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A MAJORIZE-MINIMIZE LINE SEARCH ALGORITHM FOR

BARRIER FUNCTION

ÉMILIE CHOUZENOUX, SAÏD MOUSSAOUI, AND JÉRÔME IDIER

Abstract. Criteria containing a barrier function i.e., an unbounded function at the boundary of
the feasible solution domain are frequently encountered in the optimization framework, in particular
in interior point methods for constrained optimization. Barrier function has to be carefully handled in
the optimization algorithm. When an iterative descent method is used for the minimization, a search
along the line supported by the descent direction is usually performed at each iteration. However,
standard line search strategies tend to be inefficient in this context. In this paper, we propose an
original line search algorithm based on the majorize-minimize principle. A tangent majorant function
is built to approximate a scalar criterion containing a barrier function. This leads to a simple line
search ensuring the convergence of several classical descent optimization strategies. The practical
efficiency of the proposal scheme is illustrated by means of an example of constrained quadratic
programming.
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1. Introduction. The aim of this paper is to address optimization problems
that read

min
x

(F (x) = P (x) + µB(x)) , µ > 0 (1.1)

where x ∈ R
n, P is a differentiable function and B is a barrier function which makes

the criterion unbounded at the boundary of the strictly feasible

C = {x|ci(x) > 0, i = 1, ...,m}

defined by some concave constraints ci so that the minimizers of F belong to C. The
most popular example is the logarithmic barrier

B(x) = −
m

∑

i=1

log(ci(x)). (1.2)

The barrier property is used by interior point methods [28] to solve constrained opti-
mization problems

minF0(x) subject to ci(x) > 0, (1.3)

a barrier functionB being artificially introduced to keep the solution inside the feasible
domain. The augmented criterion can be expressed as

Fµ(x) = F0(x) + µB(x), (1.4)

where µ > 0 is the barrier parameter and B is the barrier function associated to the
constraints ci. The minimization of Fµ must be performed for a sequence of parameter
values µ that decreases to 0 leading to the solution of (1.3).

A large family of optimization methods to solve (1.1) are based on iteratively
decreasing the criterion by moving the current solution xk along a direction dk,

xk+1 = xk + αkdk, (1.5)
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where αk > 0 is the stepsize and dk is a descent direction i.e., satisfying∇F (xk)T dk <
0. In practice, such iterative descent direction methods consist in alternating the
construction of dk and the determination of αk. The process of choosing the stepsize
αk is called the line search. It is founded on minimizing the scalar function f(α) =
F (xk + αdk). Since the barrier function has a singularity at the boundary of C, it
causes the inefficiency of standard line search strategies often based on polynomial
interpolation [19]. In this paper we propose an original line search procedure based
on the majorize-minimize (MM) principle [12] by deriving an adequate form of a
tangent majorant function well suited to approximate a criterion containing a barrier
function. The convergence of classical descent algorithms is established when αk is
obtained with the proposed MM line search strategy.

This paper is organized as follows: In §2, we discuss the role of line search in
optimization algorithms, and explain why special-purpose line search procedures may
be helpful in dealing with barrier functions. A new MM line search strategy is pro-
posed in §3 including methods to obtain a suitable form of tangent majorant function
and its minimizer. §4 gives the properties of the step size that allowing us to estab-
lish convergence conditions such as Armijo relation. We deduce from this properties
convergence results reported in §5 when the proposed MM line search is associated
with classical descent algorithms to solve (1.1). §6 illustrates the efficiency of the pro-
posed line search strategy through a numerical example in quadratically constrained
quadratic programming.

2. Line search strategies.

2.1. Problem statement. In line search methods, the stepsize is frequently
required to satisfy mathematical conditions ensuring the convergence of the descent
algorithm. According to the Wolfe conditions, αk is acceptable if there exists (c1, c2) ∈
(0; 1) such that

F (xk + αkdk) 6 F (xk) + c1αkgT
k dk (2.1)

|∇F (xk + αkdk)T dk| 6 c2|gT
k dk| (2.2)

where gk , ∇F (xk). There exist several procedures [21] for finding such an accept-
able stepsize: exact minimization of f(α), backtracking or more generally dichotomy,
approximation of f(α) using a cubic interpolating function [18, 21] or approximation
of f(α) by a quadratic function [17].

However, the barrier term B(x) implies that f(α) tends to infinity when α is equal
to the smallest positive step ᾱ cancelling some constraint at xk + ᾱdk. Consequently,
we must ensure that during the line search, the step values remain in the interval
[0; ᾱ) since the function f is undefined for α > ᾱ. Moreover, due to the vertical
asymptote at ᾱ, methods using cubic interpolation or quadratic approximation are
not suited [19].

The typical line search in barrier-related optimization methods chooses αk as a
fixed fraction close to unity of ᾱ [24, 10]. However, this simple approach do not ensure
the convergence of the optimization algorithm and can lead to a sequence of iterates
‘trapped’ near the singularity [19]. More elaborated line search strategies adapted to
barrier function optimization have been proposed in [8, 19, 14]. In [14], a line search
procedure for optimization of self-concordant functions [20] such as the logarithmic
barrier function is developped and leads to convergence when dk is the direction of
nonlinear conjugate gradient with Conjugate Descent (CD) conjugaison. However,
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the computation of the step size requires the evaluation of the Hessian matrix which
tends to be expensive or even impossible for large scale problems.

The main idea in [8, 19] is to approximate the one-dimensional barrier criterion
along the search direction by function of the form

B(x + αd) ≈ p0 + p1α+ p2α
2 − µ log(p3 − α) (2.3)

where the coefficients pi are chosen to interpolate B and its gradient at two trial
points. Making use of those specific interpolating functions, the line search strategy
generates a stepsize fulfilling (2.1) and (2.2). Unfortunately, the resulting algorithms
are not often used in practice, probably because the proposed interpolating functions
are difficult to compute.

In contrast, our proposal is not based on interpolation, but rather on majorization,
with a view to simplify the line search strategy and preserve the strong convergence
properties.

2.2. Majoration-Minimization algorithms. In Majoration-Minimization (MM)
algorithms [12, 13], the minimization of a function f is obtained by performing suc-
cessive minimizations of tangent majorant functions for f . Function h(u,v) is said
tangent majorant for f(u) at v if for all u,

{

h(u,v) > f(u)
h(v,v) = f(v)

(2.4)

The initial optimization problem is then replaced by a sequence of easier subproblems,
corresponding to the MM update rule

uj+1 = arg min
u

h(u,uj). (2.5)

Recently, a line search procedure based on an MM strategy has been intro-
duced [17]. The stepsize value αk results from J successive minimizations of quadratic
tangent majorant functions for the scalar function f(α). Let consider the family of
parabolas

qj(α, αj) = f(αj) + (α− αj)ḟ(αj) +
1

2
mj(α− αj)2, (2.6)

tangent majorants of f(α) at αj , j = 1, ..., J . The stepsize αk is given by the recur-
rence

α0 = 0

αj+1 = αj − ḟ(αj)

mj
, j = 0, . . . , J − 1 (2.7)

αk = αJ

The convergence of a family of non-linear conjugate gradient methods associated to
this line search strategy is proved in [17] whatever the value of J .

