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Abstract

Descent direction algorithms are widely used for solving unconstrained minimization problems. After com-
puting a descent direction, the algorithm performs a search along the line supported by this direction to
get the value of the step size. Recently, several papers [2, 9] have introduced a new line search strategy
founded on the theory of Majorization-Minimization algorithms [6]. An iterate of the line search algorithm
is the minimizer of a quadratic majorant approximation of the criterion along the search direction. This
approach, very easy to implement, provides good convergence properties to the overall algorithm, namely
when combining with the conjugate gradient method. However, in the case of functions having a linear bar-
rier, i. e. tending to infinity when some linear constraints are active, quadratic tangent majorant won’t be
well suited to approximate such functions. Then we suggest to appropriately modify the line search strategy
by choosing a new form of tangent majorant. Since the majorant function is still not quadratic, precedent
results of convergence analysis do not hold anymore. A complete convergence analysis is thus performed.
This approach yields to a new efficient line search method for functions having a linear barrier.
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1. Problem Statement

Iterative descent direction methods are widely used for solving unconstrained minimization problems.
After computing a search direction, d, such an algorithm performs a search along the line supported by the
direction to find an adequate step size value, α. The determination of an acceptable step size is often based
on verifying some sufficient convergence conditions, such as the Wolfe conditions. Some existing strategies
for finding the step size are:

• Exact minimization (constrained or not) of the scalar function f(α) = F (x + αd),

• Backtracking or more generally dichotomy: the step is reduced until a stopping condition holds (for
example Armijo rule),

• Approximation of the function using interpolation method [14, 11]. They consist in a succession of two
phases : a bracketing phase that finds an interval containing at least one step verifying the stopping
conditions (Wolfe conditions for example). Such a step is obtained by exploring the interval during a
selection phase, using an interpolation (often polynomial) of f(α).

• Constant step size [1, Prop.1.2.3]. This method is based on a quadratic majorant approximation of
f(α), assuming a Lipshitz continuity on the gradient of F with Lipshitz parameter L. Then the step
size is simply the minimizer of this majorizing parabola (figure 1).

Recently, a generalization of this last line search method has been introduced by [2, 9]. Before presenting
this methodology, let us introduce some necessary properties of the criterion F (x).

f(α)

f(0) + αḟ(0) + (1/2)α2L‖d‖2

α = ḟ(0)
L‖d‖2

α

Figure 1: Constant stepsize idea from [1]

Assumption 1.1. Gradient Lipschitz
The level set L0 = {x|F (x) 6 F (x0)} is assumed bounded. F (x) is differentiable on a neighbourhood V of
L0 and ∇F (x) is Lipschitz continuous on V, i.e., there exists 0 < L <∞ such that

‖∇F (x) −∇F (y)‖ 6 L‖x − y‖, ∀x,y ∈ V (1.1)

Assumption 1.2. There exists a series of semipositive definite (SPD) matrices (Mx) such that

Qx(x′,x) > F (x′), ∀x, x′ ∈ V
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for all x ∈ V, where :

Qx(x′,x) = F (x) + (x′ − x)T∇F (x) +
1

2
(x′ − x)Mx(x′ − x) (1.2)

Moreover, matrices Mx have a uniformly bounded spectrum, i. e. , there exist ν1, ν2 ∈ R , ν2 > ν1 > 0
such that

ν1‖v‖2
6 vTMxv 6 ν2‖v‖2, ∀x ∈ V

The quadratic function Qx(x′,x) defined in (1.2) is a tangent majorant of F (x) at x owing to the
following properties: 





Qx(x′,x) > F (x′), ∀x, x′ ∈ V
Qx(x,x) = F (x)
∇Qx(x,x) = ∇F (x)

1.1. Line search using a quadratic majorant function

From this quadratic approximation of the criterion, a tangent majorant of the scalar function f(α) =
F (xk + αdk) can be deduced:

qk(α, αk) = f(αk) + (α− αk)ḟ(αk) +
1

2
mk(α− αk)2

with mk = dT
kMxk+αkdk

dk. The minimizer of this scalar tangent majorant is known exactly. Starting from

an initial value α0
k, a sequence

{

αj
k

}

j>1
is computed by applying a Majorize-Minimize (MM) algorithm

(figure 2) to the function f(α), according to:

αj+1
k = argmin qj

k(α, αj
k)

This strategy leads to Algorithm 1. The convergence of this algorithm is proven in [9], whatever the value of
J , for a family of non linear conjugate gradient methods covering classical conjugacy formulas such as Polak-
Ribière or Hestenes-Stiefel. Experimentally the algorithm performed better when J is close to 1 although
the higher J is, the closer αk is to an exact minimizer of f(α). The convergence result [9, Th.4.1] is a
generalization of the one described in [2], where J is fixed to 1 and θ must in a set of ]0; 1[, depending on
the Lipschitz constant L.

f(α)

qj
k(α, αj

k)

α∗

αj
k

αj+1
k

Figure 2: MM quadratic line search in the convex case
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Algorithm 1 Descent direction algorithm with MM quadratic line search

Require: x0, d0 = −∇F (x0), J > 1, θ ∈]0, 1[
Ensure: xk verifying a stopping condition SC

while SC non verified do

if dk = 0 then

αk = 0
else

α0
k = 0

αj+1
k = αj

k − θ
dT

k∇F (xk+αj

k
dk)

mj

k

, 0 6 j 6 J − 1

αk = αJ
k

end if

xk+1 = xk + αkdk

dk+1 defined such that ∇F (xk+1)
T dk+1 6 0

end while

1.2. Line search in the case of barrier functions

In this paper, we consider the following optimization problem:

min
x∈Rn

F (x) = P (x) + µB(x), µ > 0 (1.3)

where P is differentiable and B is a linear barrier function, i.e. B(x) tends to infinity when some of the
constraints ci(x) = [Ax]i + θi are vanishing. For example, B could be the logarithmic barrier function:

B(x) = −
I∑

i=1

ti log([Ax]i + θi), ti > 0,∀i

The barrier function B is defined on the convex set C∗ :

C∗ = {x|[Ax]i + θi > 0, ∀i} (1.4)

Moreover, we assume that assumption 1.1 holds and that B(x) is twice differentiable and convex on C∗.
These assumptions hold for the logarithmic barrier case.

The function f(α) reads:
f(α) = p(α) + µb(α) (1.5)

where the function b(α) is defined for α ∈ [0; ᾱ[ with

ᾱ = min
i|δi<0

− ai

δi
, (1.6)

where ai = [Ax]i + θi, δi = [Ad]i. If the set {i|δi < 0} is empty then ᾱ = +∞.

Convergence properties of algorithm 1 are obtained under the assumption that the tangent majorants are
quadratic. The function f(α) can have an unbounded curvature due to the barrier term (figure 3). There
doesn’t exist a quadratic function majorizing f(α) along all its definition domain. It would be sufficient to
majorize f(α) on the level set Lk = {α|F (xk + αdk) ≤ F (xk)} but this set is rarely explicit and is often
very difficult to approximate.

