...,.]—l
m!

and the stepsizey corresponds to the last valee. The main advantage of this procedure
is that it gives an analytical formulation of the stepsizkigaand guarantees the algorithm
convergence whatever the value b{[22]). However, it cannot be applied in the case of
logarithmic barrier function (3) since there is no parametesuch that the quadratic func-
tion gl (., al) majorizesf in the set{a_, a, ). Actually, it would be sufficient to majorizé
within the level set% = {a, F(zk+ adk) < F(z«)}, but this set is difficult to determine
or even to approximate. In the case of barriers (4) andf(%,bounded at the boundary of
the set(a_, a). However, the curvature df is unbounded and one can expect suboptimal
results by majorizing the scalar function with a parabaigparticular very small values of
mi can arised fon! close to the singularity.



4 Proposed majorant function

To account for the barrier term, we propose the followingrfaf tangent majorant function:
h(a) = ho+hia +ha? — hglog(hs — a),

This form is reminiscent of the interpolation function (1)t here the parameters are

chosen to ensure the majorization property. Moreover, itémizer can be calculated ex-

plicitely.
According to the MM theory, let us define the stepsigeby

a’=0
al* =argminhl(a,a’), j=0,...,J-1 (15)
a
ag=a’

wherehi (a,al) is the tangent majorant function

Te)ea] o

hi(a,al) = gl(a,al)+y![(@ - a’)log(

which depends on the value éfand its derivative atrl and on three design parameters
m!,y), al. It is easy to check that

hi(al,al) = f(a)).
Thus, the values afil, yi, a’ should ensure

hi(a,a)) > f(a), va.

4.1 Construction of the majorant function

Letx € ¢, d a search direction and/ € (a_,a) such thate + ald € 7. Let us derive
an expression for the parametens,y!, al such thathl (a,al) is a tangent majorant for
F(z 4+ ad) = f(a) at al. Properties 1 and 2 respectively propose tangent majocant f
p(a) = P(z +ad) and forb(a) £ B(z + ad).

Property 1 Under Assumption 5, the functioﬂ)(a, al) given byp(al)+ (a —al)p(al)+

imh(a — al)?is atangent majorant fgy ata’ if

m)=d"M(z +a'd)d. 17)

Proof Direct consequence of Assumption 5. ad



In order to build a tangent majorant for the barrier tdxmwve define
bi(a)= 5 ¢i(6+ad)
i8>0
bo(a) = Z Yi(6+ad)

i16<0

with 6 = a z + p; and& = a] d foralli=1,...,mso thatb = by + b, -+ cste. Functions;
andh, present vertical asymptotes respectivelgat< a! anda, > a! with

a_ = max—%,
i15>0

— mi <]

a. = min -2,
i|8<0

Property 2 The functiong! (a,al) given by

ai_aj )
+al—a

al — al)log—
(o) —a')log——

b(a!) +(a—ah)b(a’) + gmb(a - al2+

with parameters
m=bi(a)), ¥=(a—alb(a)), a=a,, for aclala;) (18)

and

m =by(al), ¥ =(a_—a)by(al), al=a_, for ae(a_,al] (19)
is a tangent majorant fdrata’.

Proof Let us first prove this property far > al. Inthis case, functiorp! is notedqoi with
parametersn, =y andy] = yJ. The aim is to prove that
¢1(a,al) =by(al)+ (a —al)by(al) + Jml (a —al)? |
@ (a,a) =by(al)+ (a—al)by(al) +yi [(m —al) Iog‘fﬁ—‘_"&J +al - a]
respectively majorizé; andb, for all a > aj. .
First, Lemma 1 implies thdi, is strictly convex andb; is strictly concave. Then, for all
a € laj;a™), bi(a) <bi(al) =m,. Hencep!, (., a’) majorizes; on[aj;a™).
Then, let us defin@ (a) = by(a)(ax — a) andl (a) = by(al)(ay —a)+y! (a —al).
Givenyl = (a, —al)by(al), the linear functior also reads:
(@) = @l,(a,a)) (s —a)
Thus we havé(a’) = T(al) andi(a’) = T(al). Let study the curvature aF:
T(a) = b2(a)(ay —a) —2bi(a)
The second derivative df also reads

Ta)= 5 3Ui(6+ad)(a.—a)—28°{i(6 +ad)
i1§<0

According to the definition ofr :

(ar—a) < —(6+0ad)/a, Visuch thaty <0



Moreover, according to Lemma 1, the third derivativa/pis negative, so

Ta)< Y &F[-Vi(6+ag)(6+ad)—2¢(6+ad)] <0
i[6<0

where the last inequality is a consequence of Lemma 1. Thegoncave. Sinckis a linear
function tangent td@’, we have

l(a) >T(a),Va € [aj,a™) (20)
Givena, > a, (20) also reads:
¢lo(a,al) > by(a), va € [aj,a) (21)

Thereforeg! (., al) majorizes, over[aj; at). Finally, @, (.,al) = ¢!, (., al) + ¢l ,(.,al)
majorizesb for a > aj. _
The same elements of proof apply to the cas€ a’. ad

Therefore, using Properties 1 and 2, we obtainthét, o)) = gp(a, al) + pei(a,a’)
is a tangent majorant farata’.

4.2 Minimization of the tangent majorant

The MM recurrence (15) involves the computation of the miman of hi (a,al) for j €
{0,...,J—1}. Lemma 2 leads to the strict convexity of the tangent majoran

Lemma 2 Under Assumption 5,1, a}) is C? and strictly convex.