However, since the function f(α) resulting from problem (1.1) is unbounded,
there is no parameter mj such that the quadratic qj(α, αj) majorizes f(α) in the
whole definition domain of α. Actually, it would be sufficient to majorize f(α) within
the level set Lk = {α, F (xk + αdk) 6 F (xk)} but this set is difficult to determine or
even to approximate.
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3. Proposed line search strategy. Instead of a quadratic, we propose the
following form of tangent majorant function

h(α) = p0 + p1α+ p2α
2 − p3 log(ᾱ− α), (3.1)

which is reminiscent of interpolation functions (2.3).
According to MM theory, the stepsize αk is defined by

α0 = 0

αj+1 = arg min
α

hj(α, αj), j = 0, . . . , J − 1

αk = αJ

(3.2)

where hj(α, αj) is the tangent majorant function

hj(α,αj) = f(αj) + (α− αj)ḟ(αj) +
1

2
mj(α− αj)2

+ γj
[

(ᾱ− αj) log
( ᾱ− αj

ᾱ− α
)

− α+ αj
]

(3.3)

which depends on the value of f and its gradient at αj and two design parameters
mj , γj .

3.1. Construction of the majorant function in the linear case. It is easy
to check that hj(α, α) = f(α) for all α. There remains to find values of mj , γj such
that hj(α, αj) > f(α) holds for all α ∈ [0; ᾱ). We assume that p(α) = P (x + αd) is
majorized by the quadratic function

qj(α, αj) = p(αj) + (α− αj) ṗ(αj) +
1

2
mj

p(α− αj)2, (3.4)

and we focus on the majoration of B(x+αd) when this term can be written as linear
combination of

∑

t

ψ(at + αδt) with ψ(u) = −κ log(u), κ > 0 (3.5)

or ψ(u) = u log u (3.6)

or ψ(u) = −ur, r ∈ (0, 1) (3.7)

Consider the logarithmic barrier (1.2) involved in the resolution of problem (1.3) by
interior point method. In the following examples, B(x+αd) can read

∑

t−κt log(at+
αδt).
Linear programming: ci(x) = [Ax]i + ρi

Quadratic programming: ci(x) = − 1
2xT Aix+aT

i x+ρi with Ai symmetric definite
positive.
Semidefinite programming [27]: Minimizing P (x) under the matricial constraint
G(x) ≻ 0 where G(x) is the affine function

G(x) = G0 + x1G1 + ...+ xnGn.

The barrier associated to this constraint is

B(x) = log detG(x)−1
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The scalar function B(x + αd) reads −∑

i log(1 + αλ) when λi, i = 1, ..., ℓ are the
generalized eigen values of (

∑

i diGi, G(x)).
Second order conic programming [3]: Minimizing P (x) subjected to the conic
constraints ‖Aix + bi‖2 6 cT

i x + di. The resulting barrier function takes the form

B(x) = −
∑

i

log(−‖Aix + bi‖22 − (cT
i x + di)

2) (3.8)

In order to build a tangent majorant function of the barrier term B(x + αd), let
define b1(α) =

∑

t|δt>0 ψ(at + αδt) and b2(α) =
∑

t|δt<0 ψ(at + αδt). We will use the
following lemma dealing with function ψ:

Lemma 3.1. For all positive u, if ψ is given by (3.5), (3.6) or (3.7) then

−
...
ψ(u)/ψ̈(u) 6 2/u (3.9)

Proof.
1) ψ(u) = −κ log(u), κ > 0

¨ψ(u) = κ/u2 and
...

ψ(u) = −2κ/u3 then

−
...
ψ(u)/ψ̈(u) = 2/u (3.10)

2) ψ(u) = u log(u)
¨ψ(u) = 1/u and

...
ψ(u) = −1/u2 then

−
...
ψ(u)/ψ̈(u) = 1/u 6 2/u (3.11)

2) ψ(u) = −ur, r ∈ (0, 1)
¨ψ(u) = −r(r − 1)ur−2 and

...
ψ(u) = −r(r − 1)(r − 2)ur−3 then since r ∈ (0, 1)

−
...
ψ(u)/ψ̈(u) = (2− r)/u 6 2/u (3.12)

On the one hand, b1 is strictly convex and its derivative is strictly concave. Ac-
cording to [9, Th.1], φj

1(α, α
j) = b1(α

j) + (α−αj)ḃ1(α
j) + 1

2m
j
b(α−αj)2 is a tangent

majorant of b1(α) at αj if

mj
b =







b̈1(0) if αj = 0

b1(0)− b1(αj) + αj ḃ1(α
j)

(αj)2/2
elsewhere

(3.13)

On the other hand, b2 is strictly convex but its derivative is also strictly convex.
Then the previous result cannot be used. b2 has a vertical asymptote in

α = ᾱ = min
t|δt<0

−at/δt. (3.14)

Therefore we look for a tangent majorant of b2 of the form

φj
2(α, α

j) = b2(α
j) + (α− αj)ḃ2(α

j) + γj
b

[

(ᾱ− αj) log

(

ᾱ− αj

ᾱ− α

)

+ αj − α
]
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We define the following function, T (α) = ḃ2(α)(ᾱ− α) , whose derivatives are:

Ṫ (α) = b̈2(α)(ᾱ− α)− ḃ2(α) (3.15)

T̈ (α) =
...
b2(α)(ᾱ− α)− 2b̈2(α) (3.16)

The second derivative of T reads also

T̈ (α) =
∑

t

δ2t

[

δt(α− ᾱ)
...
ψ(at + αδt)− 2ψ̈(at + αδt)

]

(3.17)

α < ᾱ then at + αδt > 0 and δt(α− ᾱ) < at + αδt. Taking u = at + αδt, Lemma 3.1
implies T̈ (α) < 0, which shows that the function T is strictly concave. Moreover, let
us consider the linear function l(α):

l(α) = φ̇j
2(α, α

j)(ᾱ− α) = ḃ2(α
j)(ᾱ− α) + γj

b (α− αj) (3.18)

According to [9, Lem. 3], the strictly concave function T (α) intersects l(α) at most
twice. Yet:

l(αj) = T (αj) (3.19)

Let define

γj
b =







ᾱb̈2(0) if αj = 0

b2(0)− b2(αj) + αj ḃ2(α
j)

(ᾱ− αj) log(1− αj/ᾱ) + αj
elsewhere

(3.20)

First, let consider the particular case αj = 0. We have

T (0) = l(0), Ṫ (0) = l̇(0) (3.21)

Concavity of T (α) leads to

l(α) > T (α), α ∈ [0; ᾱ[ (3.22)

Hence, according to [9, Lem. 5], b2 is majorized by φj
2(α, 0) at αj = 0.