This report is organized as follows : In section 2, we give some assumptions allowing us to construct such
majorant function and compute the minimizer. Section 3 gives the properties of the step size that allowing us
to establish convergence conditions such as Armijo or Zoutendijk conditions. We deduce from this properties
the extension of [9] convergence result when this new form of tangent majorant is associated with a nonlinear
conjugate gradient algorithm. Moreover, we show that this strategy can lead to the convergence of others
large scale descent algorithms such as truncated Newton and L-BFGS. Then, in section 4, we propose a
strategy for construction of this majorant function, in the case of a logarithmic barrier.
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ḟ(0)

S∗

ᾱ

Figure 3: The function f(α) in the convex case and ᾱ 6= ∞. S∗ is the set of stationnary points of f .

2. Proposed line search strategy

To overcome the limitation of the algorithm based on a quadratic majorant, we suggest a new tangent
majorant of the form:

a1α
2 + a2α+ a3 − a4 log(ᾱ− α) (2.1)

This function can be seen as an extension of the quadratic form used in [9]. Such form has given good
results in the case of interpolation-based line search applied to interior point methods([12, 13]). Moreover,
the minimizer can still be computed exactly.

2.1. Construction of the majorant function

For all xk, dk descent direction of F at xk, we assume that there exists a series of coefficients (mj
k, γ

j
k) ∈

R
+ such that

hj
k(α, αj

k) > f(α), ∀α ∈ [0; ᾱk[ (2.2)

with

hj
k(α, αj

k) = f(αj
k) + (α− αj

k)ḟ(αj
k) +

1

2
mj

k(α− αj
k)2 + γj

k

[

(ᾱk − αj
k) log

(

ᾱk − αj
k

ᾱk − α

)

− α+ αj
k

]

(2.3)

Moreover, we make the following assumption:

Assumption 2.1. There exists some constants 0 < ν1 6 ν2 such that for each descent direction dk ∈ R
n:

ν1‖dk‖2
6 mj

k +
γj

k

ᾱk − αj
k

6 ν2‖dk‖2 (2.4)

Remark 1. Notice that the special form of (2.3) leads to the following equalities, for any value of (mj
k, γ

j
k):

{
hj

k(αj
k, α

j
k) = f(αj

k)

ḣj
k(αj

k, α
j
k) = ḟ(αj

k)

Then if (2.2) holds, hj
k(α, αj

k) is a tangent majorant of f(α) at αj
k.
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Remark 2. If ᾱ = +∞, then we assume that γj
k = 0. Therefore, in this case, hj

k(α, αj
k) is a quadratic

function.

The construction of hj
k(α, αj

k), tangent majorant of f(α) at αj
k yields a MM algorithm for minimizing

the function f :
α0

k = 0

αj+1
k = argminhj

k(α, αj
k)

(2.5)

In the rest of this section, for brevity, we will omit the index k except when it is necessary.

2.2. Computing the minimizer

Lemma 2.1. The function hj(α, αj) is strictly convex and its derivative is convex. Moreover, if γj
k is strictly

positive, the derivative ḣj(α, αj) is strictly convex.

Proof.

ḧj(α, αj) = mj + γj ᾱ
j − αj

ᾱj − α

According to (2.4),

mj +
γj

ᾱ− αj
> 0

Furthermore, we have (mj , γj) ∈ R
+ and αj < ᾱj . Then, the second derivative of the tangent majorant is

strictly positive.

...
h

j
(α, αj) = 2γj ᾱj − αj

(ᾱj − α)2

This quantity is positive for αj < ᾱj . Moreover, if γj > 0,
...
h

j
(α, αj) is strictly positive and thus the

derivative of the tangent majorant is strictly convex.

According to lemma 2.1, the tangent majorant has an unique minimize. Two cases are distinguished :

• Case 1. ᾱ = +∞,

αj+1 is the minimizer of a quadratic function :

αj+1 = αj − ḟ(αj)

mj

• Case 2. ᾱ < +∞,

αj+1 is the minimizer of the function:

hj(α, αj) = f(αj) + (α− αj)ḟ(αj) +
1

2
(α− αj)2mj + γj

[

(ᾱ− αj) log

(
ᾱ− αj

ᾱ− α

)

− α+ αj

]

(2.6)

which is also the unique root of the function Q(α), verifying α < ᾱ, given by

Q(α) = (ᾱ− α)ḣj(α, αj)

whose complete expression is:

Q(α) = A1(α− αj)2 +A2(α− αj) +A3

with 





A1 = 1
2 Q̈(αj) = −mj

A2 = Q̇(αj) = γj − ḟ(αj) +mj(ᾱ− αj)

A3 = Q(αj) = (ᾱ− αj)ḟ(αj)

The calculation of this root depends on the value of A1.
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◦ Case where A1 = 0

If A1 = −mj is equal to zero, then Q is a linear function whose unique root is :

αj+1 = αj − A3

A2

= αj − (ᾱ− αj)ḟ(αj)

γj − ḟ(αj)

◦ Case where A1 6= 0

If A1 is non zero, Q is a second order polynomial vanishing at :

αj +
−A2 ±

√

A2
2 − 4A1A3

2A1

The minimizer hj(α, αj) satisfies the constraint αj+1 < ᾱ. Then, it is equals to the smaller root of Q(α).
The sign of A2 then determines which root to choose:

αj+1 = αj +
−|A2| +

√

A2
2 − 4A1A3

2A1

= αj +
−2A3

|A2| +
√

A2
2 − 4A1A3

2.3. Optimization algorithm

The proposed form of the tangent majorant leads to the following iterative descent algorithm :

Algorithm 2 Descent direction algorithm with MM non quadratic line search

Require: x0 and d0 = −∇F (x0) , J > 1
Ensure: xk verifying a stopping condition SC

while SC non verified by xk do

if dk = 0 then

αk = 0
else

α0
k = 0

αj+1
k = argminhj

k(α, αj
k), 0 6 j 6 J − 1

αk = αJ
k

end if

xk+1 = xk + αkdk

dk+1 defined such that ∇F (xk+1)
T dk+1 6 0

end while
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3. Convergence analysis

3.1. Properties of the stepsize series

The present section gathers technical results concerning the stepsize series generated by (2.5), which will
be useful to derive the global convergence properties of the next section. We assume that assumption 1.1
holds.

Lemma 3.1. For all k > 0 and j ∈ [0, ..., J − 1],

xk + αdk ∈ V, ∀α ∈ [0, αj
k]

Lemma 3.2 is a corollary of [9, Lem.3.1] :

Lemma 3.2. For all k > 0 and j ∈ [0, ..., J − 1],

F (xk + αdk) 6 F (xk + αj
kdk), ∀α ∈ [αj

k, α
j+1
k ]

This could also be viewed as an interpretation of the ’MM capture property’ given in [7, Th.6.4].
If gT

k dk = 0, then αj = ... = α0 = 0. Let us consider the case when ḟ(0) does not vanish for the current
iteration k. Then we have the following lemma :

Lemma 3.3. The series
{
αj
}

is positive.