Proof First,gh(.,a’) is a quadratic function and th@# over(a_, a..). Moreoverhi (., al)
isC” over(a_;a’) and(a’;ay). Finally, expressions (18) and (19) lead to the continuity
of h! and of its first and second derivatives @t. Then,h!(.,a') is C2? over (a_;a.).
According to (18) and (19), the second derivativént(f, a') is given by

(a_—al)?

] i i i i i
Ri(a,al) = { Mo+ Hb(a!) + kba(a)) gz ¥ar € (a-.a’]

mj -+ by (o)) + pba(a)) =2 var € [
b+ kb (a’) + uba(a) GGy Va € fal,ay)

mjb is strictly positive according to Assumption 5, amdandb;, are strictly convex according
to Lemma 1. Hencey' (., a!) is strictly convex. O

Because of strict convexity, the tangent majorlajr(t, a’) has a unique minimizer, which
can be expressed as an explicit functiorf &' ) as follows:

203

a2 fal)<o
e G2+ /03 —400s 22
al - 2% it f(al)>0

02— /03 — 40103

th=-m
G=y —f(al)+m(al—al) (23)
gz = (al —al)f(al)

with



4.3 Properties of the tangent majorant

Lemma3 Let je {0,...,J—1}. If f(a}) <0, thena i+ fulfills:

; ; 2
_® < altl_ gl < _ <

o2 a2
where g, gz and g are given by(23).

Proof Straightforward given (22) witti (a) < 0. O

Lemma4 Let je {0,...,J—-1}. Foralla € [al ay), ¢+(a,aj) majorizes the derivative
b(a).

Proof For allal, we have
@aa(a,al) =by(al) > by(a) va elal,ay)

Thus, functiong, 1(a,al) — by (a) is increasing ofa’; a, ). Moreover, it vanishes at/,
)

¢+1(a7 aJ) 2 bl(a)v Va e [ajanr)
This allows to conclude, given (21). ad

Property 3 Let j € {0,...,J—1}. Under Assumptions 1 and 5, there exigig, Vmax 0 <
Vmin < Vmax Such that for alle € ¥ and for all descent directiod at :

Vminlld||* < P (al, @) < vimax||d]?, Vj > 0

Proof According to Lemma 2,

h(al,al) =ml+pub(al).
The second derivative @fata’ also reads

b(al)=d"0?B(z +ald)d
and Property 1 gives ' _

m,=d M(z +ald)d.

Moreoverz +ald € ¥. Thus, itis sufficient to show that the §g¥l () + u02B(z) |z € ¥}
has a positive bounded spectrum.let 7.

0?B(x) = ATdiag(tiC (x) %) A (24)
with
(1,1) if @(u) =ulogu
—r24r2-nif @=-u
andA = [a1,...,am| .z € ¥ so (9) and (8) yield
d"T(M)d < d'0°B(z)d < d"T(&)d (25)

{ (2,K) if  @(u)=—klogu
(Tiat') =
(

with T'(m) = ATdiag(tim %) A. T(m) is symmetric and has a nonnegative bounded spec-
trum with bounds(v,, (M), vi7a(M)). Moreover, according to Assumption Ki(z) has a
nonnegative bounded spectrum with boutdg’  v;Z.). Finally, according to Assumption

5, eitherv:” > 0 or Kef AT A) = {0}. Since the latter condition implies/, (m) > 0, Prop-

erty 3 holds Withvmin = v + v,/ (M) > 0 andvmax = Viax+ HViax(€0)- 0O
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5 Properties of the stepsize series

This section presents essential properties of the stepsiies (15) allowing to establish
the convergence conditions of the descent algorithm. Lebuasiderz € ¥ and a descent

directiond, so thatf (0) = d" g < 0. The MM recurrence produces monotonically decreasing

values{f(al)} and the serie$al} converges to a stationnary point b{[18]). Moreover,
it is readily seen from (22) that

sgn(a’*! —al) = —sgn(f(a’)),vj>0 (26)

Furthermore, according to [19, Th.6.4], the §&t] with & = min{a > 0|f(a) = f(0)}
acts as a capture basin, that is

al e[0,a], Vj=o. (27)

Sincef(O) < 0, it can easily been shown that is strictly positive sax! > 0 forall j > 1
using the capture property (27). We have finally the follaywasult:

Lemmab Ifforall j € {0,...,J—1},
p(a) < gh(a,al),va > a! (28)

then
f(al)y<o,vje{0,...,0-1} (29)

and the serie§ a! } is nondecreasing.
Proof According to Lemma 5, (28) implies that for gl {0,...,J— 1},
f(a)<hl(a,al),va>al. (30)
Moreover, (29) holds foj = 0 sinced is a descent direction. Thug! >0 according to
(26). Letj € {0,...,J— 1} and assume thdt{a') < 0. Thus, according to 26)1t1t > al.
Using (30) fora = al+1, we obtain:
f(al*h) <hi(al*t al)

Moreovera it is the minimizer ofi (., al) sohi(al*! al) = 0, hence the result by im-
mediate recurrence on O

5.1 Lower and upper bounds for the stepsize
Property 4 Under Assumptions 1 and 5, there exist’ > 0 such that

—g'd _ , _ —g'd

—_— . 31
Ik D

a- <
> S <
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Proof d is a descent direction, si{0) < 0 andh?(.,0) has a barrier ai® = a, .

