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Abstract Criteria containing abarrier function i.e., an unbounded function at the boundary
of the feasible solution domain are frequently encounteredin the optimization framework.
When an iterative descent method is used, a search along the line supported by the descent
direction through the minimization of the underlying scalar function has to be performed at
each iteration. Usual line search strategies use an iterative procedure to propose a stepsize
value ensuring the fulfillment of sufficient convergence conditions. The iterative scheme is
classically based on backtracking, dichotomy, polynomialinterpolations or quadratic ma-
jorization of the scalar function. However, since the barrier function introduces a singu-
larity in the criterion, classical line search procedures tend to be inefficient. In this paper
we propose a majorization-based line search procedure by deriving a nonquadratic form of
a majorant function well suited to approximate a criterion containing a barrier term. Fur-
thermore, we establish the convergence of classical descent algorithms when this strategy
is employed. The efficiency of the proposed line search strategy is illustrated by means of
numerical examples in the field of signal and image processing.

Keywords Optimization methods· convergence· majorize-minimize algorithm· barrier
function· line search

1 Introduction

The aim of this paper is to address optimization problems that read

min
x

{F(x) = P(x)+ µB(x)} , µ > 0 (1)

wherex ∈ R
n, B is abarrier function having its gradient unbounded at the boundary of the

strictly feasible domain
C = {x|Ci(x) > 0, i = 1, ...,m}
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andP is differentiable onC . We consider the case of linear constraintsCi(x) = aT
i x + ρi

with ai ∈ R
n\{0}, ρi ∈ R and barrier functions that read

B(x) =
m

∑
i=1

ψi(Ci(x)) (2)

with ψi taking one of the following forms:

ψi(u) = −κi logu, κi > 0 (3)

ψi(u) = κi ulogu, κi > 0 (4)

ψi(u) = −κi u
r , r ∈ (0,1), κi > 0 (5)

so that the minimizersx∗ of F fulfill Ci(x
∗) > 0.

A large family of optimization methods to solve (1) are basedon iteratively decreasing
the criterion by moving the current solutionxk along a directiondk,

xk+1 = xk +αkdk, (6)

whereαk > 0 is thestepsizeanddk is adescent directioni.e., a vector satisfying∇F(xk)
Tdk <

0. Such iterative descent methods consist in alternating the construction ofdk and the deter-
mination ofαk (line search). While the direction is computed using the criterion properties
(gradient, Hessian) at the current valuexk, the line search is performed by minimizing the
scalar functionf (α) = F(xk +αdk). Some iterative methods do not require the line search
step since the direction is calculated such that the optimalvalue ofαk would be equal to
one (e.g., trust region algorithms ([6]), subspace optimization ([36,28]) or variable metric
algorithms ([10,14])). Our analysis does not cover this family of methods.

Usual line search strategies perform an inexact minimization of f and propose a stepsize
value that ensures the convergence of the descent algorithm([31]). Typically, an iterative
procedure generates a series of stepsize values until the fulfillment of sufficient conver-
gence conditions such as Wolfe and Goldstein conditions ([26,31]). The iterative scheme is
classically based on backtracking or dichotomy and more sophisticated procedures involve
polynomial interpolations of the scalar function. Anotheralternative is to use quadratic ma-
jorizations of the scalar function leading to stepsize formulas guaranteeing the overall al-
gorithm convergence ([37,22]). However, since the barrierfunction in problem (1) has a
singularity at the boundary ofC , the derivative of the scalar function is unbounded and
therefore causes the inefficiency of interpolation-based strategies ([27]) and the unsuitabil-
ity of quadratic majorization.

In this paper a majorization-based line search is first proposed by deriving a nonquadratic
form of a majorant function well suited to approximate a criterion containing a barrier term.
Secondly, convergence results are obtained for classical descent algorithms when this strat-
egy is applied. The rest of this paper is organized as follows: After introducing the frame-
work of the optimization problem in§2, we explain in§3 why special-purpose line search
procedures are called for when dealing with barrier functions. A suitable line search strategy
based on majorization is then proposed in§4. §5 gives the properties of the resulting stepsize
series and§6 presents the convergence results when the proposed line search is associated
with classical descent algorithms.§7 illustrates the efficiency of the proposed line search
strategy through numerical examples in the field of signal and image processing.
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2 Preliminaries

Assumption 1 Let V be a neighborhood of the level setL0 = {x|F(x) 6 F(x0)}. V is
assumed bounded. Moreover, F: R

n → R is differentiable onV and ∇F(x) is Lipschitz
continuous onV with the Lipschitz constant L> 0:

‖∇F(x)−∇F(y)‖ 6 L‖x−y‖, ∀x,y ∈ V

The first part of the assumption is not a restrictive condition since it holds ifF is coercive,
that is:

lim
‖x‖→+∞

F(x) = +∞

According to Assumption 1, there existsη > 0 such that

‖∇F(x)‖ 6 η , ∀x ∈ V (7)

Moreover, because the gradient ofB is unbounded at the boundary ofC , (7) leads to the
existence ofε0 > 0 such that

Ci(x) > ε0, ∀x ∈ V , ∀i = 1, . . . ,m, (8)

and the boundedness assumption onV implies that there existsM > 0 such that

Ci(x) 6 M, ∀x ∈ V , ∀i = 1, . . . ,m. (9)

Assumption 2 Assumption 1 holds and F is convex onV : for every(x,y) ∈ V we have

F(ωx+(1−ω)y) 6 ωF(x)+(1−ω)F(y), ∀ω ∈ [0,1]

Assumption 3 Assumption 1 holds and F is strongly convex onV : there existsλ > 0 such
that

[

∇F(x)−∇F(x′)
]T

(x−x′) > λ‖x−x′‖2, ∀x,x′ ∈ V

Definition 1 Let {Mk, k = 1, . . . ,K} a set of symmetric matrices.{Mk} has anonnegative
bounded spectrumwith bounds(νM

1 ,νM
2 ) ∈ R if for all k,

0 6 νM
1 6

xTMkx

‖x‖2 6 νM
2 , ∀x ∈ R

n\{0} (10)

Moreover, the set has apositive bounded spectrumif νM
1 > 0.

Assumption 4 For all x′ ∈ V , there exists a symmetric matrixM (x′) such that for all
x ∈ V ,

Q(x,x′) = P(x′)+(x−x′)T∇P(x′)+
1
2
(x−x′)TM (x′)(x−x′) > P(x). (11)

Moreover, the set{M (x)|x ∈ V } has a nonnegative bounded spectrum with bounds(νM
1 ,νM

2 ).
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As emphasized in [22, Lem.2.1], Assumption 4 is not a restrictive condition since it
holds ifP is gradient Lipschitz onV with constantLp by settingM (x) = Lp for all x ∈ V .
Useful methods for constructingM(x) without requiring the knowledge ofLp are devel-
opped in [5,18,13].

Assumption 5 Assumption 4 holds and at least one of the following conditions is fulfilled:

1) Ker(A) = {0} with A = [a1, . . . ,am]T

2) νM
1 > 0.