αj > 0

f(αj) 6 h0(α1, 0)

The relative position between αj+1 and αj is given by the following proposition :

Lemma 3.4. For all j > 1 :
(αj+1 − αj)ḟ(αj) 6 0

Lemma 3.5. Inequalities to approximate the step
Let hj(α, αj), the tangent majorant of f(α) at αj. If ḟ(αj) is negative and ᾱ < +∞, then :

αmin 6 αj+1 − αj
6 αmax

with : 





αmin = − (ᾱ− αj)ḟ(αj)

γj +mj(ᾱ− αj) − ḟ(αj)

αmax = −2
(ᾱ− αj)ḟ(αj)

γj +mj(ᾱ− αj) − ḟ(αj)

Proof. The minimizer of hj(α, αj) is a root of the polynomial Q(α):

Q(α) = (ᾱ− α)ḣj(α, αj)
= a1(α− αj)2 + a2(α− αj) + a3

We will show that
−a3

a2
6 αj+1 − αj

6 −2
a3

a2
(3.1)
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Let study the signs of a1, a2, a3 :
a1 = −mj

6 0

We suppose that ḟ(αj) 6 0 then

a2 = γj − ḟ(αj) +mj(ᾱ− αj) > 0

a3 = (ᾱ− αj)ḟ(αj) 6 0

If a1 = 0, we have

αj+1 − αj = −a3

a2

Then (3.1) holds.
If a1 6= 0,

αj+1 − αj =
−2a3

a2 +
√

a2
2 − 4a1a3

Then (3.1) holds too.

Theorem 3.1. Minorization of the step size obtained after one MM iterate
Let xk and a descent direction dk. If the step α1

k is given by

α1
k = argminh0(α, 0)

there exists ν > 0 such that

α1
k >

−gT
k dk

ν‖dk‖2

Proof. Let us study separately index k for whom ᾱk is finite and those for whom there doesn’t exist i such
that [Adk]i < 0 and so ᾱk = +∞.

• ᾱk equals to infinity

If ᾱk = +∞ then the tangent majorant of F (xk + αdk) = f(α) at α0 = 0 is a quadratic function with
curvature m0. This majorant is minimized at :

α1 =
−ḟ(0)

m0

According to assumption 2.1, we have :

α1
k >

−gT
k dk

ν2‖dk‖2

• ᾱk finite

According to lemma 3.5 :

α1
k > − (ᾱk − 0)gT

k dk

(ᾱk − 0)m0
k + γ0

kgT
k dk

Hence :

α1
k >

−gT
k dk

m0
k +

γ0

k

ᾱk
− gT

k
dk

ᾱk

10



Let us show that there exists ν > 0 such that :

m0
k +

γ0
k

ᾱk
− gT

k dk

ᾱk
6 ν‖dk‖2

We will use the following notations :

J(xk) = m0
k +

γ0
k

ᾱk
︸ ︷︷ ︸

J1(xk)

+
−gT

k dk

ᾱk
︸ ︷︷ ︸

J2(xk)

Each term J1 and J2 will be majorized separately.

◦ Majorizing J1(xk)

Assumption 2.1 implies that there exists ν2 such that

J1(xk) 6 ν2‖dk‖2

◦ Majorizing J2(xk)

The following lemma is due to the barrier term in the criterion F (x) :

Lemma 3.6. Minorizing the distance to the constraint domain
There exists ǫ0 > 0 such that for all x ∈ L0, for all i = 1, ...,m,

ci(x) = [Ax]i + θi > ǫ0

Then we have :
ᾱk >

ǫ0
max

i|[Adk]i<0
− [Adk]i

=
ǫ0

max
i

− [Adk]i

Let ι(k) be an index such that
ι(k) = argmax

i
− [Adk]i

Given aι(k) the ι(k)th row of A, we have

ᾱk >
ǫ0

|aT
ι(k)dk|

−gT
k dk

ᾱk
=

|gT
k dk|
ᾱk

6 |gT
k dk|.|aT

ι(k)dk|
1

ǫ0

According to Cauchy-Swartz inequality :

|gT
k dk||aT

ι(k)dk| 6 ‖gk‖‖aι(k)‖‖dk‖2

‖aι(k)‖ is majorized by

ζ = max
i

‖ai‖ = max
i

√
∑

p

A2
ip

The matrix A contains at least a non zero row so ζ is strictly positive.
Now, let us study the value of the norm of gk.
According to assumption 1.1, there exists η > 0 such that

‖∇F (x)‖ 6 η, ∀x ∈ L0

11



Thus,
J2(xk) 6 ν3‖dk‖2

with ν3 = ηζ.
Then property 3.1 holds for all k, if we put :

ν = max (ν2, ν2 + ν3) = ν2 + ν3 = ν2 + ηζ

3.2. Armijo condition

Starting from a point x and a descent direction d, the step size α has to reduce F ’enough’ to ensure
convergence of the overall algorithm. To measure this decrease, we often use the Armijo condition:

F (x + αd) 6 F (x) + c1αgT d c1 ∈]0; 1[ (3.2)

The condition (3.2) is equivalent to :

f(α) − f(0) 6 c1αḟ(0)

3.2.1. Armijo condition for J=1

We will show that if for every iterate k, the step size αk is given by :

αk = α1
k = argminh0

k(α, 0)

then the Armijo condition holds for a well-chosen c1 parameter.

Lemma 3.7. Let a1 ∈ R and ψ(α) = a1

[

log( ᾱ
ᾱ−α ) − α

ᾱ

]

.

ψ(α)

αψ̇(α)
6

1

2
, ∀α; 0 < α < ᾱ

and

lim
α→0

ψ(α)

αψ̇(α)
=

1

2

Proof. We define :

g(α) :=
ψ(α)

αψ̇(α)

The calculation of function g gives :

g(α) =

[

log

(
ᾱ

ᾱ− α

)

− α

ᾱ

] [
ᾱ(ᾱ− α)

α2

]

It could be noted that :

lim
α→0

g =
1

2

and

ġ(α) =
1

α
+

[

log

(
ᾱ

ᾱ− α

)

− α

ᾱ

] [

−2
ᾱ2

α3
+

ᾱ

α2

]

;∀α 6= 0

We introduce the reparametrization u = α
ᾱ . u ∈]0, 1[ for α ∈]0, ᾱ[. So the function ġ(α) has the same

sign as αġ(α) = ρ(α
ᾱ ) = ρ(u).