If ap =+ then_ho(.,O) is a quadratic function with curvature®. This majorant is
minimized ata' = — f(0) /m° and according to Property 3, we have:

T T
—g'd —g'd
od g 9 d
Vmax(|d|| Vmin||||
If a. < +o0, according to Lemma 3:
—g'd _.1_ —2'd
Y _g'd ST T W d'd
@ @t @ @

Using Property 3 and the positivity efg" d, we obtain

Y g'd
Vininl| |2 < = = 5=+

T (32)

On the other hand, taking= argmax—a; d, we deduce from (8) that

&
at > .
~ lald|

Thus, using Cauchy-Schwartz inequality and (7),

T T
—g'd_|g d 1
19 g T a
a+ CX+ 80

1

2

<lgllllallldl* =
0

o
<1Z)q)2 (33)
0

with &/ = max||aj|| > 0. Moreover, Property 3 implies that there exigtsx such that
1

1+ P < v (34
O+
Therefore (32), (33) and (34) allow to check that Propertpki$ for

V = Vmax+ N4/ /&
V' = Vin/2
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5.2 Sufficient decrease condition

The first Wolfe condition (12) measures whether the stepshge induces a sufficient de-
crease of. It also reads _
f(a)—f(0) < ciaf(0). (35)

wherec; € (0,1) is a constant with respect to the iteration number.

Lemma6 Let je {0,...,d—1}. If f(al) <O, then:

f(ai)ff(aHl)Jr%(aHl*Gj)f-(aj)>0 (36)

Proof The property is trivial iff (a /) = 0. Assume thaf (a}) < 0 so thatn, > a1 > al.
Let define the functiod : u — —log(1— u) — u. A straightforward analysis &f shows that

Eu _1
U <35 Wue(01) (37)
Takingu = a";";J in (37) and denoting(a) = &(u):
Y(a) 1 i
@—ahia) < §7Va e (al;ay). (38)

Moreover, let us defin@(a) = imi (a — a’)? so that

Qa) = (@ —a))Q(a) (39
Lett(a) = Q(a) +y!(ay —al)y(a) so the majorant function reads
hi(a,a)) = f(a)+(a—al)f(a))+1(a),Va e[al,a;)

and, using (39) and (38),

%g%,w:e(aj;m) (40)

hi(.,al) is a tangent majorant fdr so
hi(a,al)—f(a)=f(a))—f(a)+(a—al)f(a))+1(a) >0 (41)

Takinga = al*! > al in (40) and (41), we obtain

f(al)— f(al™) + (al ™t —al)f(al) + %(a”l— ai(a*) >0
Hence the result using
t(al*t) =hl(al*t al) - f(a))
= —f(al)
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Lemma 7 Under Assumptions 1 and 5, for alkj{1,...,J},

al <chaat, (42)
where
; 2vmaxL) v v
cl 1+ 14 -)——->1 (43)
max ( me ( L ) L

Proof Itis easy to check (42) fof= 1, with Chax= 1. Let us prove that (42) holds f¢r> 1.
Assume thaff (al) < 0. Thena! = a, and we can deduce from Lemma 3 that

altl ol < —— —2f(al) :
(Y —f(ah))/(ay —al)+m
—2f(al)
S Vi/(a, —ah)+ “9
According to Property 3:
Id]|* > (v°/as +mP) /Vmax (45)
and
V'/(as —al)+m = v d?
thus we have
VJ/(a+*al)+mJ len()p/a++m)/vmax>0
Then, from (44):
- C 2v
< gl |f(al —max 46
TR e (46)

If f(al) >0, altlis smaller thar| so (46) still holds. According to Assumption [IF is
Lipschitz, so that: o _
|f(al)—£(0)] < L|d|*a’

Using the fact thatf (al)| < |f(al) — f(0)| +|f(0)|, andf(0) < 0, we get:
|f(a’) <La’|d|? - f(0) (47)
Using Property 4 and (45):
—(0) < alv]jd|]?
<atv(m’+yo/a.)/Vmin (48)
Given (47),(45) and (48) jointly with (46), we get:

2Vmax {Lai (m0+VO/a+
(mP+ yo/ 0+ ) Vimin

aj+1< ol (1+2Vmax|-) +201VmaxV

. 2
min

aj+l < al +
Vmin

%
) +at—(m’+p/a,)
Vmin
Hence

min

This corresponds to a recursive definition of the se(rd:é,gx) with:

VmaxL vV,
J+1_cmax(1+2 e )+2 X

mln len

Givenct,,, = 1, (43) is the general term of the series. O
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Property 5 (first Wolfe conditionynder Assumptions 1 and 5, the iterates of (15) fulfill
f(al)—f(0) <clalf(0) (49)
forall j > 1, withc! = (2cha) L € (0,1).

Proof For j =1, (49) holds according to Lemma 6, since it identifies with)@henj = 0,
givenct,,, = 1. For allj > 1, (49) holds by immediate recurrence, given Lemma 7. 0O

Property 5 corresponds to a strong result related to theogezpMM line search since
it implies that the computed stepsize leads to a sufficieatadese of the criterion at each
iteration, independently from the number of line searctattesJ.

5.3 Stepsize minoration

Condition (12) alone is not sufficient to ensure that the dlgo makes reasonable progress
since it holds for arbitrary small values for and thus can yield convergence to a non-
stationnary point ([31]). In order to avoid too short stepsecond condition is required,
for example the second Wolfe condition (13). It turned odficdilt or even impossible to
fulfill the curvature condition (13) for any value df Fortunately, we can obtain a direct
minoration of the stepsize values that is sufficient to yeldvergence results.