Lemma 1 If ψi is given by(3), (4) or (5), then

– ψi is strictly convex
– ψ̇i is strictly concave
– limu→0 ψ̇i(u) = −∞
– −

...ψ i(u)/ψ̈i(u) 6 2/u, ∀u > 0

Proof In all cases, it is straightforward to check the first three conditions. The fourth also
holds since we have:

1. ψi(u) = −κi logu, κi > 0 =⇒ −
...ψ i(u)/ψ̈i(u) = 2/u

2. ψi(u) = κi ulogu, κi > 0 =⇒ −
...ψ i(u)/ψ̈i(u) = 1/u 6 2/u

3. ψi(u) = −κi ur , r ∈ (0,1), κi > 0 =⇒ −
...ψ i(u)/ψ̈i(u) = (2− r)/u 6 2/u

⊓⊔

3 Line search strategies for barrier functions

3.1 Problem statement

The stepsize should satisfy sufficient conditions to ensurethe convergence of the descent
algorithm. The most popular are the Wolfe conditions that state that a stepsize series{αk}
is acceptable if there existsc1, c2 ∈ (0,1) such that for allk and for allxk ∈ V ,

F(xk +αkdk) 6 F(xk)+c1αkg
T
k dk (12)

|∇F(xk +αkdk)
Tdk| 6 c2|g

T
k dk| (13)

wheregk , ∇F(xk). The barrier termB(x) implies that ḟ tends to−∞ whenα is such that
Ci(xk + αdk) cancels for somei. Since the constraints are linear, functionf is undefined
outside an interval(α−,α+), whereα− andα+ are the lowest and highest feasible values of
α. Therefore, we must ensure that during the line search, the stepsize values remain in the
interval(α−,α+).

Typical line search schemes in barrier-related optimization methods chooseαk = θα+,
whereθ ∈ (0,1) is close to one ([34,15]). However, this simple approach does not ensure the
convergence of the optimization algorithm and can lead to a sequence of iterates ‘trapped’
near the singularity ([27]). In [30,20], line search procedures based on the self-concordancy
property of the logarithmic barrier functions are developped. However, the computation of
the stepsize requires the evaluation of the Hessian matrix which is often expensive or even
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impossible for large scale problems. Furthermore, since methods using polynomial interpo-
lation are not suited to interpolate functionf , due to its behavior atα− andα+, [11,27]
propose an interpolating function of the form

F(x+αd) ≈ f0 + f1α + f2α2−µ log( f3−α) (14)

where the coefficientsfi are chosen to fitf and its derivative at two trial points. The line
search strategy consists in repeating such a specific interpolation process until the fulfillment
of Wolfe conditions. However, the resulting algorithm is not often used in practice, probably
because the proposed interpolating function is difficult tocompute. In contrast, our proposal
is not based on interpolation, but rather on majorization, with a view to propose an analytical
stepsize formula and to preserve strong convergence properties.

3.2 Majoration-Minimization line search

In Majoration-Minimization (MM) algorithms ([18,19]), the minimization of a functionf
is obtained by performing successive minimizations oftangent majorantfunctions for f .
Functionh(u,v) is said tangent majorant forf (u) atv if for all u,

{

h(u,v) > f (u)
h(v,v) = f (v)

The initial optimization problem is then replaced by a sequence of easier subproblems, cor-
responding to the MM update rule

u j+1 = argmin
u

h(u,u j).

Recently, the MM strategy has been used as a line search procedure ([12]) and the con-
vergence is established in the case of conjugate-gradient ([37,22]), memory-gradient ([25])
and truncated Newton algorithms ([21]). The stepsize valueαk results fromJ successive
minimizations of quadratic tangent majorant functions forthe scalar functionf , expressed
as

q j(α,α j) = f (α j)+(α −α j) ḟ (α j)+
1
2

mj(α −α j)2

at α j . It is obtained by the recurrence

α0 = 0; α j+1 = α j −
ḟ (α j)

mj , j = 0, . . . , J−1

and the stepsizeαk corresponds to the last valueαJ. The main advantage of this procedure
is that it gives an analytical formulation of the stepsize value and guarantees the algorithm
convergence whatever the value ofJ ([22]). However, it cannot be applied in the case of
logarithmic barrier function (3) since there is no parameter mj such that the quadratic func-
tion q j(.,α j) majorizesf in the set(α−,α+). Actually, it would be sufficient to majorizef
within the level setLk = {α, F(xk +αdk) 6 F(xk)}, but this set is difficult to determine
or even to approximate. In the case of barriers (4) and (5),f is bounded at the boundary of
the set(α−,α+). However, the curvature off is unbounded and one can expect suboptimal
results by majorizing the scalar function with a parabola, in particular very small values of
mj can arised forα j close to the singularity.
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4 Proposed majorant function

To account for the barrier term, we propose the following form of tangent majorant function:

h(α) = h0 +h1α +h2α2−h3 log(h4−α),

This form is reminiscent of the interpolation function (14)but here the parametershi are
chosen to ensure the majorization property. Moreover, its minimizer can be calculated ex-
plicitely.

According to the MM theory, let us define the stepsizeαk by

α0 = 0

α j+1 = argmin
α

h j(α,α j), j = 0, . . . , J−1

αk = αJ

(15)

whereh j(α,α j) is the tangent majorant function

h j(α,α j) = q j(α,α j)+ γ j
[

(ᾱ j −α j) log
( ᾱ j −α j

ᾱ j −α

)

−α +α j
]

(16)

which depends on the value off and its derivative atα j and on three design parameters
mj ,γ j , ᾱ j . It is easy to check that

h j(α j ,α j) = f (α j).

Thus, the values ofmj ,γ j , ᾱ j should ensure

h j(α,α j) > f (α), ∀α.

4.1 Construction of the majorant function

Let x ∈ C , d a search direction andα j ∈ (α−,α+) such thatx + α jd ∈ V . Let us derive
an expression for the parametersmj ,γ j , ᾱ j such thath j(α,α j) is a tangent majorant for
F(x + αd) = f (α) at α j . Properties 1 and 2 respectively propose tangent majorant for
p(α) , P(x+αd) and forb(α) , B(x+αd).

Property 1 Under Assumption 5, the functionq j
p(α,α j) given byp(α j)+(α−α j)ṗ(α j)+

1
2mj

p(α −α j)2 is a tangent majorant forp at α j if

mj
p = dTM(x+α jd)d. (17)

Proof Direct consequence of Assumption 5. ⊓⊔
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In order to build a tangent majorant for the barrier termb, we define

b1(α) = ∑
i|δi>0

ψi(θi +αδi)

b2(α) = ∑
i|δi<0

ψi(θi +αδi)

with θi = aT
i x+ρi andδi = aT

i d for all i = 1, . . . ,mso thatb= b1+b2+cste. Functionsb1

andb2 present vertical asymptotes respectively atα− < α j andα+ > α j with






α− = max
i|δi>0

− θi
δi

,

α+ = min
i|δi<0

− θi
δi

.

Property 2 The functionφ j(α,α j) given by

b(α j)+(α −α j)ḃ(α j)+
1
2

mj
b(α −α j)2 + γ j

b

[

(ᾱ j −α j) log
ᾱ j −α j

ᾱ j −α
+α j −α

]

with parameters

mj
b = b̈1(α j), γ j

b = (α+ −α j)b̈2(α j), ᾱ j = α+, for α ∈ [α j ,α+) (18)

and
mj

b = b̈2(α j), γ j
b = (α−−α j)b̈1(α j), ᾱ j = α−, for α ∈ (α−,α j ] (19)

is a tangent majorant forb at α j .

Proof Let us first prove this property forα > α j . In this case, functionφ j is notedφ j
+ with

parametersmj
+ = mj

b andγ j
+ = γ j

b. The aim is to prove that
{

φ j
+1(α,α j) = b1(α j)+(α −α j)ḃ1(α j)+ 1

2mj
+(α −α j)2

φ j
+2(α,α j) = b2(α j)+(α −α j)ḃ2(α j)+ γ j

+

[

(α+ −α j) log α+−α j

α+−α +α j −α
]

respectively majorizeb1 andb2 for all α > α j .
First, Lemma 1 implies thatb1 is strictly convex anḋb1 is strictly concave. Then, for all

α ∈ [α j ;α+), b̈1(α) 6 b̈1(α j) = mj
+. Hence,φ j

+1(.,α
j) majorizesb1 on [α j ;α+).