12



ρ(u) = 1 + (− log(1 − u) − u)

(

− 2

u2
+

1

u

)

After manipulating inequalities, we find that

ρ(u) 6 0 ⇔ log(1 − u) +
2u

2 − u
≤ 0

The function log(1 − u) + 2u
2−u is decreasing on [0; 1] and vanishes at u = 0. This implies that ρ is negative

and then the function g is decreasing.
We obtain :

ψ(α) 6
1

2
αψ̇(α); ∀α ∈]0; ᾱ[

Then, we have the following property 3.1 :

Property 3.1. Let c 6
1
2 . The sequence

{
αj
}

j>0
is defined by (2.5). If ᾱ > αj+1 > αj, then :

f(αj) − f(αj+1) + c(αj+1 − αj)ḟ(αj) > 0

Proof. The property is trivial if αj+1 = αj . Assume that αj+1 > αj . According to lemma 3.4, for all c 6
1
2 ,

c(αj+1 − αj)ḟ(αj) >
1

2
(αj+1 − αj)ḟ(αj)

The tangent majorant has the form :

hj(α, αj) = f(αj) + (α− αj)ḟ(αj) +
1

2
mj(α− αj)2 + ψ(α− αj)

if we set a1 = γj . Let us define :

τ(α) = hj(α, αj) − f(αj) + (α− αj)ḟ(αj)
= 1

2m
j(α− αj)2 + ψ(α− αj)

According to lemma 3.7, for all (α− αj) in ]0; ᾱ− αj [, hence for all α ∈]αj ; ᾱ[ :

ψ(α− αj)

(α− αj)ψ̇(α− αj)
6

1

2

Moreover, noting that :

1

2
mj(α− αj)2 =

1

2
(α− αj)

[
mj(α− αj)

]

we deduce :
τ(α− αj)

(α− αj)τ̇(α− αj)
6

1

2
(3.3)

hj(α, αj) is a tangent majorant of f in αj :

hj(αj+1, αj) − f(αj+1) = f(αj) − f(αj+1) + (αj+1 − αj)ḟ(αj) + τ(αj+1 − αj) > 0

And according to (3.3) :

f(αj) − f(αj+1) + (αj+1 − αj)ḟ(αj) +
1

2
(αj+1 − αj)τ̇(αj+1 − αj) > 0

13



We made the assumption that αj+1 is strictly higher than αj . So, αj+1 > 0. The derivative of hj(α, αj)
is canceling at this point :

τ̇(αj+1 − αj) = −ḟ(αj) (3.4)

This quantity is positive according to lemma 3.4. Then we have :

f(αj) − f(αj+1) +
1

2
(αj+1 − αj)ḟ(αj) > 0

Corollary 1. Consequence of property 3.1
Suppose that d is a descent direction, i. e. ḟ(0) 6 0. If α0 = 0 and c1 6

1
2 , then the first Wolfe condition

holds in α1, the minimizer of h(α, 0) :

f(0) − f(α1) + c1α
1ḟ(0) > 0

Proof. ḟ(0) 6 0 implies that α1 > 0 = α0. The corollary is then a direct application of property 3.1 with
j = 0.

Remark 3. Note that we never use informations concerning the function f in the proofs of property 3.1 and
its corollary 1. The only assumption we make is on the majorizing quality of hj. The property is deduced
from the form of the tangent majorant only.

According to corollary 1, the Armijo condition holds for every αk if J = 1. The following results deals
with the more general case when J can take any value.

3.2.2. Armijo condition for any J

We will show that if for every iterate k, the step size αk is given by :

αk = αJ
k

and αJ
k is the J th iterate of the (2.5) recurrence, then the Armijo condition holds for every value of J with

c1 a parameter depending on J .

Property 3.2. Majorization of the step size

Suppose that ḟ(0) < 0 and αj is given by :

α0 = 0
αj+1 = argminhj(α, αj)

Then, for all j ∈ N − {0} :
αj

6 cmax
j α1 (3.5)

with

cmax
j =

(

1 +
2ν2L

ν2
1

)j−1 (

1 +
ν

L

)

− ν

L
> 1 (3.6)

Proof. This proof is similar to that of lemma 3.4 in [9].
Suppose ḟ(αj) 6 0. If ᾱ is finite then, according to equation (3.1) :

αj+1 − αj
6

−2ḟ(αj)

(γj − ḟ(αj))/(ᾱ− αj) +mj
(3.7)
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Thereby :

αj+1 − αj
6

−2ḟ(αj)

γj/(ᾱ− αj) +mj
(3.8)

If ᾱ is equal to +∞, αj+1 is given by :

αj+1 − αj =
−ḟ(αj)

mj
< −2ḟ(αj)

mj
(3.9)

The equation (3.8) still holds with γj = 0.
According to assumption 2.1 :

‖dk‖2
>

1

ν2

(
γ0/ᾱ+m0

)
, ∀k (3.10)

and
γj/(ᾱ− αj) +mj

> ν1‖dk‖2, ∀k
thus we have for all k:

γj/(ᾱ− αj) +mj
>
(
γ0/ᾱ+m0

) ν1
ν2

> 0 (3.11)

Then, by (3.8):

αj+1
6 αj + |ḟ(αj)| 2ν2

(γ0/ᾱ+m0)ν1
(3.12)

If ḟ(αj) > 0, αj+1 is smaller than αj then (3.12) still holds.
According to assumption 1.1, ∇F is Lipschitz hence:

|ḟ(αj) − ḟ(0)| 6 L‖dk‖2αj (3.13)

Using the fact that |ḟ(αj)| 6 |ḟ(αj) − ḟ(0)| + |ḟ(0)|, and ḟ(0) negative, we get :

|ḟ(αj)| 6 Lαj‖dk‖2 − ḟ(0) (3.14)

Using theorem 3.1 and (3.10)

− ḟ(0) 6 α1ν‖dk‖2 (3.15)

6 α1 ν

ν1
(m0 + γ0/ᾱ) (3.16)

Given (3.14),(3.10) and (3.16) jointly with (3.12), we get :

αj+1
6 αj +

2ν2
(m0 + γ0/ᾱ)ν1

[

Lαj

(
m0 + γ0/ᾱ

ν1

)

+ α1 ν

ν1
(m0 + γ0/ᾱ)

]

(3.17)

6 αj

[

1 +
2ν2L

ν2
1

]

+ 2α1 ν2ν

ν2
1

(3.18)

This corresponds to a recursive definition of the series
{
cmax
j

}
with :

cmax
j+1 = cmax

j

[

1 + 2
ν2L

ν2
1

]

+ 2
νν2
ν2
1

Given cmax
1 = 1, we could deduce the general term of the sequence and have (3.6).
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Remark 4. Equation (3.8) is the key point of the proof. The new step αj+1 is either less than αj, or less
than the minimizer of a quadratic function tangent with f(α) at αj and with curvature 1

2 ḧ
j(αj , αj). This

result allows us to use the same kind of proof as in [9].

Lemma 3.8. Armijo condition

The step corresponding to the J-th element of the recurrence (2.5) verifies Armijo condition (3.2) with

c1 = cJ1 =
1

2cmax
J

∈]0; 1[

Proof. First, we have
f(0) − f(αJ ) > f(0) − f(α1)

According to corollary 1,

f(0) − f(α1) +
1

2
α1ḟ(0) > 0

Moreover, according to property 3.2

α1
>

αJ

cmax
J

Hence :

f(0) − f(αJ ) +
1

2cmax
J

αJ ḟ(0) > 0

3.3. Zoutendijk condition

Global convergence of a descent direction method is ensure by a ’good choice’ of the step but also by
well-chosen search directions dk. A key property is the angle θk between dk and steepest descent direction
−gk. It is defined by :

cos θk =
−gT

k dk

‖gk‖‖dk‖
(3.19)

Proofs of convergence of descent direction algorithms are very often based on the verification of the
following condition :

Definition 1. Zoutendijk Condition
Consider {xk} , iterations from a descent direction algorithm. Suppose that F is bounded below. The
Zoutendijk condition is satisfied if

∞∑

k=0

‖gk‖2 cos2 θk <∞ (3.20)