Property 6 Under Assumptions 1 and 5, for gIE> 1,

al > cminat (50)
and T
al > cmin—5 (51)
v d|[?

for somecmn > 0.

Proof First, let us show that (50) holds for gIE> 1 with
V31+2L/Vpin—1
Cmin=————¢€(0,1/2 52
min ZL/Vmin € ( ) / ) ( )
Let ¢ be the concave quadratic function:
2

ola) = f(0)+orf'(0)+m°’7

with m= —L(mC+y°/a ) /Vimin. We havep(0) = f(0) and ®(0) = f(0) <0, sog@is de-
creasing orR ™. Let us considerr € [0,a'], so thatx + ad € ¥. According to Assump-
tion 1, we have ) )

[f(a) - £(0) < [|d]/*L|al

and according to Property 3,
|f(a) — £(0)] < La (P +y°/0L.) / Vi

Then we obtain: . .
[f ()| < La(mP+y°/ay) /vinin— f(0)
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Hence:
o(a) < f(a), Vae[o,al] (53)

Integrating (53) between 0 and yields
p(al) < f(ak) (54)
On the other hand, the expressiongéit tmin = Cmin0'* can be written as follows:

@(amin) = f(0)+Calf(0)

where
m’+y°/a
C = mn - it T
min
According to (44):
1 —2f(0)
S mPyO/a
so that
L 1
C < Crint B —— — =
Cmin + Cmin Vo 2’

where the latter equality directly stems from the exprassiocy,n. Since@ is decreasing
onR™, we get

1 ..
@(amin) > £(0) + 5a*(0) > f(a?), (55)
where the last inequality is the first Wolfe condition (49) fo= 1.

Finally, a’ > 0 for all j > 1. Assume that there exisissuch thair! < amin. According
to (54) and given thap is decreasing o+, we get:

f(al) > (al) > @(amn) > f(a®),

which contradicts the fact thdt(a!) is nonincreasing. Thus, (50) holds. So does (51), ac-
cording to Property 4. O

6 Convergence results

This section discusses the convergence of the iterativeedealgorithm
Tl =k +0xdx, k=1 ...,K

whendy satisfiesg{dk < 0 and the line search is performed using the proposed MMeglyat
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6.1 Zoutendijk condition

The global convergence of a descent direction method isnipemsured by a ‘good choice’
of the step but also by well-chosen search directdpnConvergence proofs often rely on
the fulfillment of Zoutendijk condition

3 llgkl* co$ 6 < o, (56)
k=0

where6 is the angle betweed and the steepest descent directiogy:

—gp di

coSBy = ————.
llgxl| [l k]l

Inequality (56) implies thafgk|| cosf« vanishes for large values &f Moreover, provided
thatdy is not orthogonal te-gg (i.e., cos > 0), condition (56) implies the convergence of
the algorithm in the sense

lim [lgk]| = 0. (67)
Zoutendijk condition holds when the line search procedsiteased on the fulfillment of the

sufficient conditions (12),(13) ([31]). In the case of theposed line search, the following
result holds.

Property 7 Let ay be defined by (15). Under Assumptions 1 and 5, Zoutendijk ieond
tion (56) holds.

Proof Let us first remark that for aK, dy # 0, sinceg[ dy < 0. According to Property 5, the
first Wolfe condition holds foc; = ¢f:

F(zk) — F(zki1) > —C]akgy di

According to Property 6:
T
—9gy dy
ak > Cmin———5
™V 2

Hence:

(gy di)?
| di?

0<co F(xk) — F(@ki1)

with ¢y = (cminc{)/v > 0. According to Assumption 1, the level sé&f is bounded, so
limy_. F () is finite. Therefore:

8

lim F(zx) — F(zo)| < o (58)

k—00

(g7 di)? <£{
ldkl?> ~ co

=~
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6.2 Gradient related algorithms

A general convergence result can be established by usingotheept ofgradient related
direction ([1]).

Definition 2 A direction sequencédy} is said gradient related toxy} if the following
property holds: for any subsequengey} , that converges to a nonstationary point, the
corresponding subsequend} - is bounded and satisfies
limsup g, di < 0.

k—o00 ke #
Theorem 1 ([35]) Let {xx} a sequence generated by a descent me#hod = =i + aydk.
Assume that the sequen¢éy} is gradient related to{zy} and that Zoutendijk condi-
tion (56) holds. Then, the descent algorithm converges in the denge., ||gk|| = O.

The gradient norm converging to zero does not imply that pterezation method con-
verges to a minimizer, but only that it is attracted by a etaiy point. However, under
certain sufficient conditions, this can guarantee convergéo a local or global minimum.

Corollary 1 Let {xx} a sequence generated by a descent methgod = i + axdk. As-
sume that the sequengdy} is gradient related td =y} and that Zoutendijk conditio(66)
holds. Iflimy_.., O0%F (x) is positive definite thefy} converges to a strict local minimizer
of F.

Proof Direct consequence of the sufficient condition for localimization ([31]).

Corollary 2 Let {xx} a sequence generated by a descent methaod = =y + axdk. As-
sume that the sequengdy} is gradient related tq zy} and that Zoutendijk conditio(56)
holds. If Assumption 2 holds th€my} converges to a global minimizer of F.

Proof Direct consequence of the sufficient condition for globatimization ([31]).

In the sequel, we will show that Theorem 1 yields converg@fictassical descent opti-
mization schemes such as the truncated Newton method apddjeeted gradient method
for constrained optimization when such schemes are combinit our line search algo-
rithm.