Then, let us defineT(α) = ḃ2(α)(α+ −α) andl(α) = ḃ2(α j)(α+ −α)+ γ j
+(α −α j).

Givenγ j
+ = (α+ −α j)b̈2(α j), the linear functionl also reads:

l(α) = φ̇ j
+2(α,α j)(α+ −α)

Thus we havel(α j) = T(α j) andl̇(α j) = Ṫ(α j). Let study the curvature ofT:

T̈(α) =
...
b2(α)(α+ −α)−2b̈1(α)

The second derivative ofT also reads

T̈(α) = ∑
i|δi<0

δ 3
i

...ψ i(θi +αδi)(α+ −α)−2δ 2
i ψ̈i(θi +αδi)

According to the definition ofα+:

(α+ −α) < −(θi +αδi)/δi , ∀i such thatδi < 0



8

Moreover, according to Lemma 1, the third derivative ofψi is negative, so

T̈(α) < ∑
i|δi<0

δ 2
i

[

−
...ψ i(θi +αδi)(θi +αδi)−2ψ̈i(θi +αδi)

]

< 0

where the last inequality is a consequence of Lemma 1. ThusT is concave. Sincel is a linear
function tangent toT, we have

l(α) > T(α), ∀α ∈ [α j ,α+) (20)

Givenα+ > α, (20) also reads:

φ̇ j
+2(α,α j) > ḃ2(α), ∀α ∈ [α j ,α+) (21)

Therefore,φ j
+2(.,α

j) majorizesb2 over[α j ;α+). Finally,φ+(.,α j)= φ j
+1(.,α

j)+φ j
+2(.,α

j)
majorizesb for α > α j .

The same elements of proof apply to the caseα 6 α j . ⊓⊔

Therefore, using Properties 1 and 2, we obtain thath j(α,α j) = qp(α,α j)+µφ j(α,α j)
is a tangent majorant forf at α j .

4.2 Minimization of the tangent majorant

The MM recurrence (15) involves the computation of the minimizer of h j(α,α j) for j ∈
{0, . . . ,J−1}. Lemma 2 leads to the strict convexity of the tangent majorant:

Lemma 2 Under Assumption 5, hj(.,α j) is C2 and strictly convex.

Proof First,q j
p(.,α j) is a quadratic function and thusC2 over(α−,α+). Moreover,h j(.,α j)

is C∞ over(α−;α j) and(α j ;α+). Finally, expressions (18) and (19) lead to the continuity
of h j and of its first and second derivatives atα j . Then,h j(.,α j) is C2 over (α−;α+).
According to (18) and (19), the second derivative ofh j(.,α j) is given by

ḧ j(α,α j) =







mj
p + µb̈2(α j)+ µb̈1(α j) (α−−α j )2

(α−−α)2 ∀α ∈ (α−,α j ]

mj
p + µb̈1(α j)+ µb̈2(α j) (α+−α j )2

(α+−α)2 ∀α ∈ [α j ,α+)

mj
p is strictly positive according to Assumption 5, andb1 andb2 are strictly convex according

to Lemma 1. Hence,h j(.,α j) is strictly convex. ⊓⊔

Because of strict convexity, the tangent majoranth j(.,α j) has a unique minimizer, which
can be expressed as an explicit function ofḟ (α j) as follows:

α j+1 =























α j −
2q3

q2 +
√

q2
2−4q1q3

if ḟ (α j) 6 0

α j −
2q3

q2−
√

q2
2−4q1q3

if ḟ (α j) > 0
(22)

with






q1 = −mj

q2 = γ j − ḟ (α j)+mj(ᾱ j −α j)
q3 = (ᾱ j −α j) ḟ (α j)

(23)
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4.3 Properties of the tangent majorant

Lemma 3 Let j∈ {0, . . . ,J−1}. If ḟ (α j) 6 0, thenα j+1 fulfills:

−
q3

q2
6 α j+1−α j 6 −

2q3

q2
.

where q1, q2 and q3 are given by(23).

Proof Straightforward given (22) witḣf (α j) 6 0. ⊓⊔

Lemma 4 Let j ∈ {0, . . . ,J−1}. For all α ∈ [α j ,α+), φ̇+(α,α j) majorizes the derivative
ḃ(α).

Proof For all α j , we have

φ̈+1(α,α j) = b̈1(α j) > b̈1(α),∀α ∈ [α j ,α+)

Thus, functionφ̇+1(α,α j)− ḃ1(α) is increasing on[α j ;α+). Moreover, it vanishes atα j ,
so

φ̇+1(α,α j) > ḃ1(α), ∀α ∈ [α j ,α+)

This allows to conclude, given (21). ⊓⊔

Property 3 Let j ∈ {0, . . . ,J−1}. Under Assumptions 1 and 5, there existsνmin, νmax, 0<
νmin 6 νmax, such that for allx ∈ V and for all descent directiond atx:

νmin‖d‖
2 6 ḧ j(α j ,α j) 6 νmax‖d‖

2, ∀ j > 0

Proof According to Lemma 2,

ḧ j(α j ,α j) = mj
p + µb̈(α j).

The second derivative ofb at α j also reads

b̈(α j) = dT∇2B(x+α jd)d

and Property 1 gives
mj

p = dTM(x+α jd)d.

Moreover,x+α jd∈V . Thus, it is sufficient to show that the set
{

M(x)+ µ∇2B(x)|x ∈ V
}

has a positive bounded spectrum.Letx ∈ V .

∇2B(x) = ATdiag(τiCi(x)−ti )A (24)

with

(τi , ti) =







(2,κi) if φi(u) = −κi logu
(1,1) if φi(u) = ulogu

(−r2 + r,2− r) if φi = −ur

andA = [a1, . . . , am]T . x ∈ V so (9) and (8) yield

dTT (M)d 6 dT∇2B(x)d 6 dTT (ε0)d (25)

with T (m) = ATdiag(τim−ti )A. T (m) is symmetric and has a nonnegative bounded spec-
trum with bounds(νT

min(m), νT
max(m)). Moreover, according to Assumption 4,M(x) has a

nonnegative bounded spectrum with bounds(νM
min,ν

M
max). Finally, according to Assumption

5, eitherνM
min > 0 or Ker(ATA) = {0}. Since the latter condition impliesνT

min(m) > 0, Prop-
erty 3 holds withνmin = νM

min + µνT
min(M) > 0 andνmax = νM

max+ µνT
max(ε0). ⊓⊔
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5 Properties of the stepsize series

This section presents essential properties of the stepsizeseries (15) allowing to establish
the convergence conditions of the descent algorithm. Let usconsiderx ∈ V and a descent
directiond, so thatḟ (0) = dTg < 0. The MM recurrence produces monotonically decreasing
values{ f (α j)} and the series{α j} converges to a stationnary point off ([18]). Moreover,
it is readily seen from (22) that

sgn
(

α j+1−α j) = −sgn
(

ḟ (α j)
)

, ∀ j > 0 (26)

Furthermore, according to [19, Th.6.4], the set[0, α̃] with α̃ = min{α > 0| f (α) = f (0)}
acts as a capture basin, that is

α j ∈ [0, α̃], ∀ j > 0. (27)

Since ḟ (0) < 0, it can easily been shown thatα1 is strictly positive soα j > 0 for all j > 1
using the capture property (27). We have finally the following result:

Lemma 5 If for all j ∈ {0, . . . ,J−1},

ṗ(α) 6 q̇ j
p(α,α j), ∀α > α j (28)

then

ḟ (α j) 6 0, ∀ j ∈ {0, . . . ,J−1} (29)

and the series
{

α j
}

is nondecreasing.