The inequality (3.20) implies that cos2 θk‖gk‖2 tends to 0 as k tends to infinity. This property may be
used to demonstrate global convergence of the algorithm. Suppose that the way we choose dk ensures that
θk is bounded away from π

2 . Then cos θk stays bounded away from zero :

∃δ such that cos θk ≥ δ > 0, ∀k (3.21)

The condition (3.20) implies the convergence of the algorithm in the sense

lim
k→∞

‖gk‖ = 0 (3.22)

Lemma 3.8 and theorem 3.1 yield us to demonstrate that the Zoutendijk condition (3.20) holds by using
our new line search.
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Property 3.3. Minorization of the step size

Suppose ḟ(0) < 0 and αj given by :

α0 = 0
αj+1 = argmin

α
hj(α, αj)

Then for all j ∈ N − {0}, we have :
αj

> cminα1 (3.23)

with

cmin =
−1 +

√

1 + 2L/ν1
2L/ν1

(3.24)

Proof. This proof is inspired from that of [9, Lem.3.3]

b

b

φ(α)

f(α)

f(0) + 1
2αḟ(0)

α1αmin

h0(α, 0)

Figure 4: Minorizing αj in the convex case : Illustration of inequality (3.26)

Let φ be the concave quadratic function :

φ(α) = f(0) + αḟ(0) +m
α2

2

with m = −m0+γ0/ᾱ
ν1

L

We have φ(0) = f(0) and φ̇(0) = ḟ(0) < 0. So φ is decreasing on R
+.

Let us consider α ∈ [0, αj ] : xk + αdk ∈ V. According to assumption 1.1, we have

|ḟ(α) − ḟ(0)| 6 ‖dk‖2L|α|

and according to assumption 2.1,

|ḟ(α) − ḟ(0)| 6 (m0 + γ0/ᾱ)Lα/ν1

Then we obtain :
|ḟ(α)| 6 (m0 + γ0/ᾱ)Lα/ν1 − ḟ(0)

17



Hence :
φ̇(α) 6 ḟ(α), ∀α ∈ [0, αj ]

Integrating (3.3) between 0 and αj yields

φ(αj) 6 f(αj) (3.25)

According to corollary 1 :

h0(α1, 0) 6 f(0) +
1

2
α1ḟ(0)

φ(αmin) = f(0) + cminα
1ḟ(0) − m0 + γ0/ᾱ

ν1
L

(cminα
1)2

2

= f(0) + α1ḟ(0)

(

cmin + c2min

m0 + γ0/ᾱ

−ḟ(0)2ν1
Lα1

)

According to (3.8) :

α1
6 − 2ḟ(0)

m0 + γ0/ᾱ

Choosing cmin =
−1+

√
1+2L/ν1

2L/ν1

, we have

cmin + c2min

L

ν1
=

1

2

Then :

φ(αmin) = φ(cminα
1) > f(0) +

1

2
α1ḟ(0) > h0(α1, 0) (3.26)

On the other hand, αj is positive. Assume that there exists j such that 0 6 αj < αmin. According to
(3.25) and given that φ is decreasing on R

+, we get :

f(αj) > φ(αj) > φ(αmin) > h0(α1, 0)

wich is in contradiction with lemma 3.3. Figure 4 illustrated the proof when f(α) is convex.

Theorem 3.2. Zoutendijk condition

Suppose for all k that dk is a descent direction and αk is the Jth element of the series defined by (2.5).
Then, Zoutendijk condition (3.20) holds.

Proof. First, note that for all k, dk 6= 0, because we make the assumption :

gT
k dk < 0

According to lemma 3.8, the first Wolfe condition (3.2) holds for c1 = 1
2cmax

J

:

F (xk) − F (xk+1) > −c1αkgT
k dk

αk > cminα1
k

According to theorem 3.1 :

α1
k >

−gT
k dk

ν‖dk‖2

Hence :

F (xk) − F (xk+1) > c0
(gT

k dk)2

‖dk‖2
> 0
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with c0 = (cminc1)/ν > 0. The assumption 1.1 and the boundedness of L0 implies that the limit limk→∞F (xk)
is finite. Therefore :

∞ > [F (x0) − limk→∞F (xk)] /c0 >
∑

k

(gT
k dk)2

‖dk‖2

3.4. Convergence of Newton-like methods

Let us study the global convergence of algorithm 2 with different choices of the direction dk. The
Zoutendijk condition holds. If the direction dk is the steepest descent −gk, then the algorithm 2 converges
in the sense :

lim
k→∞

‖gk‖ = 0

As a general rule, assume that direction dk is given by :

dk = −B−1
k gk (3.27)

We have the following property :

Property 3.4. [14]
Assume that for all k, matrices Bk are positive definite and that there exists M > 0 such that :

‖Bk‖‖B−1
k ‖ 6 M, ∀k

If Zoutendijk condition holds, then the descent algorithm defined by

xk+1 = xk + αkdk

and (3.27) converges in the sense :
lim

k→∞
‖gk‖ = 0

This result covers the following classical methods:

• Steepest descent: dk = −gk

• Newton: dk = −∇2F (xk)−1gk

• Quasi Newton: dk = −B−1
k gk

3.5. Convergence of BFGS and L-BFGS methods

The BFGS algorithm is a Quasi-Newton algorithm where the inverse approximation of the Hessian B−1
k

is computed iteratively by accounting for the curvature measured during the precedent iteration. Then, the
descent direction is given by :

dk = −Hkgk

The udpate of the inverse Hessian approximation is given by

Hk+1 = (I − ρkδkγT
k )Hk(I − ρkγkδT

k ) + ρkδkδT
k

with δk = xk+1 − xk, γk = gk+1 − gk and ρk = 1
γT

k
δk

.

According to theorem 3.2, we have the following convergence result :

Assumption 3.1. The level set V is convex, and there exist positive constants m and M such that

m‖v‖2 ≤ vT∇2F (x)v ≤M‖v‖2

for all v ∈ R
n and x ∈ V
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Theorem 3.3. If F is twice continuously differentiable and assumption 3.1 holds, then the BFGS algorithm
associated with the MM line search converges in the sense liminfk→∞gk = 0. Since under this assumption
F is strongly convex, this result leads to the convergence of xk to x∗.

The L-BFGS algorithm is a limited-memory method based on the BFGS updating formula. Instead of
computing the full inverse Hessian approximation, only a few vectors representing implicitly the approxima-

tion are stored. The update strategy makes use of an initial Hessian approximation B
(0)
k which is allowed

to vary at each iteration [14]. Since the convergence proof of L-BFGS algorithm is based on the fulfillment
of Zoutendijk condition [10], we can establish the following result :

Theorem 3.4. Let F a twice continuously differentiable function. If assumption 3.1 holds and if the matrices

B
(0)
k are chosen so that ‖B(0)

k ‖ and ‖B(0)−1

k ‖ are bounded then the L-BFGS algorithm associated with the
MM line search converges in the sense liminfk→∞gk = 0. Since under this assumption F is strongly convex,
this result leads to the convergence of xk to x∗.