6.2.1 Preconditioned gradient, Newton and inexact Newtgaréhms

Let us consider the family of descent algorithms when thecbegirection has the form
dy = —Dygx (59)

with Dy a positive definite symmetric matrix. In the steepest deso@thod Dy is sim-
ply the identity matrixI, while in Newton's methodDy is the inverse of the Hessian
O2F (x). In quasi-Newton methods such as BFGS algorithm ([31]) slimited memory
version ([23]),Dx is an iterative approximation of the inverse Hessian. Sibgés positive
definite,dk is a descent direction. Moreover, we have the following prop

Property 8 ([2]) Let {xx} a sequence generated by, 1 = xx + axdx wheredy is given
by (59). If the se{ Dy, k=1,...,K} has a positive bounded spectrum, then the direction
sequencddy} is gradient related tdxy }.

Then, according to Theorem 1, the descent algorithm comeérgthe sense lign.« || gk|| =
0.
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6.2.2 Truncated versions

Let Hy a SPD approximation of the HessianFafThus, a good choice would be to take the
preconditioneDy = Hk*l in (59). However, when the dimensiaris large, the calculation
of the exact inverse dffy, may be prohibitive, and one may have to be satisfied with omly a
approximate solution. Such an approximation may be obddiyaising an iterative method.
This approach is used in the truncated Newton (TN) algorifl29]) where the search direc-
tion is computed by applying the conjugate gradient (CGhwoeto the Newton equations.
Here, we consider the more general case whgesults from CG iterations solving approx-
imately the linear systemifyd = —gk, which will be refered as truncated pseudo-Newton
(TPN) algorithms. Then, we have the following property:

Property 9 Let {zx} a sequence generated by, 1 = x + axdx wheredy results from
Ik CG iterations on the systeyd = —g. If the set{Hy,k=1,...,K} has a positive
bounded spectrum, then the direction sequdkg is gradient related tdxy}.

Proof According to [8, Th.A.1] and [8, Lem.A.2], there exist pdgitconstants, .7 so that

gn di < —T||gk)? (60)

and
ldk|l < 7 || gkl] (61)

According to [2, Chap.1], (60) and (61) are sufficient coiedis to ensure thafdy} is
gradient related tdxy}. O

Property 9 is extended to the case when the linear systenvidsoesingl, > O precon-
ditioned CG (PCG) iterations with the preconditioning mafv/y:

Corollary 3 Let{zy} a sequence generated by, 1 = zx + axdx wheredy results from |
PCG iterations on the syste®{yd = —gx preconditioned withM. If {Hy, k=1,... K}
and{ My, k=1,...,K} have a positive bounded spectrum, then the direction segyel }
is gradient related td zy} .

Proof Let Cy such thatM = C[Ck. Solving Hyd = —gx with PCG preconditioned by
My amounts to compute vectdrsuch that

Ck_THkaciI—Ck_Tgk (62)
d=Cd (63)

using CG iterations ([31]). According to [8, Th.A.1] and [82m.A.2], there exist positive
constantg’, .7 so that

(CTg)Tdk < —T'(|C T gl (64)

and
Idill < Z'11C T gill- (65)

Using (63),
(Cy "gw)" dk = gy di. (66)



Moreover, according to the boundness assumption on thérapeof { My, k=1,...,K},

_ 1
—lC Tl < = llaxll?, (67)
vy
o 1
IC " gkl < —==IIg«ll, (68)
il
\/ Vi
vi||d]| < || Cdll = [|di]l, (69)

where(vi?,vs?) > 0 denote the spectral bounds{df4y}. Thus, (60) and (61) hold with
T= r’\%,, andJ = 9’\%, hence the result using the gradient related sufficientitiond
2

in[2, Chap.l]. a

As a conclusion, the convergence of both TPN-CG and TPN-Pa@@shwhen the pro-
posed line seach is used, according to Theorem 1.

6.2.3 Feasible directions methods for constrained op&titn

Consider the constrained problem:
minimize F(x) subjecttox € 2

whereZ is a nonempty, closed, and convex set. Let us examine theemgevce properties
of algorithms belonging to the class of feasible directicetimods.

Definition 3 ([2])
Given a feasible vectat, a feasible direction at is a vectord # 0 such thatc 4+ ad is
feasible for all sufficiently smallr > 0.

Starting withxzo € 2, the method generates a sequence of feasible vectors amrtod
Tkl = Tk + Akdk
whereay € (0,1] anddy is a feasible direction that can be written in the form
dy = 7 — x (70)

with
€D, gy (xy—ax) <O.

Convergence analysis of feasible direction methods is #tarse to that of descent di-
rection methods in the unconstrained case. In particukhave the following property:

Property 10 ([2]) Let {dx} generated by (70) with, given either by:
— conditionnal gradient
xj = argming (z — xy) (71)

xey

— gradient projection with constant parameter O

zy = P [x—Sgu] (72)
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— scaled gradient projection with constant parameted and scaling matricelsDy } with
bounded spectrum

. 1

x} = arg mln{gg(wfmk)+2—(w7wk)TDk(mfmk)} (73)
IS S

In all three cases, the direction sequefidg} is gradient related tdxy}.

Thus, Theorem 1 implies the convergence of the three constraptimization algorithms
defined by (71), (72) and (73), respectively, in conjunctioth the proposed line search.

6.3 Convergence of conjugate gradient methods

This section discusses the convergence of the nonlineargate gradient algorithm (NLCG)
defined by the following recurrence

Ti1 = Tk + Akdi
Ck+1 = —Gk+1+ Pr+1dk (74)
dkt1 = *Ck+13igr(.gg+1ck+l)

for some conjugacy formulas.