Proof According to Lemma 5, (28) implies that for allj ∈ {0, . . . ,J−1},

ḟ (α) 6 ḣ j(α,α j), ∀α > α j . (30)

Moreover, (29) holds forj = 0 sinced is a descent direction. Thus,α1 > 0 according to
(26). Let j ∈ {0, . . . ,J−1} and assume thaṫf (α j) 6 0. Thus, according to (26),α j+1 > α j .
Using (30) forα = α j+1, we obtain:

ḟ (α j+1) 6 ḣ j(α j+1,α j)

Moreoverα j+1 is the minimizer ofh j(.,α j) so ḣ j(α j+1,α j) = 0, hence the result by im-
mediate recurrence onj. ⊓⊔

5.1 Lower and upper bounds for the stepsize

Property 4 Under Assumptions 1 and 5, there existν ,ν ′ > 0 such that

−gTd

ν ‖d‖2 6 α1 6
−gTd

ν ′ ‖d‖2 . (31)
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Proof d is a descent direction, sȯf (0) < 0 andh0(.,0) has a barrier at̄α0 = α+.
If α+ = +∞ thenh0(.,0) is a quadratic function with curvaturem0. This majorant is

minimized atα1 = − ḟ (0)/m0 and according to Property 3, we have:

−gTd

νmax‖d‖2 6 α1 6
−gTd

νmin‖d‖2

If α+ < +∞, according to Lemma 3:

−gTd

γ0

α+
− gTd

α+
+m0

6 α1 6
−2gTd

γ0

α+
− gTd

α+
+m0

Using Property 3 and the positivity of−gTd, we obtain

νmin‖d‖
2 6

γ0

α+
−

gTd

α+
+m0 (32)

On the other hand, takingι = argmaxi −aT
i d, we deduce from (8) that

α+ >
ε0

|aT
ι d|

.

Thus, using Cauchy-Schwartz inequality and (7),

−gTd

α+
=

|gTd|

α+
6 |gTd|.|aT

ι d|
1
ε0

6 ‖g‖‖aι‖‖d‖
2 1

ε0

6
ηA

ε0
‖d‖2 (33)

with A = max
i

‖ai‖ > 0. Moreover, Property 3 implies that there existsνmax such that

m0 +
γ0

α+
6 νmax‖d‖

2 (34)

Therefore (32), (33) and (34) allow to check that Property 4 holds for

ν = νmax+ηA /ε0

ν ′ = νmin/2

⊓⊔
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5.2 Sufficient decrease condition

The first Wolfe condition (12) measures whether the stepsizevalue induces a sufficient de-
crease ofF . It also reads

f (α)− f (0) 6 c1α ḟ (0). (35)

wherec1 ∈ (0,1) is a constant with respect to the iteration number.

Lemma 6 Let j∈ {0, . . . ,J−1}. If ḟ (α j) 6 0, then:

f (α j)− f (α j+1)+
1
2
(α j+1−α j) ḟ (α j) > 0 (36)

Proof The property is trivial if ḟ (α j) = 0. Assume thaṫf (α j) < 0 so thatα+ > α j+1 > α j .
Let define the functionξ : u→− log(1−u)−u. A straightforward analysis ofξ shows that

ξ (u)

uξ̇ (u)
6

1
2
, ∀u∈ (0,1) (37)

Takingu = α−α j

α+−α j in (37) and denotingψ(α) = ξ (u):

ψ(α)

(α −α j)ψ̇(α)
6

1
2
, ∀α ∈ (α j ;α+). (38)

Moreover, let us defineQ(α) = 1
2mj(α −α j)2 so that

Q(α) =
1
2
(α −α j)Q̇(α). (39)

Let τ(α) = Q(α)+ γ j(α+ −α j)ψ(α) so the majorant function reads

h j(α,α j) = f (α j)+(α −α j) ḟ (α j)+ τ(α), ∀α ∈ [α j ,α+)

and, using (39) and (38),

τ(α)

(α −α j)τ̇(α)
6

1
2
, ∀α ∈ (α j ;α+) (40)

h j(.,α j) is a tangent majorant forf so

h j(α,α j)− f (α) = f (α j)− f (α)+(α −α j) ḟ (α j)+ τ(α) > 0 (41)

Takingα = α j+1 > α j in (40) and (41), we obtain

f (α j)− f (α j+1)+(α j+1−α j) ḟ (α j)+
1
2
(α j+1−α j)τ̇(α j+1) > 0

Hence the result using

τ̇(α j+1) = ḣ j(α j+1,α j)− ḟ (α j)

= − ḟ (α j)

⊓⊔
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Lemma 7 Under Assumptions 1 and 5, for all j∈ {1, . . . ,J},

α j 6 c j
maxα1, (42)

where

c j
max =

(

1+
2νmaxL

ν2
min

) j−1
(

1+
ν
L

)

−
ν
L

> 1. (43)

Proof It is easy to check (42) forj = 1, withc1
max= 1. Let us prove that (42) holds forj > 1.

Assume thatḟ (α j) < 0. Thenᾱ j = α+ and we can deduce from Lemma 3 that

α j+1−α j 6
−2 ḟ (α j)

(γ j − ḟ (α j))/(α+ −α j)+mj

6
−2 ḟ (α j)

γ j/(α+ −α j)+mj (44)

According to Property 3:
‖d‖2 >

(

γ0/α+ +m0)/νmax (45)

and
γ j/(α+ −α j)+mj > νmin‖d‖

2

thus we have
γ j/(α+ −α j)+mj > νmin

(

γ0/α+ +m0)/νmax > 0

Then, from (44):

α j+1 6 α j + | ḟ (α j)|
2νmax

(γ0/α+ +m0)νmin
(46)

If ḟ (α j) > 0, α j+1 is smaller thanα j so (46) still holds. According to Assumption 1,∇F is
Lipschitz, so that:

| ḟ (α j)− ḟ (0)| 6 L‖d‖2α j

Using the fact that| ḟ (α j)| 6 | ḟ (α j)− ḟ (0)|+ | ḟ (0)|, and ḟ (0) < 0, we get:

| ḟ (α j)| 6 Lα j‖d‖2− ḟ (0) (47)

Using Property 4 and (45):

− ḟ (0) 6 α1ν‖d‖2

6 α1ν(m0 + γ0/α+)/νmin (48)

Given (47),(45) and (48) jointly with (46), we get:

α j+1 6 α j +
2νmax

(m0 + γ0/α+)νmin

[

Lα j
(

m0 + γ0/α+

νmin

)

+α1 ν
νmin

(m0 + γ0/α+)

]

Hence

α j+1 6 α j
(

1+
2νmaxL

ν2
min

)

+2α1 νmaxν
ν2

min

This corresponds to a recursive definition of the series(c j
max) with:

c j+1
max = c j

max

(

1+2
νmaxL

ν2
min

)

+2
ννmax

ν2
min

Givenc1
max = 1, (43) is the general term of the series. ⊓⊔
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Property 5 (first Wolfe condition)Under Assumptions 1 and 5, the iterates of (15) fulfill

f (α j)− f (0) 6 c j
1α j ḟ (0) (49)

for all j > 1, with c j
1 = (2c j

max)
−1 ∈ (0,1).