3.6. Convergence of the truncated Newton method

The Newton method is attractive because it converges rapidly from any sufficiently good initial guess
x0. However, it is unpractical for large scale problems since it requires to solve a system of linear equations
(Newton equations) at each stage. Therefore, an inexact form of the Newton method has been developped
where the search direction is computed by applying the conjugate gradient method to the Newton equations.
Since the conjugate gradient iterations are stopped before convergence, this method is known as truncated
Newton method.

1. Choose a starting point x0

2. FOR all k UNTIL convergence DO
Compute dk by solving approximately the linear system ∇2F (xk)d = −gk with Ik CG iterates
Compute the step size αk with some appropriate line search strategy
xk+1 = xk + αkdk

Assumption 3.2. For all x ∈ V, H = ∇2F (x) is a symmetric positive definite (SPD) matrix. Let ν1(H) >
0 and ν2(H) > 0 denote the smallest and largest eigenvalues of H. The matrix sequence H =

{
∇2F (xk)

}

has a uniformly bounded spectrum with a stricly positive lower bound i.e., there exist ν1(H), ν2(H) ∈ R such
that

ν2(H) > ν2(Hk) > ν1(Hk) > ν1(H) > 0, ∀k

Lemma 3.9. [8]
Let {xk} be a sequence generated by the truncated Newton method and assume that assumption 3.2 holds.
Then dk is a descent direction i.e.,

dT
k gk < 0

Definition 2. [1]
The direction sequence {dk} is gradient related to {xk} if for any subsequence {xk}k∈K that converges to a
nonstationary point, the corresponding subsequence {dk}k∈K is bounded and satisfies

lim sup
k←∞,k∈K

dT
k gk < 0

Lemma 3.10. [8]
Let {xk} be a sequence generated by the truncated Newton method and assume that assumption 3.2 holds.
Then there exists η1, η2 > 0 such that

η1‖gk‖2
6 −dT

k gk (3.28)

‖dk‖2
6 η2‖gk‖2 (3.29)

Thus, the direction sequence {dk} is gradient related to {xk}.
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Theorem 3.5. Let {xk} be a sequence generated by the truncated Newton method, αk be defined by the
recurrence (2.5), and let assumptions 1.1,2.1 and 3.2 hold. Then we have convergence in the sense

lim
k←∞

gk = 0

Proof. Let {xk} be a sequence generated by the truncated Newton method. According to lemma 3.9, dk is
a descent direction. Then, according to lemma 3.8, there exists c1 ∈ (0, 1) such that for all k,

F (xk) − F (xk+1) > −αkc1d
T
k gk

According to theorem 3.1 and property 3.3,

αk > cminα
1
k (3.30)

>
cmin

ν

−gT
k dk

‖dk‖2
(3.31)

Furthermore, according to lemma 3.10,

−gT
k dk

‖dk‖2
>
η1
η2

Let Ω =
c1cminη2

1

νη2

. Then,

F (xk) − F (xk+1) > Ω‖gk‖2
> 0

On the other hand, the assumption 1.1 and the boundedness of L0 implies that

F (xl) > inf
x∈V

F (x) > −∞,∀l

Then we deduce

∞ > F (x0) − inf
x∈V

F (x) > F (x0) − F (xl) > Ω

l−1∑

k=1

‖gk‖2, ∀l

Hence, limk→∞ gk = 0

3.7. Convergence of conjugate gradient methods

Let us consider the following family of conjugate gradient algorithms :

xk+1 = xk + αkdk (3.32)

ck = −gk + βkdk−1 (3.33)

dk = −cksign(gT
k ck) (3.34)

with the conjugacy formulas :

β0 = 0, βk = βµk,ωk

k = ∇gT
k yk−1/Dk, ∀k > 0 (3.35)

Dk = (1 − µk − ωk)‖gk−1‖2 + µkdT
k−1yk−1 − ωkdT

k−1gk−1

yk−1 = gk − gk−1

µk ∈ [0, 1], ωk ∈ [0, 1 − µk]
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Expression (3.35) allows us to cover the following conjugate gradient methods :

β1,0
k = βHS

k = gT
k yk−1/d

T
k−1yk−1 Hestenes-Stiefel (HS)

β0,0
k = βPRP

k = gT
k yk−1/‖gk−1‖2 Polak-Ribière-Polyak (PRP)

β0,1
k = βLS

k = −gT
k yk−1/d

T
k−1gk−1 Liu-Storey (LS)

Let us consider the following assumption :

Assumption 3.3. Assumption 1.1 holds and F is strongly convex on V : there exists λ > 0 such that

[∇F (x) −∇F (x′)]
T

(x − x′) > λ‖x − x′‖2, ∀x,x′ ∈ N

We have the following convergence result :

Theorem 3.6. Let αk be defined by the recurrence (2.5), and let assumptions 1.1 and 2.1 hold. Then, we
have convergence in the sense liminfk→∞gk = 0 for the PRP and LS methods, and more generally for µk = 0
and ωk ∈ [0, 1]. Moreover, if assumption 3.3 holds, then we have liminfk→∞gk = 0 in all cases.

We have previously established :

• the step size minorization αk 6 cmax
J α1

k (property 3.3)

• the step size majorization 0 6 cminα1
k 6 αk (property 3.2)

• the verification of Zoutendijk condition (theorem 3.2)

Thus, the proof of 3.6 is identical to that in [9]. This result can be viewed as an extension of [9, Th.4.1] for
an new form of tangent majorant.

The convergence results can be extended to others conjugacy formulas if we make an additional assump-
tion on the tangent majorant :

Assumption 3.4. Let ∆(α, αj) the difference between f and its tangent majorant :

∆(α, αj) = f(α) − hj(α, αj)

We assume that for all α > αj :
∆̇(α, αj) 6 0

Lemma 3.11. Let us assume that ḟ(0) < 0. Then, if assumption 3.4 holds, the series defined by (2.5) is
increasing. Moreover, the derivative of f at αj is negative for all j.

This lemma means that for all iteration k of the overall algorithm, we have the inequality :

gT
k dk−1 6 0 (3.36)

Lemma 3.11 leads to an important result for the convergence properties of conjugate gradient methods :

Lemma 3.12. Sufficient descent condition

Assume that assumption 3.4 holds and suppose that the successive directions dk are given by the conjugate
algorithm gradient :

dk+1 = −gk+1 + βkdk

If the coefficient βk is non negative, the sufficient descent condition holds at each iteration k, i.e; there exists
some 0 < c 6 1 such that for all k :

gT
k dk 6 −c‖gk‖2

In particular, dk is a descent direction.
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Lemma 3.12 is a direct application of a remark made in [5, Part 4]. It is a consequency of inequality
(3.36). We can directly use this result to proove global convergence of Fleetcher-Reeves(FR) method when :

βFR
k =

‖gk+1‖2

‖gk‖2
> 0

According to lemma 3.12, the FR method always generates descent directions with our choice of step, if we
assume that assumption 3.4 holds. Then we can use [3] result : The Zoutendijk condition holds according
to theorem 3.2 and dk is a descent direction. So the FR method converges in the sense :

lim
k→∞

inf‖gk‖ = 0

Let consider now the conjugacy formula PRP+, proposed in [5] :

βk = max(βPRP
k , 0) withβPRP

k =
gT

k+1(gk+1 − gk)

‖gk‖
According to [14], PRP+ method has led to the better convergence results during numerical tests when

compared with others conjugacy formulas.
The convergence of our new algorithm with this conjugacy formula is a direct application of [5, Th.4.3].