Assume that αj > 0. According to the value of γj
b ,

{

b2(0) = φj
2(0, α

j)

b2(α
j) = φj

2(α
j , αj)

(3.23)

In other words, the function ∆(α, αj) = b2(α) − φj
2(α, α

j) vanishes in 0 and in αj .
Then, there exists αp ∈ [0;αj) such that the derivative ∆̇(αp, α

j) vanishes

∆̇(αp, α
j)(ᾱ− αp) = 0 (3.24)

and equivalently,

T (αp) = l(αp). (3.25)

αj and αp are the only intersection points between l(α) and T (α). Concavity of T (α)
leads to

l(α) < T (α), α ∈]αp;αj [ (3.26)
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and

l(α) > T (α), α ∈ [0;αp[∪]αj ; ᾱ[ (3.27)

Noticing that ᾱ− α > 0, we could apply [9, Lem. 5] and then demonstrate that b2 is
majorized by φj

2(α, α
j).

Functions b1 and b2 are strictly convex then for l = 1, 2,

bl(0)− bl(αj) + αj ḃl(α
j) > 0, ∀αj ∈]0; ᾱ[ (3.28)

Hence mj
b > 0. Moreover, for all 0 < u < 1,

(1− u) log(1− u) + u > 0. (3.29)

Then γj
b > 0. Furthermore, mj

b and γj
b are the smallest positive parameters such that

φj
1 and φj

2 majore respectively b1 and b2 since we have for l = 1, 2,

bl(0)− φj
l (0, α

j) = 0, ∀α > αj . (3.30)

Finally, according to [9, Lem.6] and inequalities (3.22),(3.27), we have for l = 1, 2

ḃl(α)− φ̇l(α, α
j), ∀α > αj . (3.31)

This equation will be useful to perform convergence analysis for conjugate gradient
algorithms. Results to design (mj , γj) are summarized in table 3.1. Figure 3.1 il-
lustrates an example of scalar criterion and the obtained majorant according to this
method.

3.2. Computing the minimizer. The MM recurrence (3.2) involves the com-
putation of the minimizer of hj(α, αj). The positivity of parameters mj , γj leads to
the strict convexity of the tangent majorant. Hence, it has a unique minimizer, which
takes an explicit form. The case when ᾱ = +∞ is obvious since αj+1 is given by (2.7).
Let assume that ᾱ < +∞. αj+1 is the minimizer of the function hj(α, αj) which is
also the unique root of the function Q(α), verifying α < ᾱ, given by

Q(α) = (ᾱ− α)ḣj(α, αj) (3.32)

whose complete expression is:

Q(α) = q1(α− αj)2 + q2(α− αj) + q3 (3.33)

with







q1 = −mj

q2 = γj − ḟ(αj) +mj(ᾱ− αj)

q3 = (ᾱ− αj)ḟ(αj)

(3.34)

The calculation of this root depends on the value of q1. If q1 equals zero, then Q is a
linear function whose unique root is:

αj+1 = αj − q3
q2

= αj − (ᾱ− αj)ḟ(αj)

γj − ḟ(αj)
(3.35)
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and if q1 is non zero, Q is a second order polynomial vanishing at

αj +
−q2 ±

√

q22 − 4q1q3
2q1

(3.36)

The minimizer of hj(α, αj) satisfies the constraint αj+1 < ᾱ. Then, it is equals to the
smaller root of Q(α).

αj+1 = αj +
−q2 +

√

q22 − 4q1q3
2q1

= αj +
−2q3

q2 +
√

q22 − 4q1q3
(3.37)

Table 3.2 summarizes the expression of the minimizer of hj(α, αj).

0 0.2 0.4 0.6 0.8 1
4

6

8

10

12

14

α

 

 

f (α)

h0

k
(α, 0)

α1

k

Fig. 3.1. Example of a tangent majorant function h0(α, 0) for f(α) = (α−5)2−
P

10
i=1

log(i−α).
h0(α, 0) is defined by (3.3) with m0 = 2, γ0 = 1.55 and ᾱ = 1
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ᾱ = min
t|δt<0

−at/δt

mp majorant curvature of p(α)

mj = mp + µmj
b γj = µγj

b

with

mj
b =







b̈1(0) if αj = 0

b1(0)− b1(αj) + αj ḃ1(α
j)

(αj)2/2
elsewhere

γj
b =







ᾱb̈2(0) if αj = 0

b2(0)− b2(αj) + αj ḃ2(α
j)

(ᾱ− αj) log(1− αj/ᾱ) + αj
elsewhere

where b1(α) =
∑

t|δt>0 b(at + αδt) and b2(α) =
∑

t|δt<0 b(at + αδt).

Table 3.1

Computation of the parameters (mj , γj) when B(x + αd) takes the form −

P

t log(at + αδt)

αj+1 =







αj − ḟ(αj)
mj if ᾱ = +∞

αj +
−2q3

q2 +
√

q22 − 4q1q3
else

(3.38)

where
q1 = −mj , q2 = γj − ḟ(αj) +mj(ᾱ− αj) and q3 = (ᾱ− αj)ḟ(αj).

Table 3.2

Computation of αj+1, the minimizer of the tangent majorant (3.3)
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4. Analysis of the stepsize series. The present section gathers technical re-
sults concerning the stepsize series generated by (3.2), which will be useful to derive
the global convergence properties of §5. We made the following assumption on the
criterion F :

Assumption 4.1. Gradient Lipschitz
The level set L0 = {x|F (x) 6 F (x0)} is assumed bounded. F (x) is differentiable on
a neighbourhood V of L0 and ∇F (x) is Lipschitz continuous on V, i.e., there exists
0 < L <∞ such that

‖∇F (x)−∇F (y)‖ 6 L‖x− y‖, ∀x,y ∈ V (4.1)

Let consider x ∈ V and d a descent direction, so that ḟ(0) = dT g < 0. The case
ḟ(0) = 0 is excluded from this study since in this case the resulting stepsize is zero.
The stepsize series is obtained from the recurrence (3.2). To build some properties
of the stepsize series, we will need the following assumption on the curvature of the
tangent majorant:

Assumption 4.2. Majorant curvature
There exists some constants 0 < ν1 6 ν2 such that:

ν1‖d‖2 6 ḧj(αj , αj) 6 ν2‖d‖2 ∀j (4.2)

4.1. Properties of the stepsize series. (3.2) produces monotonically decreas-
ing values {f(αj)} and the series {αj} converges to a stationnary point of f(α) [12].
The behaviour of the series is described by

(αj+1 − αj)ḟ(αj) 6 0, ∀j > 1 (4.3)

According to the capture property developped in [13],

F (x + αjd) 6 F (x), ∀j > 1 (4.4)

Then

x + αjd ∈ V, ∀j > 1 (4.5)

and since ḟ(0) < 0, it can easily been shown that

αj > 0, ∀j > 1 (4.6)

Furthermore, according to the expression of the minimizer of the tangent majo-
rant, if ḟ(αj) < 0, then

−q3
q2

6 αj+1 − αj 6
−2q3
q2

(4.7)

4.2. Lower and upper bounds for the stepsize. Property 4.1. If the
constraints ci(x) are linear, there exists ν, ν′ > 0 such that

−gT d

ν ‖d‖2
6 α1 6

−gT d

ν′ ‖d‖2
. (4.8)
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Proof. If ᾱ = +∞ then the tangent majorant of F (x +αd) = f(α) at α0 = 0 is a
quadratic function with curvature m0. This majorant is minimized at α1 = −ḟ(0)/m0

and according to assumption 4.2, we have:

−gT d

ν2‖d‖2
6 α1 6

−gT d

ν1‖d‖2
(4.9)

Let us assume for the sequel that ᾱ is finite. According to equation 4.7:

−(ᾱ− 0)gT d

(ᾱ− 0)m0 + γ0gT d
6 α1 6 2

−(ᾱ− 0)gT d

(ᾱ− 0)m0 + γ0gT d
(4.10)

Hence:

−gT d

m0 + γ0

ᾱ −
gT d

ᾱ

6 α1 6 2
−gT d

m0 + γ0

ᾱ −
gT d

ᾱ

(4.11)

The quantity −gT d/ᾱ is positive. Moreover, according to assumption 4.2,

ν1‖d‖2 6 m0 +
γ0

ᾱ
(4.12)

Then we establish the right part of inequality (4.8)

α1 6
−gT d

ν1‖d‖2
. (4.13)

Let us show that there exists ν > 0 such that:

m0 +
γ0

ᾱ
− gT d

ᾱ
6 ν‖d‖2 (4.14)

Assumption 4.2 implies that there exists ν2 such that

m0 +
γ0

ᾱ
6 ν2‖d‖2 (4.15)

Assume that ci(x) = aT
i x + ρi with for i = 1, ...,m, ai ∈ R

n×1, ρi ∈ R. Since B is a
barrier function, there exists ǫ0 > 0 such that for all x ∈ V, for all i = 1, ...,m,

ci(x) = aT
i x + ρi > ǫ0 (4.16)

Then we have:

ᾱ >
ǫ0

max
i|aT

i
d<0
− aT

i d
=

ǫ0
max

i
− aT

i d
(4.17)

Let ι be an index such that

ι = argmax
i

− aT
i d (4.18)

We have

ᾱ >
ǫ0
|aT

ι d| (4.19)
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Hence

−gT d

ᾱ
=
|gT d|
ᾱ

6 |gT d|.|aT
ι d| 1

ǫ0
(4.20)

According to Cauchy-Swartz inequality:

|gT d||aT
ι d| 6 ‖g‖‖aι‖‖d‖2 (4.21)

‖aι‖ is majorized by

ζ = max
i
‖ai‖ (4.22)

Since {ai} contains at least a non zero vector so ζ is strictly positive. According to
assumption 4.1, there exists η > 0 such that

‖g‖ 6 η, ∀x ∈ L0 (4.23)

Thus,

−gT d

ᾱ
6 ηζ‖d‖2 (4.24)

Then Property 4.1 holds for all (x,d), if we put:

ν = max (ν2, ν2 + ηζ) = ν2 + ηζ, ν′ = ν1 (4.25)

Remark 1. The extension of Property (4.1) to the case of nonlinear constraints
is not obvious. As a matter of fact, we were not able to establish an equivalent to
inequality (4.19) for concave nonlinear constraints ci.

4.3. Sufficient decrease condition. Given a current solution x and a current
descent direction d, the stepsize α must induce a sufficient decrease of F . The first
Wolfe condition (2.1) measures this decrease. It is equivalent to

f(α)− f(0) 6 c1αḟ(0). (4.26)

First, we establish some technical lemmas which appear to be useful in the sequel.

Lemma 4.1. Let a1 ∈ R and ζ(α) = a1

[

log( ᾱ
ᾱ−α )− α

ᾱ

]

.

ζ(α)

αζ̇(α)
6

1

2
, ∀α ∈ (0, ᾱ)

and

lim
α→0

ζ(α)

αζ̇(α)
=

1

2

Proof. We define :

g(α) :=
ψ(α)

αψ̇(α)
(4.27)
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The calculation of function g gives :

g(α) =

[

log

(

ᾱ

ᾱ− α

)

− α

ᾱ

] [

ᾱ(ᾱ− α)

α2

]

(4.28)

It could be noted that lim
α→0

g = 1
2 and

ġ(α) =
1

α
+

[

log

(

ᾱ

ᾱ− α

)

− α

ᾱ

] [

−2
ᾱ2

α3
+

ᾱ

α2

]

;∀α 6= 0 (4.29)

We introduce the reparametrization u = α
ᾱ . u ∈ (0, 1) for α ∈ (0, ᾱ). So the function

ġ(α) has the same sign as αġ(α) = ρ(α
ᾱ ) = ρ(u).

ρ(u) = 1 + (− log(1− u)− u)
(

− 2

u2
+

1

u

)

(4.30)

After manipulating inequalities, we find that

ρ(u) 6 0⇔ log(1− u) +
2u

2− u 6 0 (4.31)

The function log(1 − u) + 2u
2−u is decreasing on [0; 1] and vanishes at u = 0. This

implies that ρ is negative and then the function g is decreasing. Finally, we obtain :

ψ(α) 6
1

2
αψ̇(α); ∀α ∈]0; ᾱ[ (4.32)

.
Lemma 4.2. ∀j > 1, there exists cmax

j such that

αj 6 cmax
j α1. (4.33)

with

cmax
j =

(

1 +
2ν2L

ν2
1

)j−1
(

1 +
ν

L

)

− ν

L
> 1 (4.34)

Proof. Assume that ḟ(αj) 6 0. According to equation 4.7

αj+1 − αj 6
−2ḟ(αj)

(γj − ḟ(αj))/(ᾱ− αj) +mj
. (4.35)