Proof For j = 1, (49) holds according to Lemma 6, since it identifies with (36) when j = 0,
givenc1

max = 1. For all j > 1, (49) holds by immediate recurrence, given Lemma 7. ⊓⊔

Property 5 corresponds to a strong result related to the proposed MM line search since
it implies that the computed stepsize leads to a sufficient decrease of the criterion at each
iteration, independently from the number of line search iteratesJ.

5.3 Stepsize minoration

Condition (12) alone is not sufficient to ensure that the algorithm makes reasonable progress
since it holds for arbitrary small values forα and thus can yield convergence to a non-
stationnary point ([31]). In order to avoid too short steps,a second condition is required,
for example the second Wolfe condition (13). It turned out difficult or even impossible to
fulfill the curvature condition (13) for any value ofJ. Fortunately, we can obtain a direct
minoration of the stepsize values that is sufficient to yieldconvergence results.

Property 6 Under Assumptions 1 and 5, for allj > 1,

α j > cminα1 (50)

and

α j > cmin
−gTd

ν‖d‖2 (51)

for somecmin > 0.

Proof First, let us show that (50) holds for allj > 1 with

cmin =

√

1+2L/νmin−1
2L/νmin

∈ (0,1/2) (52)

Let φ be the concave quadratic function:

φ(α) = f (0)+α ḟ (0)+m
α2

2

with m= −L(m0 + γ0/α+)/νmin. We haveφ(0) = f (0) and φ̇(0) = ḟ (0) < 0, soφ is de-
creasing onR+. Let us considerα ∈ [0,α j ], so thatx + αd ∈ V . According to Assump-
tion 1, we have

| ḟ (α)− ḟ (0)| 6 ‖d‖2L|α|

and according to Property 3,

| ḟ (α)− ḟ (0)| 6 Lα(m0 + γ0/α+)/νmin

Then we obtain:
| ḟ (α)| 6 Lα(m0 + γ0/α+)/νmin− ḟ (0)
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Hence:

φ̇(α) 6 ḟ (α), ∀α ∈ [0,α j ] (53)

Integrating (53) between 0 andα j yields

φ(α j) 6 f (α j) (54)

On the other hand, the expression ofφ at αmin = cminα1 can be written as follows:

φ(αmin) = f (0)+Cα1 ḟ (0)

where

C = cmin−c2
minLα1 m0 + γ0/α+

2 ḟ (0)νmin
.

According to (44):

α1 6
−2 ḟ (0)

m0 + γ0/α+
,

so that

C 6 cmin +c2
min

L
νmin

=
1
2
,

where the latter equality directly stems from the expression of cmin. Sinceφ is decreasing
onR

+, we get

φ(αmin) > f (0)+
1
2

α1 ḟ (0) > f (α1), (55)

where the last inequality is the first Wolfe condition (49) for j = 1.
Finally, α j > 0 for all j > 1. Assume that there existsj such thatα j < αmin. According

to (54) and given thatφ is decreasing onR+, we get:

f (α j) > φ(α j) > φ(αmin) > f (α1),

which contradicts the fact thatf (α j) is nonincreasing. Thus, (50) holds. So does (51), ac-
cording to Property 4. ⊓⊔

6 Convergence results

This section discusses the convergence of the iterative descent algorithm

xk+1 = xk +αkdk, k = 1, . . . , K

whendk satisfiesgT
k dk < 0 and the line search is performed using the proposed MM strategy.
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6.1 Zoutendijk condition

The global convergence of a descent direction method is not only ensured by a ‘good choice’
of the step but also by well-chosen search directionsdk. Convergence proofs often rely on
the fulfillment of Zoutendijk condition

∞

∑
k=0

‖gk‖
2 cos2 θk < ∞, (56)

whereθk is the angle betweendk and the steepest descent direction−gk:

cosθk =
−gT

k dk

‖gk‖‖dk‖
.

Inequality (56) implies that‖gk‖cosθk vanishes for large values ofk. Moreover, provided
thatdk is not orthogonal to−gk (i.e., cosθk > 0), condition (56) implies the convergence of
the algorithm in the sense

lim
k→∞

‖gk‖ = 0. (57)

Zoutendijk condition holds when the line search procedure is based on the fulfillment of the
sufficient conditions (12),(13) ([31]). In the case of the proposed line search, the following
result holds.

Property 7 Let αk be defined by (15). Under Assumptions 1 and 5, Zoutendijk condi-
tion (56) holds.

Proof Let us first remark that for allk, dk 6= 0, sincegT
k dk < 0. According to Property 5, the

first Wolfe condition holds forc1 = cJ
1:

F(xk)−F(xk+1) > −cJ
1αkg

T
k dk

According to Property 6:

αk > cmin
−gT

k dk

ν‖dk‖2

Hence:

0 6 c0
(gT

k dk)
2

‖dk‖2 6 F(xk)−F(xk+1)

with c0 = (cmincJ
1)/ν > 0. According to Assumption 1, the level setL0 is bounded, so

limk→∞ F(xk) is finite. Therefore:

∞

∑
k=0

(gT
k dk)

2

‖dk‖2 6
1
c0

[

lim
k→∞

F(xk)−F(x0)

]

< ∞ (58)

⊓⊔



17

6.2 Gradient related algorithms

A general convergence result can be established by using theconcept ofgradient related
direction ([1]).

Definition 2 A direction sequence{dk} is said gradient related to{xk} if the following
property holds: for any subsequence{xk}K

that converges to a nonstationary point, the
corresponding subsequence{dk}K

is bounded and satisfies

limsup
k→∞,k∈K

gT
k dk < 0.

Theorem 1 ([35]) Let {xk} a sequence generated by a descent methodxk+1 = xk +αkdk.
Assume that the sequence{dk} is gradient related to{xk} and that Zoutendijk condi-
tion (56)holds. Then, the descent algorithm converges in the senselimk→∞ ‖gk‖ = 0.

The gradient norm converging to zero does not imply that the optimization method con-
verges to a minimizer, but only that it is attracted by a stationary point. However, under
certain sufficient conditions, this can guarantee convergence to a local or global minimum.

Corollary 1 Let {xk} a sequence generated by a descent methodxk+1 = xk + αkdk. As-
sume that the sequence{dk} is gradient related to{xk} and that Zoutendijk condition(56)
holds. Iflimk→∞ ∇2F(xk) is positive definite then{xk} converges to a strict local minimizer
of F.

Proof Direct consequence of the sufficient condition for local minimization ([31]).

Corollary 2 Let {xk} a sequence generated by a descent methodxk+1 = xk + αkdk. As-
sume that the sequence{dk} is gradient related to{xk} and that Zoutendijk condition(56)
holds. If Assumption 2 holds then{xk} converges to a global minimizer of F.

Proof Direct consequence of the sufficient condition for global minimization ([31]).

In the sequel, we will show that Theorem 1 yields convergenceof classical descent opti-
mization schemes such as the truncated Newton method and theprojected gradient method
for constrained optimization when such schemes are combined with our line search algo-
rithm.

6.2.1 Preconditioned gradient, Newton and inexact Newton algorithms

Let us consider the family of descent algorithms when the search direction has the form

dk = −Dkgk (59)

with Dk a positive definite symmetric matrix. In the steepest descent methodDk is sim-
ply the identity matrixI, while in Newton’s methodDk is the inverse of the Hessian
∇2F(xk). In quasi-Newton methods such as BFGS algorithm ([31]) and its limited memory
version ([23]),Dk is an iterative approximation of the inverse Hessian. SinceDk is positive
definite,dk is a descent direction. Moreover, we have the following property:

Property 8 ([2]) Let {xk} a sequence generated byxk+1 = xk + αkdk wheredk is given
by (59). If the set{Dk, k = 1, . . . ,K} has a positive bounded spectrum, then the direction
sequence{dk} is gradient related to{xk}.