The PRP+ method converges in the sense :

lim
k→∞

inf‖gk‖ = 0

Finally, we can state a similar convergence result in the convex case for the Dai and Yuan (DY) conjugacy
formula :

βDY
k =

‖gk+1‖2

dT
k (gk+1 − gk)

Let us make the following assumption :

Assumption 3.5. Assumption 1.1 holds and F is convex on V : For every (x,y) ∈ V we have

F (ωx + (1 − ω)y) 6 ωF (x) + (1 − ω)F (y), ∀ω ∈ [0, 1]

According to lemma 3.11, if assumption 3.5 holds, for all iteration k of the overall algorithm, we have
the inequality :

|gT
k+1dk| 6 |gT

k dk| (3.37)

Let us show recurrently on k that, with DY method, dk is always a descent direction .
For k = 0, we have d0 = −g0, hence d0 is a descent direction. Consider an index k when gT

k dk 6 0.
If this quantity is zero, αk = 0 and then the algorithm will finish. Let us assume that gT

k dk < 0. Then,
according to lemma 3.11, gT

k+1dk 6 0 and moreover, according to inequality (3.37), |gT
k+1dk| 6 |gT

k dk|.
Then, the coefficient βDY

k is positive :

βDY
k =

‖gk+1‖2

dT
k (gk+1 − gk)

> 0

And according to lemma 3.12, dk+1 is a descent direction.
Now we can use [3] result to show the global convergence of DY method : The Zoutendijk condition

holds according to theorem 3.2 and dk is a descent direction. If assumption 3.5 holds, then the DY method
converges in the sense :

lim
k→∞

inf‖gk‖ = 0

Theorem 3.7. Let αk be defined by the recurrence (2.5), and let assumptions 1.1, 2.1 and 3.4 hold. Then,
we have convergence in the sense liminfk→∞gk = 0 for the PRP+ and FR. Moreover, if assumption 3.5
holds, we have convergence in the sense liminfk→∞gk = 0 for the DY method.

The following table 1 concentrates the convergence results of several nonlinear conjugate gradient meth-
ods, according to the assumptions made.
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Conjugacy βk Assumptions Convergence result

Hestenes and Stiefel (HS)
gT

k+1yk

dT
k yk

Ass. 1.1, 3.3, 2.1 Th. 3.6

Fletcher and Reeves (FR)
‖gk+1‖2

‖gk‖2
Ass. 1.1, 2.1,3.4 Th. 3.7

Polak and Ribière (PRP)
gT

k+1yk

‖gk‖2
Ass. 1.1, 2.1 Th. 3.6

Polak and Ribière modified (PRP+) max (βPRP
k , 0) Ass. 1.1, 2.1,3.4 Th. 3.7

Liu and Storey (LS)
gT

k+1yk

−dT
k yk

Ass. 1.1, 2.1 Th. 3.6

Dai and Yan (DY)
‖gk+1‖2

dT
k yk

Ass. 1.1, 2.1,3.4, 3.5 Th. 3.7

Table 1: Summary of convergence results for conjugate gradient methods

4. The logarithmic barrier case

The assumption 2.1 could appear restrictive. Moreover, it is not a constructive assumption because this
doesn’t lead directly to a method of constructing the tangent majorant function. In this section, we present
a tangent majorant function verifying the assumption 2.1, for the case when B(x) is a logarithmic barrier.

4.1. Calculation of the proposed tangent majorant parameters

Let us consider the following optimization problem :

argmin
x∈Rn

F (x) = P (x) − µ

I∑

i=1

ti log([Ax]i + θi) = P (x) + µB(x), µ > 0, ti > 0 (4.1)

A is a matrix from R
I×N and θ is a vector from R

N . We have :

f(α) = p(α) + µb(α)

with

b(α) =

I∑

i=1

bi(α) =

I∑

i=1

−ti log(ai + αδi) a = Ax + θ, δ = Ad

Let suppose that for all j, there exists mj
p such that the following quadratic function is a tangent majorant

of p(α) at αj :

qj(α, αj) = p(αj) + ṗ(αj)(α− αj) +
1

2
mj

p(α− αj)2

We assume that there exists νp
1 , ν

p
2 ∈ R , 0 6 νp

1 6 νp
2 such that for all direction dk ∈ R

n,

νp
1‖dk‖2

6 mj
p 6 νp

2‖dk‖2, ∀k ∈ N,∀j ∈ [0;J − 1]

This assumption holds if P (x) verifies assumption 1.2. Notice that we accept νp
1 = νp

2 = 0. Actually, if P (x)
is a linear function, it is better to choose mj

p = 0 for all j and k.

There is different ways of obtaining qj(α, αj). We can use one of the strategies described in [6] to construct
a quadratic tangent majorant of p(α). In the sequel, we will focus on constructing a tangent majorant of
the term b(α) and we will use the following notations:

b(α) =
∑

i|δi>0

−ti log(ai + αδi)

︸ ︷︷ ︸

b1(α)

+
∑

i|δi<0

−ti log(ai + αδi)

︸ ︷︷ ︸

b2(α)

+
∑

i|δi=0

−ti log(ai + αδi)

︸ ︷︷ ︸

b3(0)

(4.2)
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Majorizing b1(α). Let us assume that the set {i|δi > 0} is non empty.

Property 4.1. Let b1(α) = − ∑

i|δi>0

ti log(ai + αδi). Then, for all (α, αj) ∈ [0; ᾱ[, the following function

φj
1(α, α

j) is a tangent majorant of b1(α) at αj.

φj
1(α, α

j) = b1(α
j) + (α− αj)ḃ1(α

j) +
1

2
mj

b(α− αj)2

if

mj
b =

{

b̈1(0) if αj = 0
2

αj2
(b1(0) − b1(α

j) + αj ḃ1(α
j)) else

Furthermore, this is the best tangent majorant of this form, in the sense:

mj
b = min

{

m > 0|b1(α) 6 φj
1(α, α

j)
}

Finally, let ∆(α, αj) = b1(α) − φj
1(α, α

j), then for all α > αj, we have :

∆̇(α, αj) 6 0

∆(0, αj) = b1(0)

Proof.

ḃ1(α) =
∑

i|δi>0

− tiδi
ai + αδi

b̈1(α) =
∑

i|δi>0

tiδ
2
i

(ai + αδi)2

...
b 1(α) =

∑

i|δi>0

−2tiδ
3
i

(ai + αδi)3

For all i, ti > 0, then b1 is strictly convex and its derivative is strictly concave. According to [4, Th.1],

φj
1(α, α

j) = b1(α
j) + (α− αj)ḃ1(α

j) +
1

2
mj

b(α− αj)2

is a tangent majorant of b1(α) at αj . Moreover,

mj
b = min

{

m > 0|h(l) 6 h(lj) + ḣ(lj)(l − lj) +
1

2
m(l − lj)2, ∀l > 0

}

Coefficient mj
b insures :

∆(0, αj) = b1(0)

Finally, according to [4, Lem. 6], for all α > αj :

∆̇(α, αj) 6 0
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Majorizing b2(α). Let us assume that the set {i|δi < 0} is non empty, so ᾱ is finite.