Thereby:

αj+1 − αj 6
−2ḟ(αj)

γj/(ᾱ− αj) +mj
(4.36)

According to assumption 4.2:

‖d‖2 >
1

ν2

(

γ0/ᾱ+m0
)

(4.37)

and

γj/(ᾱ− αj) +mj > ν1‖d‖2 (4.38)
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thus we have

γj/(ᾱ− αj) +mj >
(

γ0/ᾱ+m0
) ν1
ν2

> 0 (4.39)

Then, by (4.36):

αj+1 6 αj + |ḟ(αj)| 2ν2
(γ0/ᾱ+m0)ν1

(4.40)

If ḟ(αj) > 0, αj+1 is smaller than αj then (4.40) still holds. According to assumption
4.1, ∇F is Lipschitz hence:

|ḟ(αj)− ḟ(0)| 6 L‖d‖2αj (4.41)

Using the fact that |ḟ(αj)| 6 |ḟ(αj)− ḟ(0)|+ |ḟ(0)|, and ḟ(0) negative, we get:

|ḟ(αj)| 6 Lαj‖d‖2 − ḟ(0) (4.42)

Using theorem 4.1 and (4.37)

−ḟ(0) 6 α1ν‖d‖2 (4.43)

6 α1 ν

ν1
(m0 + γ0/ᾱ) (4.44)

Given (4.42),(4.37) and (4.44) jointly with (4.40), we get:

αj+1 6 αj +
2ν2

(m0 + γ0/ᾱ)ν1

[

Lαj

(

m0 + γ0/ᾱ

ν1

)

+ α1 ν

ν1
(m0 + γ0/ᾱ)

]

(4.45)

Hence

αj+1 6 αj

[

1 +
2ν2L

ν2
1

]

+ 2α1 ν2ν

ν2
1

(4.46)

This corresponds to a recursive definition of the series
{

cmax
j

}

with:

cmax
j+1 = cmax

j

[

1 + 2
ν2L

ν2
1

]

+ 2
νν2
ν2
1

(4.47)

Given cmax
1 = 1, we could deduce the general term of the sequence and have (4.34).

Lemma 4.3. Let c 6 1
2 . The sequence

{

αj
}

j>0
is defined by (3.2). If ᾱ > αj+1 >

αj, then:

f(αj)− f(αj+1) + c(αj+1 − αj)ḟ(αj) > 0 (4.48)

Proof. The property is trivial if αj+1 = αj . Assume that αj+1 > αj . According
to equation (4.3), for all c 6 1

2 ,

c(αj+1 − αj)ḟ(αj) >
1

2
(αj+1 − αj)ḟ(αj) 6 0 (4.49)

The tangent majorant has the form:

hj(α, αj) = f(αj) + (α− αj)ḟ(αj) +
1

2
mj(α− αj)2 + ψ(α− αj) (4.50)
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if we set a1 = γj . Let us define:

τ(α) = hj(α, αj)− f(αj) + (α− αj)ḟ(αj) (4.51)

=
1

2
mj(α− αj)2 + ψ(α− αj) (4.52)

According to Lemma 4.1, for all (α− αj) in (0; ᾱ− αj), hence for all α ∈]αj ; ᾱ[:

ψ(α− αj)

(α− αj)ψ̇(α− αj)
6

1

2
(4.53)

Moreover, noting that:

1

2
mj(α− αj)2 =

1

2
(α− αj)

[

mj(α− αj)
]

(4.54)

we deduce:

τ(α− αj)

(α− αj)τ̇(α− αj)
6

1

2
(4.55)

hj(α, αj) is a tangent majorant of f in αj :

hj(αj+1, αj)−f(αj+1) = f(αj)−f(αj+1)+(αj+1−αj)ḟ(αj)+τ(αj+1−αj) > 0 (4.56)

And according to (4.55):

f(αj)− f(αj+1) + (αj+1 − αj)ḟ(αj) +
1

2
(αj+1 − αj)τ̇(αj+1 − αj) > 0 (4.57)

We made the assumption that αj+1 is strictly higher than αj . So, αj+1 > 0. The
derivative of hj(α, αj) is canceling at this point:

τ̇(αj+1 − αj) = −ḟ(αj) (4.58)

This quantity is positive according to inequality 4.3. Then we have

f(αj)− f(αj+1) +
1

2
(αj+1 − αj)ḟ(αj) > 0.

We are now able to establish that the proposed MM line search procedure gener-
ates steps fulfilling the first Wolfe condition (4.26):

Property 4.2. The stepsize (3.2) fulfills (4.26) with

c1 = (2cmax
J )

−1 ∈ (0; 1) (4.59)

Proof. First, taking j = 1 in lemma 4.3, we obtain that the first Wolfe condition
holds in α1, the minimizer of h(α, 0) if c1 6 1

2 i.e,

f(0)− f(α1) + c1α
1ḟ(0) > 0 (4.60)

We have

f(0)− f(αJ ) > f(0)− f(α1) (4.61)
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According to equation (4.60),

f(0)− f(α1) +
1

2
α1ḟ(0) > 0 (4.62)

Moreover, according to Property 4.2

α1 >
αJ

cmax
J

(4.63)

Hence:

f(0)− f(αJ ) +
1

2cmax
J

αJ ḟ(0) > 0 (4.64)

The sufficient decrease condition (2.1) holds for arbitrary small values for α and
can conduce to ‘false’ convergence to a non-stationnary point. In order to avoid
too short steps, a second condition is required, for example the second Wolfe con-
dition (2.2). It turned out difficult or even impossible to fulfill the curvature condi-
tion (2.2) for any value of J . Fortunately, the stepsize series ensures a condition that
is nonetheless sufficient to lead us to convergence results. Lemma 4.4 will be useful
to obtain a minoration of the stepsize values.