6.3.1 Methods Witl@;yk_l in the numerator ofik

Let us consider the conjugacy formulas of the form ([7]):
Bo=0, Bc=PB*=ggyc1/Dk, Yk>0 (75)
with
Dy = (11—t — @)l gk /|” + Hiedg_1yk—1 — Wy 19k-1
Yk—1 = gk — 9k-1
Hc€[0,1], o€ [0,1— i
Expression (75) covers the following conjugate gradienthods:

B = gl yk 1/dp_ 1y 1 Hestenes-Stiefel (HS)
B = gl i 1/llgk 12 Polak-Ribere-Polyak (PRP)
B = —gf yk_1/dy_19k 1 Liu-Storey (LS)

The following convergence result holds:

Theorem 2 Let Assumption 1 and 5 hold. The NLCG algorithm is convergetite sense
liminfy_» gk = 0 whenay is defined by15) and B is chosen according to the PRP and LS
methods, and more generally fag = 0 and w € [0, 1]. Moreover, if Assumption 3 holds,
then we havéiminfy_.., gx = 0in all cases.

Proof We have previously established:

— the inequality (31) orr}

— the stepsize minorization (42) < cJ'®a}

— the stepsize majorization (50)<\Ocmmorkl < ok

— the fulfillment of Zoutendijk condition (56)
Thus, the proof of Theorem 2 is identical to that developpel@2, Part 4]. This result can
be viewed as an extension of [22, Th. 4.1] for a new form of éantgnajorant. a
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6.3.2 Other conjugacy formulas

Let consider the following conjugacy formulas:

B« = max(gy 1 (gk+1—gk)/llgk[,0)  modified Polak-Rikére-Polyak (PRP+)
B = llgks1ll?/llgxl® Fletcher-Reeves (FR)
B = llgwsall?/di (gk1— gx) Dai-Yuan (DY)

The convergence of the CG algorithm with these conjugaaydies is obtained under an
additional assumption on the tangent majorant.

Theorem 3 Let ay be defined by the recurren¢g5). According to Assumptions 1 and 5, if
forall j € {0,...,J— 1}, (28)holds, then we have convergence in the séns@afy_... gx =0
for the PRP+ and FR methods. Moreover, under Assumption 2 awe tonvergence in the
same sense for the DY method.

Proof We will prove by recurrence ok thatdy is a sufficient descent direction fér, i.e.,
there exists) > 0 such that
gx d < —nlgull*. (76)

Let z¢ € ¥ and letdy a sufficient descent direction. Let us prove tst! is a suffi-
cient descent direction. According to Lemma 5, (28) impttest f(a!) < O for all j. Thus
gr1dk < 0. From (74),

gt 101 = —llgiral? + Ber1gw 1k

Let us consider the case of FR and PRP+ methods:

FR H9k+1||2
= Wkl (77)
K gkl
B = max(BR",0) >0 (78)

Thus,gk: 1¢x11 < —||lgks 1], s0d<t = &+ is a sufficient descent direction. Now, consider
the case of DY conjugacy:
g - laal?
dk (9k+1 - gk)
The conjugacy parameter takes the Sigmbtgk+l — gk)- Under Assumption 2 and given
(74), the convexity of leads to

gk s 1dk| < |gg dil (79)

Sincedy is a descent directiofgPY > 0, sod**! = ¢**1 is a sufficient descent direction.
Then, (76) holds for ak for FR, DY and PRP+ methods. Finally, according to [16, T8, 4.
Th.5.1], Property 7 and (76) yield the convergence of the-PRR and DY methods. O

7 Experimental results
This section presents three application examples illtisggahe practical efficiency of the

proposed line search procedure. The examples are chosethfedield of image and signal
processing.
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7.1 Image reconstruction under Poisson noise

We consider a simulated positron emission tomography (REBR]) reconstruction prob-
lem. The measurements in PET are modeled as Poisson randiaivles:

y ~ PoissofHx +r)

where theth entry ofz represents the radioisotope amount in pixehd H is the projection
matrix whose elements,, model the contribution of theth pixel to themth datapoint. The
components of are the counts measured by the detector pairs-anddels the background
events (scattered events and accidental coincidences)aiihis to reconstruct the image
x > 0 from the noisy measuremenjs

7.1.1 Objective function

According to the noise statistics, the neg-log-likelihaddhe emission data is

M
J(z) = z ([Hx]m+rm—Ymlog([Hx]m+Im)) .-

m=1

The penalization term resulting from modelling the pixéimsity distribution using a gamma-
mixture density is ([17]):

A an
R(z) =— —1)logxn— —Xn | .
(@)=~ 3 ((an=Dlogra— o)
Here, the parameters, > 1 andb, > 0 of the gamma priors are assumed to take known
values. The estimated image is the minimizer of the following obijecfunction

F(z) =J(z)+R(z). (80)

The first part of the criterion implies the presence of a lggaric barrier inJ. The second
part corresponds to a gamma-mixture prior that enforcesiyigsinto account and favors
the clustering of pixel intensities. It induces a seconetgplog barrier, at the boundary of
the positive orthant. A classical approach for solving thgroization problem is to use the
NLCG algorithm ([17]) with the Moe and Thuente’s (MT) line search procedure ([26]). We
propose to compare the performance of the algorithm whemdditine search procedure
is used.