Then, according to Theorem 1, the descent algorithm converges in the sense limk→∞ ‖gk‖ =
0.



18

6.2.2 Truncated versions

Let Hk a SPD approximation of the Hessian ofF . Thus, a good choice would be to take the
preconditionerDk = H−1

k in (59). However, when the dimensionn is large, the calculation
of the exact inverse ofHk may be prohibitive, and one may have to be satisfied with only an
approximate solution. Such an approximation may be obtained by using an iterative method.
This approach is used in the truncated Newton (TN) algorithm([29]) where the search direc-
tion is computed by applying the conjugate gradient (CG) method to the Newton equations.
Here, we consider the more general case whendk results from CG iterations solving approx-
imately the linear systemHkd = −gk, which will be refered as truncated pseudo-Newton
(TPN) algorithms. Then, we have the following property:

Property 9 Let {xk} a sequence generated byxk+1 = xk + αkdk wheredk results from
Ik CG iterations on the systemHkd = −gk. If the set{Hk, k = 1, . . . ,K} has a positive
bounded spectrum, then the direction sequence{dk} is gradient related to{xk}.

Proof According to [8, Th.A.1] and [8, Lem.A.2], there exist positive constantsτ,T so that

gT
k dk 6 −τ‖gk‖

2 (60)

and

‖dk‖ 6 T ‖gk‖ (61)

According to [2, Chap.1], (60) and (61) are sufficient conditions to ensure that{dk} is
gradient related to{xk}. ⊓⊔

Property 9 is extended to the case when the linear system is solved usingIk > 0 precon-
ditioned CG (PCG) iterations with the preconditioning matrix Mk:

Corollary 3 Let{xk} a sequence generated byxk+1 = xk +αkdk wheredk results from Ik
PCG iterations on the systemHkd = −gk preconditioned withMk. If {Hk, k = 1, . . . ,K}
and{Mk, k = 1, . . . ,K} have a positive bounded spectrum, then the direction sequence{dk}
is gradient related to{xk}.

Proof Let Ck such thatMk = CT
k Ck. Solving Hkd = −gk with PCG preconditioned by

Mk amounts to compute vectord such that

C−T
k HkCk d̂ = −C−T

k gk (62)

d̂ = Ckd (63)

using CG iterations ([31]). According to [8, Th.A.1] and [8,Lem.A.2], there exist positive
constantsτ ′,T ′ so that

(C−T
k gk)

T d̂k 6 −τ ′‖C−T
k gk‖

2 (64)

and

‖d̂k‖ 6 T
′‖C−T

k gk‖. (65)

Using (63),

(C−T
k gk)

T d̂k = gT
k dk. (66)



19

Moreover, according to the boundness assumption on the spectrum of{Mk, k = 1, . . . ,K},

−‖C−T
k gk‖

2 6 −
1

νM
2

‖gk‖
2, (67)

‖C−T
k gk‖ 6

1
√

νM
1

‖gk‖, (68)

√

νM
1 ‖dk‖ 6 ‖Ckdk‖ = ‖d̂k‖, (69)

where(νM
1 ,νM

2 ) > 0 denote the spectral bounds of{Mk}. Thus, (60) and (61) hold with
τ = τ ′ 1

νM
1

andT = T ′ 1
νM

2
, hence the result using the gradient related sufficient condition

in [2, Chap.1]. ⊓⊔

As a conclusion, the convergence of both TPN-CG and TPN-PCG holds, when the pro-
posed line seach is used, according to Theorem 1.

6.2.3 Feasible directions methods for constrained optimization

Consider the constrained problem:

minimize F(x) subject tox ∈ D

whereD is a nonempty, closed, and convex set. Let us examine the convergence properties
of algorithms belonging to the class of feasible direction methods.

Definition 3 ([2])
Given a feasible vectorx, a feasible direction atx is a vectord 6= 0 such thatx + αd is
feasible for all sufficiently smallα > 0.

Starting withx0 ∈ D , the method generates a sequence of feasible vectors according to

xk+1 = xk +αkdk

whereαk ∈ (0,1] anddk is a feasible direction that can be written in the form

dk = x′
k−xk (70)

with
x′

k ∈ D , gT
k (x′

k−xk) < 0.

Convergence analysis of feasible direction methods is veryclose to that of descent di-
rection methods in the unconstrained case. In particular, we have the following property:

Property 10 ([2]) Let {dk} generated by (70) withx′
k given either by:

– conditionnal gradient
x′

k = argmin
x∈D

gT
k (x−xk) (71)

– gradient projection with constant parameters> 0

x′
k = PD [xk−sgk] (72)
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– scaled gradient projection with constant parameters> 0 and scaling matrices{Dk} with
bounded spectrum

x′
k = argmin

x∈D

{

gT
k (x−xk)+

1
2s

(x−xk)
TDk(x−xk)

}

(73)

In all three cases, the direction sequence{dk} is gradient related to{xk}.

Thus, Theorem 1 implies the convergence of the three constrained optimization algorithms
defined by (71), (72) and (73), respectively, in conjunctionwith the proposed line search.

6.3 Convergence of conjugate gradient methods

This section discusses the convergence of the nonlinear conjugate gradient algorithm (NLCG)
defined by the following recurrence

xk+1 = xk +αkdk

ck+1 = −gk+1 +βk+1dk

dk+1 = −ck+1 sign(gT
k+1ck+1)

(74)

for some conjugacy formulas.

6.3.1 Methods withgT
k yk−1 in the numerator ofβk

Let us consider the conjugacy formulas of the form ([7]):

β0 = 0, βk = β µk,ωk
k = gT

k yk−1/Dk, ∀k > 0 (75)

with
Dk = (1−µk−ωk)‖gk−1‖

2 + µkd
T
k−1yk−1−ωkd

T
k−1gk−1

yk−1 = gk−gk−1

µk ∈ [0,1], ωk ∈ [0,1−µk]

Expression (75) covers the following conjugate gradient methods:

β 1,0
k = gT

k yk−1/dT
k−1yk−1 Hestenes-Stiefel (HS)

β 0,0
k = gT

k yk−1/‖gk−1‖
2 Polak-Ribìere-Polyak (PRP)

β 0,1
k = −gT

k yk−1/dT
k−1gk−1 Liu-Storey (LS)

The following convergence result holds:

Theorem 2 Let Assumption 1 and 5 hold. The NLCG algorithm is convergentin the sense
liminf k→∞ gk = 0 whenαk is defined by(15)andβk is chosen according to the PRP and LS
methods, and more generally forµk = 0 and ωk ∈ [0,1]. Moreover, if Assumption 3 holds,
then we haveliminf k→∞ gk = 0 in all cases.

Proof We have previously established:

– the inequality (31) onα1
k

– the stepsize minorization (42)αk 6 cmax
J α1

k
– the stepsize majorization (50) 06 cminα1

k 6 αk

– the fulfillment of Zoutendijk condition (56)

Thus, the proof of Theorem 2 is identical to that developped in [22, Part 4]. This result can
be viewed as an extension of [22, Th. 4.1] for a new form of tangent majorant. ⊓⊔
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6.3.2 Other conjugacy formulas

Let consider the following conjugacy formulas:

βk = max(gT
k+1(gk+1−gk)/‖gk‖,0) modified Polak-Ribìere-Polyak (PRP+)

βk = ‖gk+1‖
2/‖gk‖

2 Fletcher-Reeves (FR)

βk = ‖gk+1‖
2/dT

k (gk+1−gk) Dai-Yuan (DY)

The convergence of the CG algorithm with these conjugacy formulas is obtained under an
additional assumption on the tangent majorant.