Lemma 4.4. ∀j > 1, there exists cmin such that

αj > cminα1 (4.65)

with

cmin =
−1 +

√

1 + 2L/ν1
2L/ν1

∈ (0, 1/2) (4.66)

Proof. Let φ be the concave quadratic function:

φ(α) = f(0) + αḟ(0) +m
α2

2
(4.67)

with m = −(m0 + γ0/ᾱ)/ν1L. We have φ(0) = f(0) and φ̇(0) = ḟ(0) < 0. So φ is
decreasing on R

+. Let us consider α ∈ [0, αj ]: x + αd ∈ V. According to assumption
4.1, we have

|ḟ(α)− ḟ(0)| 6 ‖d‖2L|α| (4.68)

and according to assumption 4.2,

|ḟ(α)− ḟ(0)| 6 (m0 + γ0/ᾱ)Lα/ν1 (4.69)

Then we obtain:

|ḟ(α)| 6 (m0 + γ0/ᾱ)Lα/ν1 − ḟ(0) (4.70)

Hence:

φ̇(α) 6 ḟ(α), ∀α ∈ [0, αj ] (4.71)
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Integrating (4.71) between 0 and αj yields

φ(αj) 6 f(αj) (4.72)

The value of φ in αmin reads

φ(αmin) = f(0) + cminα
1ḟ(0)− m0 + γ0/ᾱ

ν1
L

(cminα
1)2

2

= f(0) + α1ḟ(0)

(

cmin + c2min

m0 + γ0/ᾱ

−ḟ(0)2ν1
Lα1

) (4.73)

According to (4.36):

α1 6 − 2ḟ(0)

m0 + γ0/ᾱ
(4.74)

Choosing cmin =
−1+
√

1+2L/ν1

2L/ν1

, we have

cmin + c2min

L

ν1
=

1

2
(4.75)

Then according to equation (4.60):

φ(αmin) = φ(cminα
1) > f(0) +

1

2
α1ḟ(0) > h0(α1, 0) (4.76)

On the other hand, αj is positive. Assume that there exists j such that 0 6 αj < αmin.
According to (4.72) and given that φ is decreasing on R

+, we get:

f(αj) > φ(αj) > φ(αmin) > h0(α1, 0) (4.77)

which is in contradiction with the majorant property of h.
Finally we obtain a minoration of the stepsize values:
Property 4.3. For all j > 1,

αj > cmin−gT d

ν‖d‖2 (4.78)

Proof. According to property 4.1, the following minoration holds for α1:

α1 >
−gT d

ν‖d‖2 (4.79)

Then, using lemma 4.4, we obtain relation (4.78).

5. Convergence results. This section discusses the convergence of the iterative
descent algorithm

xk+1 = xk + αkdk, k = 1, . . . , K (5.1)

when dk satisfies gT
k dk < 0 and the line search is performed using the proposed MM

strategy.
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5.1. Zoutendijk condition. The global convergence of a descent direction method
is non only ensured by a ‘good choice’ of the step but also by well-chosen search di-
rections dk. Convergence proofs are often based on the fulfillment of Zoutendijk
condition

∞
∑

k=0

‖gk‖2 cos2 θk <∞, (5.2)

where θk is the angle between dk and the steepest descent direction −gk,

cos θk = −gT
k dk/(‖gk‖ ‖dk‖). (5.3)

Inequality (5.2) implies that cos θk ‖gk‖ vanishes for large values of k. Moreover,
provided that dk is not orthogonal to −gk (i.e., cos θk > 0), condition (5.2) implies
the convergence of the algorithm in the sense

lim
k→∞

‖gk‖ = 0. (5.4)

The property holds for classical line search methods such as backtracking or Wolfe
line search [21]. In the case of the proposed line search, the following result holds [5].

Property 5.1. Let αk be defined by (3.2). Then Zoutendijk condition (5.2)
holds.

Proof. First, note that for all k, dk 6= 0, because we make the assumption:

gT
k dk < 0

According to Lemma 4.2, the first Wolfe condition holds for c1 = 1
2cmax

J

:

F (xk)− F (xk+1) > −c1αkgT
k dk

According to equation 4.78:

αk > cmin−gT
k dk

ν‖dk‖2

Hence:

F (xk)− F (xk+1) > c0
(gT

k dk)2

‖dk‖2
> 0

with c0 = (cminc1)/ν > 0. Assumption 4.1 and the boundedness of L0 implies that
the limit limk→∞F (xk) is finite. Therefore:

∞ > [F (x0)− limk→∞F (xk)] /c0 >
∑

k

(gT
k dk)2

‖dk‖2
(5.5)

5.2. Gradient related algorithms. A general convergence result can be es-
tablish by using the concept of gradient related direction [1]. A direction sequence
{dk} is said gradient related to {xk} if the following property can be shown:
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For any subsequence {xk}K that converges to a nonstationary point, the corre-
sponding subsequence {dk}K is bounded and satisfies

lim sup
k→∞,k∈K

gT
k dk < 0 (5.6)

Roughly, this means that dk does not become ’too small’ or ’too large’ relative
to gk, and that the angle between dk and gk does not get ’too close’ to 90 degrees.

The following convergence result holds:

Theorem 5.1. [25]
Let {xk} a sequence generated by a descent method xk+1 = xk + αkdk. Assume that
the sequence {dk} is gradient related to {xk} and that Zoutendijk condition (5.2) holds
then the descent algorithm converges in the sense limk→∞ ‖gk‖ = 0.

As we will show, Theorem 5.1 leads to the convergence of the truncated Newton
method and the projected gradient method for constrained optimization.

5.2.1. Preconditionned gradient algorithms. Let consider the family of de-
scent algorithms when the search direction has the form

dk = −Bkgk

with Bk a positive definite symmetric matrix. In the steepest descent method Bk

is simply the identity matrix I, while in Newton’s method Bk is the exact inverse
Hessian ∇2F (xk). In quasi-Newton methods, Bk is an approximation to the inverse
Hessian that is updated at every iteration by means of a low rank formula. Since Bk

is positive definite, dk is a descent direction. Moreover, if we assume that the matrices
Bk have a uniformly bounded condition number, that is, there exists M1, M2 > 0
such that

M1‖z‖2 6 zT Bkz 6 M2‖z‖2, (5.7)

it can be seen that {dk} is gradient related (provided xk is nonstationnary for all
k) [2] and the descent algorithm converges in the sense limk→∞ ‖gk‖ = 0 according
to Theorem 5.1.

5.2.2. Truncated Newton method. The truncated Newton method corre-
sponds to an inexact form of the Newton method where the search direction is com-
puted by applying the conjugate gradient method to the Newton equations. Since the
conjugate gradient iterations are stopped before convergence, this method is known
as truncated Newton method. The direction dk is computed by solving approximately
the linear system ∇2F (xk)d = −gk with Ik CG iterates. Let make the following
assumption:

Assumption 5.1. For all x ∈ V, H = ∇2F (x) is a symmetric positive defi-
nite (SPD) matrix. Let ν1(H) > 0 and ν2(H) > 0 denote the smallest and largest
eigenvalues of H. The matrix sequence H =

{

∇2F (xk)
}

has a uniformly bounded
spectrum with a stricly positive lower bound i.e., there exist ν1(H), ν2(H) ∈ R such
that

ν2(H) > ν2(Hk) > ν1(Hk) > ν1(H) > 0, ∀k
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Lemma 5.1. [16]
Let {xk} be a sequence generated by the truncated Newton method and assume that
assumption 5.1 holds. Then there exists η1, η2 > 0 such that

η1‖gk‖2 6 −dT
k gk (5.8)

‖dk‖2 6 η2‖gk‖2 (5.9)

Thus, the direction sequence {dk} is gradient related to {xk} [2] and Theorem
5.1 implies the convergence of the algorithm.