7.1.2 Optimization strategy

The NLCG algorithm is employed with PRP+ conjugacy. The esgence of the algorithm
with the proposed line search is established in Theorem 8russsumptions 1, 5 and con-
dition (28). Let] = P+ B with

M N
B(x) = Zl—ymlog([Hw}m—i—rm) + > (an—1)logx,

n=1

1 Hyperparameters estimation is discussed in ([17]). Howeeresulting algorithm does not fall within
the application of our convergence theory and the adaptatauld require a specific analysis.
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and
M N

an
Plz)=S [HZ]m+Tm+ > —Xn.
&I 2

It is straightforward that Assumption 1 holds for a > 0. Moreover, Assumption 5 holds
takingM(z) =0, A = [Id H]T andp = [0+]". Finally, sinceP is linear, condition (28)
reads:

0L m{)(a—aj), Va > al
and holds fom}, = M(z + ald) = 0. Theorem 3 does not cover the preconditioned case.
However, we have noticed that, in practice, the use of a dialgoreconditioner speeds up
substantially the algorithm convergence.
The algorithm is initialized with a uniform positive objentd the convergence is checked
using the following stopping rule ([31])

lgklle < E(1+[F(2k)]), (81)

wheree is set to 107.

7.1.3 Results and discussion

We present a simulated example using data generated withFégsler’s code available
athttp://www.eecs.umich.edu/~fessler. For this simulation, we consider an image

of sizeN = 128x 128 pixels andVl = 24924 pairs of detectors. Table 1 summarizes the
performance results in terms of iteration numiseand computation tim& on an Intel
Pentium 4, 3.2 GHz, 3 GB RAM. The design parameters are thé&Wohdition constants
(c1,¢p) for the MT method and the number of subiteratidrfer the MM procedure.

c1 C K T(S)

'E_. 10° 05 | 97 | 361
8 10°% 09 | 107 | 337
2 108 099 | 102 | 317
103 0999 | 102 | 313

J K | T(s)

2 1 96 | 266
) 2 111 | 464
© 5 138 | 1526
= 10 138 | 3232

Table 1 Comparison between MM and MT line search strategies for a RE@nstruction problem solved
with NLCG algorithm, in terms of iteration numb&rand timeT before convergence. Convergence is con-
sidered in the sense of (81).

It can be noted that the NLCG algorithm with MM line search M&-MM) requires
less iterations than the MT method (NLCG-MT), even when theametergcs,c;) are
optimally chosen. Moreover, NLCG-MM is faster because ofraléer computational cost
per iteration. Furthermore, the proposed MM procedure tdanunique tuning parameter,
namely the subiteration numbé&rand the simplest choick= 1 appears the best one.
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7.2 Nuclear magnetic resonance reconstruction

We consider a mono-dimensional nuclear magnetic resor&Md®) reconstruction prob-
lem. The NMR decay(t) associated with a continuous distribution of relaxationstants
X(T) is described in terms of a Fredholm integral of the first kind:

Tmax
st) = [ XK T)AT. (82)
Trmin
with k(t,T) = e V/T. In practice, the measured signals a set of discrete experimental

noisy data pointsm = s(tm) modeled as
s=Kx+¢ (83)

where K andz are discretized versions &ft, T) andx(T) with dimensionsM x N and
N x 1, ande is an additive noise assumed centered white Gaussian. Gjvére aim is
to determinex > 0. This problem is equivalent to a numerical inversion of fnedholm
integral (82) and is known as very ill-conditioned ([4]).

7.2.1 Objective function

In order to get a stabilized solution, an often used methadmizes the expression
F(z)=J(z)+AR(x) (84)

under positivity constraints, whedds a fidelity to data term:
1
I@) =5l - Kal3,
andR s an entropic regularization term, e.g., the Shannon pytneeasure ([24]):

R(z) =Y X, Inx,

2
Moreover, the positivity constraint is implicitely handlbecause of the barrier property of
the entropy function.

7.2.2 Optimization strategy

The TN algorithm is employed for solving (84). The directigpis computed by approx-
imately solving the Newton systefi*F (xx)d = —gk using PCG iterations. We propose a
preconditioning matrixMy built as an approximation of the inverse Hessiaffr @it xy:

My = [UDUT + Adiagla) Y] 7,

whereUT 2V is a truncated singular value decompositionfofand D = 57 3. The con-

vergence of the TN algorithm with the proposed line searobstablished in Theorem 1
using Corollary 3 under Assumptions 1 and 5. The verificatibthe latter is straightfor-
ward takingM(z) = KT K, A = Id andp = 0. The fulfilment of Assumption 1 is more
difficult to check since the level setp may contain an element with zero components,
contradicting the gradient Lipshitz assumption. In piagtive initialized the algorithm with
xo > 0 and we have not noticed convergence issues in our pratti&tal The extension of
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the convergence results under a weakened version of Aseamiptemains an open issue
in our convergence analysis.

The algorithm is initialized with a uniform positive objemtd the convergence is checked
using (81) withe = 10-°. Following [29], the PCG iterations are stopped when:

IBF (k) + O?F (zi)d|| < 107°||F (ax)]]-

We propose to compare the performances of the MM line seardtofthe interpolation-
based MT method [26].

7.2.3 Results and discussion

Let (T) a distribution to estimate. We consider the resolution &) @hen datas are
simulated fromz(T) via the NMR model (83) over sampled timgg m = 1,...,10000,
with a SNR of 25 dB (Figure 1). The regularization paramatés set toA = 7,2- 10~ to
get the best result in terms of similarity between the sitealand the estimated spectra (in
the sense of quadratic error).