Theorem 3 Let αk be defined by the recurrence(15). According to Assumptions 1 and 5, if
for all j ∈{0, . . . ,J−1}, (28)holds, then we have convergence in the senseliminf k→∞ gk = 0
for the PRP+ and FR methods. Moreover, under Assumption 2, we have convergence in the
same sense for the DY method.

Proof We will prove by recurrence onk thatdk is a sufficient descent direction forF , i.e.,
there existsη > 0 such that

gT
k dk 6 −η‖gk‖

2. (76)

Let xk ∈ V and letdk a sufficient descent direction. Let us prove thatdk+1 is a suffi-
cient descent direction. According to Lemma 5, (28) impliesthat ḟ (α j) < 0 for all j. Thus
gT

k+1dk 6 0. From (74),

gT
k+1ck+1 = −‖gk+1‖

2 +βk+1g
T
k+1dk

Let us consider the case of FR and PRP+ methods:

β FR
k =

‖gk+1‖
2

‖gk‖2 > 0 (77)

β PRP+
k = max(β PRP

k ,0) > 0 (78)

Thus,gk+1ck+1 6−‖gk+1‖
2, sodk+1 = ck+1 is a sufficient descent direction. Now, consider

the case of DY conjugacy:

β DY
k =

‖gk+1‖
2

dT
k (gk+1−gk)

The conjugacy parameter takes the sign ofdT
k (gk+1− gk). Under Assumption 2 and given

(74), the convexity ofF leads to

|gT
k+1dk| 6 |gT

k dk| (79)

Sincedk is a descent direction,β DY
k > 0, sodk+1 = ck+1 is a sufficient descent direction.

Then, (76) holds for allk for FR, DY and PRP+ methods. Finally, according to [16, Th. 4.2,
Th. 5.1], Property 7 and (76) yield the convergence of the PRP+, FR and DY methods. ⊓⊔

7 Experimental results

This section presents three application examples illustrating the practical efficiency of the
proposed line search procedure. The examples are chosen from the field of image and signal
processing.



22

7.1 Image reconstruction under Poisson noise

We consider a simulated positron emission tomography (PET)([32]) reconstruction prob-
lem. The measurements in PET are modeled as Poisson random variables:

y ∼ Poisson(Hx+r)

where theith entry ofx represents the radioisotope amount in pixeln andH is the projection
matrix whose elementsHmn model the contribution of thenth pixel to themth datapoint. The
components ofy are the counts measured by the detector pairs andr models the background
events (scattered events and accidental coincidences). The aim is to reconstruct the image
x > 0 from the noisy measurementsy.

7.1.1 Objective function

According to the noise statistics, the neg-log-likelihoodof the emission data is

J(x) =
M

∑
m=1

([Hx]m+ rm−ym log([Hx]m+ rm)) .

The penalization term resulting from modelling the pixel intensity distribution using a gamma-
mixture density is ([17]):

R(x) = −
N

∑
n=1

(

(an−1) logxn−
an

bn
xn

)

.

Here, the parametersan > 1 andbn > 0 of the gamma priors are assumed to take known
values1. The estimated image is the minimizer of the following objective function

F(x) = J(x)+R(x). (80)

The first part of the criterion implies the presence of a logarithmic barrier inJ. The second
part corresponds to a gamma-mixture prior that enforces positivity into account and favors
the clustering of pixel intensities. It induces a second type of log barrier, at the boundary of
the positive orthant. A classical approach for solving the optimization problem is to use the
NLCG algorithm ([17]) with the Moŕe and Thuente’s (MT) line search procedure ([26]). We
propose to compare the performance of the algorithm when ourMM line search procedure
is used.

7.1.2 Optimization strategy

The NLCG algorithm is employed with PRP+ conjugacy. The convergence of the algorithm
with the proposed line search is established in Theorem 3 under Assumptions 1, 5 and con-
dition (28). LetJ = P+B with

B(x) =
M

∑
m=1

−ym log([Hx]m+ rm)+
N

∑
n=1

(an−1) logxn,

1 Hyperparameters estimation is discussed in ([17]). However,the resulting algorithm does not fall within
the application of our convergence theory and the adaptation would require a specific analysis.
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and

P(x) =
M

∑
m=1

[Hx]m+ rm+
N

∑
n=1

an

bn
xn.

It is straightforward that Assumption 1 holds for allx0 > 0. Moreover, Assumption 5 holds
taking M(x) = 0, A = [Id H ]T andρ = [0 r]T . Finally, sinceP is linear, condition (28)
reads:

0 6 mj
p(α −α j), ∀α > α j

and holds formj
p = M(x + α jd) = 0. Theorem 3 does not cover the preconditioned case.

However, we have noticed that, in practice, the use of a diagonal preconditioner speeds up
substantially the algorithm convergence.

The algorithm is initialized with a uniform positive objectand the convergence is checked
using the following stopping rule ([31])

‖gk‖∞ < ε(1+ |F(xk)|), (81)

whereε is set to 10−7.

7.1.3 Results and discussion

We present a simulated example using data generated with J.A. Fessler’s code available
athttp://www.eecs.umich.edu/~fessler. For this simulation, we consider an imagexo

of sizeN = 128× 128 pixels andM = 24924 pairs of detectors. Table 1 summarizes the
performance results in terms of iteration numberK and computation timeT on an Intel
Pentium 4, 3.2 GHz, 3 GB RAM. The design parameters are the Wolfe condition constants
(c1,c2) for the MT method and the number of subiterationsJ for the MM procedure.

N
LC

G
-M

T

c1 c2 K T(s)

10−3 0.5 97 361
10−3 0.9 107 337
10−3 0.99 102 317
10−3 0.999 102 313

N
LC

G
-M

M

J K T(s)
1 96 266
2 111 464
5 138 1526
10 138 3232

Table 1 Comparison between MM and MT line search strategies for a PET reconstruction problem solved
with NLCG algorithm, in terms of iteration numberK and timeT before convergence. Convergence is con-
sidered in the sense of (81).

It can be noted that the NLCG algorithm with MM line search (NLCG-MM) requires
less iterations than the MT method (NLCG-MT), even when the parameters(c1,c2) are
optimally chosen. Moreover, NLCG-MM is faster because of a smaller computational cost
per iteration. Furthermore, the proposed MM procedure admits a unique tuning parameter,
namely the subiteration numberJ, and the simplest choiceJ = 1 appears the best one.
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7.2 Nuclear magnetic resonance reconstruction

We consider a mono-dimensional nuclear magnetic resonance(NMR) reconstruction prob-
lem. The NMR decays(t) associated with a continuous distribution of relaxation constants
x(T) is described in terms of a Fredholm integral of the first kind:

s(t) =
∫ Tmax

Tmin

x(T)k(t,T)dT. (82)

with k(t,T) = e−t/T . In practice, the measured signals is a set of discrete experimental
noisy data pointssm = s(tm) modeled as

s = Kx+ ε (83)

whereK andx are discretized versions ofk(t,T) andx(T) with dimensionsM ×N and
N× 1, andε is an additive noise assumed centered white Gaussian. Givens, the aim is
to determinex > 0. This problem is equivalent to a numerical inversion of theFredholm
integral (82) and is known as very ill-conditioned ([4]).