5.2.3. Feasible directions methods for constrained optimization. Con-
sider the constrained problem

minimize F (x) (5.10)

subject to x ∈ C

where C is a nonempty, closed, and convex set. We examine here the properties of
convergence of algorithms belonging to the class of the feasible direction methods.

Given a feasible vector x, a feasible direction at x is a vector d 6= 0 such that
x + αd is feasible for all α > 0 that are sufficiently small [2]. Starting with a feasible
vector x0, the method generates a sequence of feasible vectors according to

xk+1 = xk + αkdk

where dk is a feasible direction at xk and also a descent direction, and the step size
is chosen positive and such that xk+1 ∈ X. In the case where X is a convex set, a
feasible direction method can be written in the form

xk+1 = xk + αk(x′
k − xk)

where αk ∈ [0, 1) and if xk is nonstationnary

x′
k ∈X, gT

k (x′
k − xk) < 0.

The gradient projection method is a particular case of feasible direction method
where

x′
k = PX [xk − skgk]

with PX [.] denoting projection on the set X and sk is a positive scalar.
Convergence analysis of feasible direction methods is very close to those of descent

direction methods in the unconstrained case. In particular, we have the following
property

Property 5.2. [2]
Let {xk} a sequence generated by any of the following feasible direction methods

• conditionnal gradient
• gradient projection with parameter sk = s constant
• scaled gradient projection with sk = s constant and uniformly bounded scaling

matrices
Then, the direction sequence {dk} is gradient related to {xk}.

Thus, since the MM linesearch ensures Zoutendijk condition, Theorem 5.1 implies
the convergence of those three constrained optimization algorithms.
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5.3. Convergence of conjugate gradient methods. This section is focused
on the convergence of the nonlinear conjugate gradient algorithm (NLCG) defined by
the following recurrence

xk+1 = xk + αkdk

dk = −ck sign(gT
k ck)

ck = −gk + βkdk−1

(5.11)

First, let us consider the conjugacy formulas of the form:

β0 = 0, βk = βµk,ωk

k = gT
k yk−1/Dk, ∀k > 0 (5.12)

with

Dk = (1− µk − ωk)‖gk−1‖2 + µkdT
k−1yk−1 − ωkdT

k−1gk−1

yk−1 = gk − gk−1

µk ∈ [0, 1], ωk ∈ [0, 1− µk]

Expression (5.12) allows us to cover the following conjugate gradient methods:

β1,0
k = gT

k yk−1/d
T
k−1yk−1 Hestenes-Stiefel (HS)

β0,0
k = gT

k yk−1/‖gk−1‖2 Polak-Ribire-Polyak (PRP)

β0,1
k = −gT

k yk−1/d
T
k−1gk−1 Liu-Storey (LS)

In the sequel, Assumption 4.1 will appear to be sufficient for the global convergence
of the CG method when k = 0 and ωk ∈ [0, 1], which encompasses the PRP and the
LS cases, but not the HS case. Let us consider the following stronger assumption to
deal with the more general case k ∈ [0, 1], ωk ∈ [0, 1− k].

Assumption 5.2. Assumption 4.1 holds and F is strongly convex on V: there
exists λ > 0 such that

[∇F (x)−∇F (x′)]
T

(x− x′) > λ‖x− x′‖2, ∀x,x′ ∈ N

We have the following convergence result:
Theorem 5.2. The NLCG algorithm is convergent in the sense liminfk→∞gk = 0

when αk is defined by (3.2) and βk is chosen according to the PRP and LS methods,
and more generally for µk = 0 and ωk ∈ [0, 1]. Moreover, if assumption 5.2 holds,
then we have lim infk→∞ gk = 0 in all cases.

Proof. We have previously established:
• the inequality on α1

k (Property 4.78)
• the step size minorization αk 6 cmax

J α1
k (Property 4.2)

• the step size majorization 0 6 cminα1
k 6 αk (Property 4.4)

• the verification of Zoutendijk condition (Property 5.1)
Thus, the proof of Property 5.2 is identical to that in [17]. This result can be viewed
as an extension of [17, Th.4.1] for a new form of tangent majorant.

The convergence results can be extended to others conjugacy formulas if we make
an additional assumption on the tangent majorant:
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Assumption 5.3. For all α > αj:

ḟ(α)− ḣj(α, αj) 6 0

Remark 2. The assumption holds if mj
k and γj

k are chosen according to the
strategy develloped in §3 assuming that the parameter mj

p ensures

ṗ(α)− q̇j(α, αj) 6 0, ∀α > αj

Lemma 5.2. Let us assume that ḟ(0) < 0. Then, if assumption 5.3 holds, the
series defined by (3.2) is increasing. Moreover, the derivative of f at αj is negative
for all j.

This lemma means that for all iteration k of the overall algorithm, we have the
inequality:

gT
k dk−1 6 0 (5.13)

Lemma 5.2 leads to an important result for the convergence properties of conju-
gate gradient methods:

Lemma 5.3. Sufficient descent condition

Assume that assumption 5.3 holds and suppose that the successive directions dk

are given by the conjugate algorithm gradient:

dk+1 = −gk+1 + βkdk

If βk is non negative, the sufficient descent condition holds for each iteration k i.e,
there exists some 0 < c 6 1 such that for all k:

gT
k dk 6 −c‖gk‖2

In particular, dk is a descent direction.
Lemma 5.3 is a direct application of a remark made in [11, Part 4]. It is a

consequency of inequality (5.13). We can directly use this result to proove global
convergence of Fleetcher-Reeves (FR) method when:

βFR
k =

‖gk+1‖2
‖gk‖2

> 0

According to Lemma 5.3, the FR method always generates descent directions with
our choice of step, if we assume that assumption 5.3 holds. Then we can use [6]
result: The Zoutendijk condition holds according to theorem 5.1 and dk is a descent
direction. So the FR method converges in the sense:

lim inf
k→∞

‖gk‖ = 0

Let consider now the conjugacy formula PRP+, proposed in [11]:

βk = max(βPRP
k , 0) withβPRP

k =
gT

k+1(gk+1 − gk)

‖gk‖
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According to [21], PRP+ method has led to the better convergence results during
numerical tests when compared with others conjugacy formulas. The convergence of
the PRP+ method associated with the MM line search is a direct application of [11,
Th.4.3]. The PRP+ method converges in the sense:

lim inf
k→∞

‖gk‖ = 0

Finally, we can state a similar convergence result in the convex case for the Dai
and Yuan (DY) conjugacy formula:

βDY
k =

‖gk+1‖2
dT

k (gk+1 − gk)

Let us make the following assumption:
Assumption 5.4. Assumption 4.1 holds and F is convex on V: For every (x,y) ∈

V we have

F (ωx + (1− ω)y) 6 ωF (x) + (1− ω)F (y), ∀ω ∈ [0, 1]

According to Lemma 5.2, if assumption 5.4 holds, for all iteration k of the overall
algorithm, we have the inequality:

|gT
k+1dk| 6 |gT

k dk| (5.14)

Let us show recurrently on k that, with DY method, dk is always a descent direction.
For k = 0, we have d0 = −g0, hence d0 is a descent direction. Consider an index k
when gT

k dk 6 0. If this quantity is zero, αk = 0 and then the algorithm will finish.
Let us assume that gT

k dk < 0. Then, according to Lemma 5.2, gT
k+1dk 6 0 and

moreover, according to inequality (5.14), |gT
k+1dk| 6 |gT

k dk|. Then, the coefficient

βDY
k is positive:

βDY
k =

‖gk+1‖2
dT

k (gk+1 − gk)
> 0

And according to Lemma 5.3, dk+1 is a descent direction. Now we can use [6] result to
show the global convergence of DY method: The Zoutendijk condition holds according
to theorem 5.1 and dk is a descent direction. If assumption 5.4 holds, then the DY
method converges in the sense:

lim inf
k→∞

‖gk‖ = 0

Theorem 5.3. Let αk be defined by the recurrence (3.2), and let assumptions
4.1, 4.2 and 5.3 hold. Then, we have convergence in the sense lim infk→∞ gk = 0 for
the PRP+ and FR. Moreover, if assumption 5.4 holds, we have convergence in the
sense lim infk→∞ gk = 0 for the DY method.
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6. Numerical example. The goal of this section is to analyse the performance
of descent optimization algorithms when the step size is obtained by the proposed
MM line search procedure.

Let consider the following quadratically constrained quadratic optimization prob-
lem

minF0(x) =ρ0 + aT
0 x +

1

2
xT A0x (6.1)

s.t. : qi(x) = −1

2
xT Aix + aT

i x + ρi > 0

where Ai, i = 0, . . . , m are positive semidefinite (n×n) matrices. (6.1) can be solved
with an interior point method. The augmented criterion has the form (1.4) where the
barrier function is

B(x) = −
m

∑

i=1

log qi(x) (6.2)

For a decreasing sequence of µ, the augmented criterion Fµ(x) is minimized using
Newton method:

dk = −∇2F−1
µ (xk)∇Fµ(xk) (6.3)

The stepsize αk must be inferior to ᾱ defining the limit of feasibility of Fµ(xk +αdk).
In this example, ᾱ can be computed exactly. Given xk and a descent direction dk,

qi(x + αd) = q1α
2 + q2α+ q3 (6.4)

with q1 = − 1
2dT

k Aidk, q2 = − 1
2dT

k Aixk − 1
2xT

k Aidk + aT
i dk and q3 = − 1

2xT
k Aixk +

aT
i xk+ρi. Hence ᾱ is the smallest positive root of the concave polynomes qi(xk+αdk).

A classical choice for αk is ensured by backtracking line search. Starting with the
feasible step α = 0.99 ᾱ, the stepsize is reduced until it fulfills Armijo condition (2.1).

In the context of interior point methods, [20] developed a damped Newton method
to minimize the augmented criterion Fµ. The Newton direction dk is damped by a
factor αk ∈ (0, 1] ensuring that xk + αkdk is feasible and the criterion decreases by
at least some fixed amount. Defining the Hessian norm

‖u‖x =
√

uT∇2Fµ(x)u, (6.5)

the damping factor is given by

αk =
1

1 + ‖dk‖xk

(6.6)

Its convergence properties are based on the self concordancy of Fµ [20]. The interior
point method for the resolution of the constrained problem (6.1) is given on table 6.1.

We propose to compare the backtracking and the damping procedure with our
MM line search. In particular, we take 20 random problems of size n = 400, m = 200.
The line search parameters are fixed to c1 = 0.01 and J = 1. Table 6.2 reports
the performances of the overall interior point algorithm associated with different line
search procedures for the minimization of Fµ. The algorithm is initialized with a
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1) Set µ = 1, t = 0, K = 0, and a tolerance ǫ and select a feasible point x0

2) WHILE (6.7) not ensured,
Compute Newton direction of Fµ

Compute step size
K(t)← K(t) + 1

3) ℓ← 0
4) IF µ < ǫ, RETURN

ELSE Set µ = θµ , t = t+ 1 and go to step 2.
Table 6.1

Interior point algorithm

Backtracking MM Damping

E(K) 283.5 66.2 134.9

σ(K) 26.33 1.13 2.73

E(T ) 1538.2 16.07 40.13

σ(T ) 879.98 1.61 1.33
Table 6.2

Means and standard deviations of the total inner iteration numbers
P

i K(i) and the time before

convergence T with ǫ = 10−8 over 10 random problems.

uniform null object and µ = 1. The convergence of the inner iterations is checked
using the following stopping rule [3]

1

2
(dT

k gk)2 6 10−5 (6.7)

It can be noted that the Newton algorithm with MM line search requires less
iterations than the backtracking or damped Newton approaches. Moreover, although
it requires the exact computation of ᾱ, it is faster than the two other procedures. Let
us emphasizes that the damping strategy is dedicated to the particular case when d is
the Newton direction. It must be modified when the minimization of Fµ is obtained
by means of others algorithms (See [14] for the conjugate gradient case). On the
opposite, the design of the proposed MM line search does not depend on the descent
algorithm used.
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Conclusion. In [17], a simple and efficient quadratic MM line search method
has been proposed. However, it is restricted to gradient-Lipschitz criteria, which
excludes the case of barrier functions that is encountered for example in interior point
methods for constrained optimization. This case can be handled with the MM line
search method presented in this paper. This method benefits from strong convergence
results, it is still very easy to implement, and shows itself at least as efficient as classical
techniques on practical problems.

Then, it can be used in several constrained programming applications using in-
terior point methods [27, 4, 15] and more generally in optimization problems when
the criteria contains a barrier term such as maximum entropy reconstruction [26] or
image processing under Poisson noise [22].

Since the proposal scheme requires the exact computation of the step to the
boundary of the feasible region, it is restricted to problems when the constraints are
simple such as linear and quadratic programming. In case of nonlinear constraints,
we advise to proceed with the procedure described in [19] to build the stepsize.

In this paper, the analysis is limited to the logarithmic barrier function and the
entropy function. The extension of the present results to other forms of barriers such
as cross-entropy [23] or inverse function [7] should be discussed.
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