15 2
“““ Simulated z(T")
— Estimated z(7)
1 15
05 1
@
0 0.5
-05 0 N
0 2 4 t6 8 10 12 0 1 T 2 3

(a) Simulated NMR measurement with SNRb) NMR reconstruction with similarity error
=25dB 8.5%.

Fig. 1 Simulated NMR reconstruction with maximum entropy method

According to Table 2, the TN algorithm with the MM line seaqérforms better than
with TN with the best settings for; andc,. Concerning the choice of the sub-iteration
number, it appears thdt= 1 leads again to the best results in terms of computation time

7.3 Constrained quadratic programming

Let consider the following quadratically constrained qaid optimization problem

ﬁ?lcln{Fo(w) = %wTAow—ﬁ—agw—Fpo} (85)

. 1 .
subject to:Ci(z) = —éwTAi:c+a1-Tm+pi >0,i=1....m
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c1 Co K T(s)
108 05 | 34| 12
103 09 | 42| 13
099 | 71| 20
102 099 | 71| 19
102 05 | 34| 13
101 099 | 71| 19
101 05 | 34| 14

TN-MT
[uy
9
w

J K | T(s)
= 1 36| 8
s 2 40| 9
z 5 40 | 10

10 40 | 14

Table 2 Comparison between MM and MT line search strategies for a marientropy NMR reconstruc-
tion problem solved with TN algorithm, in terms of iterationmioer K and timeT before convergence.
Convergence is considered in the sense of (81).

whereA;,i =0, ..., mare symmetric SPD matrices Bf*". We propose to solve (85) with
the primal interior point algorithm of [3]: for a decreasisgquence of barrier parametgxs
the augmented criterion

m
Fu(z) = Fo(z) — uzlogq ().
1=
is minimized using Newton iterations
Tkl = Tk + akdk, With dy = —DZFu_l(a:k)[lFu (zk)

that are stopped whefi] gx)? < 2.

The stepsizer, must belong to an intervdb_, o) that corresponds to the definition
domain ofF, (xx + adi). Since the constraints are quadraticirthey are also quadratic in
a:

Ci(zx + ady) = Q*a? + QPa + Q?

with Q! = —%dIAidk, Q,2 = —a:-krAidk—&-aITdk anin3 = —%mIAimk—l-a,ka—i-pi. As a
consequencey_ anda, can be computed exactly for any,( dx). For exampleq is the
smallest positive root of the concave polynor@g&ey + ady). In [3], the stepsize strategy
is based on backtracking. Starting with the feasible atep0.99a., , the stepsize is reduced
until it fulfills the first Wolfe condition (12). As an altertige in the context of interior point
methods, adamped Newtompproach is developped in [30] to minimize the augmented
criterionF,. The Newton directionly is damped by a factam € (0,1] ensuring thaty +
aydy is feasible and that the criterion decreases by a minimatl fateount. The damping
factor is given by

1

1t didlay

where|| - || is the Hessian norm defined by ||» = v/u" 0?Fy(z)u.

The convergence properties of this interior point algoni#re based on the self concor-
dancy ofF, ([30]). Our aim here is only to evaluate the practical reimeof the MM line
search when it is used instead of the backtracking and theidgrprocedures.

Qg
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7.4 Results and discussion

In order to analyse the performance of the interior poinbatgm, we apply it onto 50
problems withA;, pi anda generated randomly taking= 400, m = 200 as in [20].z
is initialized in the constrained doma#i. The barrier parametgr is initially set to 1 and
decreases following a geometric series of ratih The algorithm is stopped when< timin.
Table 3 reports the performances of the interior point atlgor for the different line search
procedures using; = 0.01 andJ = 1.

Backtracking | Damping MM
K 273+ 27 135+4 64+3
T(s) | 5637+1421 | 465+26 | 225+8

Table 3 Comparison between different line search strategies fonteeior point algorithm over 50 random
quadratic programming problents.denotes the sum of inner iterations ahdhe time before convergence,
with tolerance parameteysyi, = 108 ande = 107°. The results are given in terms of mean and standard
deviation.

It can be noted that the interior point algorithm with MM lisearch requires less iter-
ations than the backtracking and damped Newton approabtwsover, even if the MM
procedure requires the exact computation@f , o), it is faster than the two other ap-
proaches. It can also be remarked that the damping stragedgdicated to the particular
case whenl is the Newton direction. Therefore, it must be modified whHenrminimization
of F, is obtained by means of other algorithms (see [20] for th¢umgate gradient case). On
the contrary, the proposed line search can be applied indepdy of the descent algorithm
used. To conclude, the MM procedure seems an efficient aligerto line search strategies
widely used in primal interior point algorithms.

8 Conclusion

This paper extends the line search strategy of [22] to the ofsriteria containing barrier
functions, by proposing a non-quadratic majorant apprasionm of the function in the line
search direction. This majorant has the same form as the @mpoged in [27], whereas
the latter follows an interpolation-based approach. Hakewn the majorization-based ap-
proach, the construction of the approximation is easieligndinimization leads to an ana-
lytical stepsize formula, guaranteeing the convergencewéral descent algorithms. More-
over, numerical experiments indicate that this approadpestorms standard line search
methods based on backtracking, damping or cubic interipolat

Two extensions of this work are envisaged. On the one hard;abe of nonlinear con-
straints can be handled by using the procedure describezi’jn On the other hand, the
analysis can be performed for additionnal forms of barnigrctions such as cross-entropy
([33]) or inverse function ([9]).
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