7.2.1 Objective function

In order to get a stabilized solution, an often used method minimizes the expression

F(x) = J(x)+λR(x) (84)

under positivity constraints, whereJ is a fidelity to data term:

J(x) =
1
2
‖s−Kx‖2

2,

andR is an entropic regularization term, e.g., the Shannon entropy measure ([24]):

R(x) = ∑
n

xn lnxn

Moreover, the positivity constraint is implicitely handled because of the barrier property of
the entropy function.

7.2.2 Optimization strategy

The TN algorithm is employed for solving (84). The directiondk is computed by approx-
imately solving the Newton system∇2F(xk)d = −gk using PCG iterations. We propose a
preconditioning matrixMk built as an approximation of the inverse Hessian ofF atxk:

Mk =
[

UDUT +λdiag(xk)
−1]−1

,

whereUTΣV is a truncated singular value decomposition ofK andD = ΣTΣ . The con-
vergence of the TN algorithm with the proposed line search isestablished in Theorem 1
using Corollary 3 under Assumptions 1 and 5. The verificationof the latter is straightfor-
ward takingM(x) = KTK , A = Id andρ = 0. The fulfillment of Assumption 1 is more
difficult to check since the level setL0 may contain an elementx with zero components,
contradicting the gradient Lipshitz assumption. In practice, we initialized the algorithm with
x0 > 0 and we have not noticed convergence issues in our practicaltests. The extension of



25

the convergence results under a weakened version of Assumption 1 remains an open issue
in our convergence analysis.

The algorithm is initialized with a uniform positive objectand the convergence is checked
using (81) withε = 10−9. Following [29], the PCG iterations are stopped when:

‖∇F(xk)+∇2F(xk)dk‖ 6 10−5‖F(xk)‖.

We propose to compare the performances of the MM line search and of the interpolation-
based MT method [26].

7.2.3 Results and discussion

Let x(T) a distribution to estimate. We consider the resolution of (83) when datas are
simulated fromx(T) via the NMR model (83) over sampled timestm, m = 1, ...,10000,
with a SNR of 25 dB (Figure 1). The regularization parameterλ is set toλ = 7,2 ·10−4 to
get the best result in terms of similarity between the simulated and the estimated spectra (in
the sense of quadratic error).
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(a) Simulated NMR measurement with SNR
= 25dB
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(b) NMR reconstruction with similarity error
8.5%.

Fig. 1 Simulated NMR reconstruction with maximum entropy method

According to Table 2, the TN algorithm with the MM line searchperforms better than
with TN with the best settings forc1 and c2. Concerning the choice of the sub-iteration
number, it appears thatJ = 1 leads again to the best results in terms of computation time.

7.3 Constrained quadratic programming

Let consider the following quadratically constrained quadratic optimization problem

min
x

{

F0(x) =
1
2
xTA0x+aT

0 x+ρ0

}

(85)

subject to:Ci(x) = −
1
2
xTAix+aT

i x+ρi > 0, i = 1, . . . , m
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T
N

-M
T

c1 c2 K T(s)

10−3 0.5 34 12
10−3 0.9 42 13
10−3 0.99 71 20
10−2 0.99 71 19
10−2 0.5 34 13
10−1 0.99 71 19
10−1 0.5 34 14

T
N

-M
M

J K T(s)
1 36 8
2 40 9
5 40 10
10 40 14

Table 2 Comparison between MM and MT line search strategies for a maximum entropy NMR reconstruc-
tion problem solved with TN algorithm, in terms of iteration number K and timeT before convergence.
Convergence is considered in the sense of (81).

whereAi , i = 0, . . . , mare symmetric SPD matrices ofR
n×n. We propose to solve (85) with

the primal interior point algorithm of [3]: for a decreasingsequence of barrier parametersµ,
the augmented criterion

Fµ(x) = F0(x)−µ
m

∑
i=1

logCi(x).

is minimized using Newton iterations

xk+1 = xk +αkdk, with dk = −∇2F−1
µ (xk)∇Fµ(xk)

that are stopped when(dT
k gk)

2 6 2ε.
The stepsizeαk must belong to an interval(α−,α+) that corresponds to the definition

domain ofFµ(xk +αdk). Since the constraints are quadratic inx, they are also quadratic in
α:

Ci(xk +αdk) = Q1
i α2 +Q2

i α +Q3
i

with Q1
i = − 1

2dT
k Aidk, Q2

i = −xT
k Aidk + aT

i dk andQ3
i = − 1

2xT
k Aixk + aT

i xk + ρi . As a
consequence,α− andα+ can be computed exactly for any (xk,dk). For example,α+ is the
smallest positive root of the concave polynomesCi(xk + αdk). In [3], the stepsize strategy
is based on backtracking. Starting with the feasible stepα = 0.99α+, the stepsize is reduced
until it fulfills the first Wolfe condition (12). As an alternative in the context of interior point
methods, adamped Newtonapproach is developped in [30] to minimize the augmented
criterionFµ . The Newton directiondk is damped by a factorαk ∈ (0,1] ensuring thatxk +
αkdk is feasible and that the criterion decreases by a minimal fixed amount. The damping
factor is given by

αk =
1

1+‖dk‖xk

where‖ · ‖x is the Hessian norm defined by‖u‖x =
√

uT∇2Fµ(x)u.
The convergence properties of this interior point algorithm are based on the self concor-

dancy ofFµ ([30]). Our aim here is only to evaluate the practical relevance of the MM line
search when it is used instead of the backtracking and the damping procedures.
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7.4 Results and discussion

In order to analyse the performance of the interior point algorithm, we apply it onto 50
problems withAi ,ρi and ai generated randomly takingn = 400, m = 200 as in [20].x
is initialized in the constrained domainC . The barrier parameterµ is initially set to 1 and
decreases following a geometric series of ratio 0.2. The algorithm is stopped whenµ 6 µmin.
Table 3 reports the performances of the interior point algorithm for the different line search
procedures usingc1 = 0.01 andJ = 1.

Backtracking Damping MM
K 273±27 135±4 64±3

T(s) 5637±1421 465±26 225±8

Table 3 Comparison between different line search strategies for theinterior point algorithm over 50 random
quadratic programming problems.K denotes the sum of inner iterations andT the time before convergence,
with tolerance parametersµmin = 10−8 andε = 10−5. The results are given in terms of mean and standard
deviation.

It can be noted that the interior point algorithm with MM linesearch requires less iter-
ations than the backtracking and damped Newton approaches.Moreover, even if the MM
procedure requires the exact computation of(α−,α+), it is faster than the two other ap-
proaches. It can also be remarked that the damping strategy is dedicated to the particular
case whend is the Newton direction. Therefore, it must be modified when the minimization
of Fµ is obtained by means of other algorithms (see [20] for the conjugate gradient case). On
the contrary, the proposed line search can be applied independently of the descent algorithm
used. To conclude, the MM procedure seems an efficient alternative to line search strategies
widely used in primal interior point algorithms.

8 Conclusion

This paper extends the line search strategy of [22] to the case of criteria containing barrier
functions, by proposing a non-quadratic majorant approximation of the function in the line
search direction. This majorant has the same form as the one proposed in [27], whereas
the latter follows an interpolation-based approach. However, in the majorization-based ap-
proach, the construction of the approximation is easier andits minimization leads to an ana-
lytical stepsize formula, guaranteeing the convergence ofseveral descent algorithms. More-
over, numerical experiments indicate that this approach outperforms standard line search
methods based on backtracking, damping or cubic interpolation.

Two extensions of this work are envisaged. On the one hand, the case of nonlinear con-
straints can be handled by using the procedure described in [27]. On the other hand, the
analysis can be performed for additionnal forms of barrier functions such as cross-entropy
([33]) or inverse function ([9]).
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