Property 4.2. Let b2(α) = − ∑

i|δi<0

ti log(ai + αδi). Then, for all (α, αj) ∈ [0; ᾱ[, the following function

φj
2(α, α

j) is a tangent majorant of b2(α) at αj.

φj
2(α, α

j) = b2(α
j) + (α− αj)ḃ2(α

j) + γj
b

[

(ᾱ− αj) log

(
ᾱ− αj

ᾱ− α

)

+ αj − α

]

with

γj
b =







b̈2(0)ᾱ if αj = 0

b2(0) − b2(α
j) + αj ḃ2(α

j)

(ᾱ− αj) log( ᾱ−αj

ᾱ ) + αj
else

Furthermore, this is the best tangent majorant of this form, in the sense :

γj
b = min

{

γ > 0|b2(α) 6 φj
2(α, α

j)
}

Finally, let ∆(α, αj) = b2(α) − φj
2(α, α

j), then for all α > αj we have :

∆̇(α, αj) 6 0

∆(0, αj) = b2(0)

Proof. Let us define the following function,

T (α) = ḃ2(α)(ᾱ− α) (4.3)

and its derivatives:

Ṫ (α) = b̈2(α)(ᾱ− α) − ḃ2(α) (4.4)

T̈ (α) =
...
b 2(α)(ᾱ− α) − 2b̈2(α) (4.5)

Formulating the successive derivatives of b(α),

T̈ (α) = (ᾱ− α)
∑

i|δi<0

−2tiδ
3
i

(ai + αδi)3
− 2

∑

i|δi<0

tiδ
2
i

(ai + αδi)2
.

For each i, δi < 0:

T̈ (α) = (ᾱ− α)
∑

i|δi<0

2ti
(−ai

δi
− α)3

− 2
∑

i|δi<0

ti
(−ai

δi
− α)2

T̈ (α) =
∑

i|δi<0

2ti
(−ai

δi
− α)2

(

ᾱ− α

−ai

δi
− α

− 1

)

then T̈ (α) < 0, which shows that the function T is strictly concave. Moreover, let us consider the linear
function l(α):

l(α) = φ̇j
2(α, α

j)(ᾱ− α) = ḃ2(α
j)(ᾱ− α) + γj(α− αj) (4.6)

According to [4, Lem. 3], the function T (α) intersects l(α) at most twice. Yet :

l(αj) = T (αj)
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and, because of our choice for γj
b ,

{

b2(0) = φj
2(0, α

j)

b2(α
j) = φj

2(α
j , αj)

(4.7)

In other words, the function ∆(α, αj) = b2(α) − φj
2(α, α

j) vanishes in 0 and in αj . Then, there exists
αp ∈ [0;αj [ such that the derivative ∆̇(αp, α

j) vanishes

∆̇(αp, α
j)(ᾱ− αp) = 0

and equivalently,
T (αp) = l(αp).

αj and αp are the only intersection points between l(α) and T (α). Concavity of T (α) leads us to,

l(α) < T (α), α ∈]αp;αj [

and
l(α) > T (α), α ∈ [0;αp[∪]αj ; ᾱ[

Noticing that ᾱ− α > 0, we could apply [4, Lem. 5] and then demonstrate the first part of the property.
Let us proove that there doesn’t exist another tangent majorant of the same form, with γ less than γj

b .

Assume γ̃j
b < γj

b and let

φ̃j
2(α, α

j) = b2(α
j) + (α− αj)ḃ2(α

j) + γ̃j
b

[

(ᾱ− αj) log

(
ᾱ− αj

ᾱ− α

)

+ αj − α

]

We have φj
2(0, α

j) = b2(0) and

[

(ᾱ− αj) log

(
ᾱ− αj

ᾱ

)

+ αj

]

> 0,∀αj > 0

then for αj > 0,φ̃j
2(0, α

j) < φj
2(0, α

j) = b2(0). That is φ̃j
2 doesn’t majorize b2. If αj = 0, then γ̃j

b < γj
b would

lead to b̈2(0) > φ̈j
2(0, 0). Then, there exists ǫ > 0 such that for ǫ > α > 0, φ̃j

2(α, α
j) < b2(α). This proof

is inspired from that of [4, Th. 1]. b2(α) and the tangent majorant φj
2(α, αj), as well as T (α) and l(α) are

illustrated on figure 5(a) and (b). Variations of T (α) do not mean to be realistic.
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b2(α)

φj
2(α, αj)

αp αj

(a)

l(α)
T (α)

αp
αj

(b)

Figure 5: Construction of the tangent majorant

Tangent majorant of f(α).

Theorem 4.1. For each 0 6 (α, αj) < ᾱ, the following function hj(α, αj) is a tangent majorant at αj of

f(α) = p(α) + µb(α) = p(α) + µ
∑

i

−ti log(ai + αδi)

hj(α, αj) = f(αj) + (α− αj)ḟ(αj) +
1

2
mj(α− αj)2 + γj

[

(ᾱ− αj) log

(
ᾱ− αj

ᾱ− α

)

− α+ αj

]

with :

ᾱ = min
i|δi<0

− ai

δi

• mj = mj
p + µmj

b, γ
j = µγj

b

• mj
p assumed to be known

• mj
b described in property 4.1

• γj
b described in property 4.2

4.2. Properties of the tangent majorant

Let us give some properties of the tangent majorant φj(α, αj) of b(α) at αj .

φj(α, αj) = φj
1(α, αj) + φj

2(α, αj)

with φj
1(α, αj) described in property 4.1 and φj

2(α, αj) in property 4.2.

28



b(α)

φj(α, αj)

α
αj

Figure 6: The construction of the tangent majorant of b(α) at αj

Lemma 4.1. According to properties 4.1 and 4.2 , we have, as illustrated on figure 6, for every α > αj :

ḃ(α) − φ̇j(α, αj) 6 0

and
b(0) − φj(0, αj) = 0

Then, the assumption 3.4 holds if we use the tangent majorant described in this section and if mj
p is chosen

such that :
ṗ(α) − q̇j(α, αj) 6 0, ∀α > αj (4.8)

For instance, (4.8) holds if mj
p is the maximum of curvature of p(α) on the set [0; ᾱ[.

Lemma 4.2. Let
{
mb

j

}

06j6J
the series described in property 4.1. Then, for all j ∈ [0;J ],

mb
j 6 mb

0

Proof. Let j an index in [0;J ]. We need to prove that mb
j 6 mb

0 with :

mj
b =

{

b̈1(0) if αj = 0
2

αj2
(b1(0) − b1(α

j) + αj ḃ1(α
j)) else

Assume that mb
j > mb

0. We will prove that the following function is a tangent majorant for b1(α) at αj :

φ̃j
1(α, α

j) = b1(α
j) + (α− αj)ḃ1(α

j) +
1

2
m0

b(α− αj)2

The function b1(α) is convexe and its derivative is concave. Then b̈1(α) is maximised on [0; ᾱ[ at α = 0.
mb

0 = b̈1(0) is the maximum of curvature of b1(α) on [0; ᾱ[, so φ̃j
1(α, α

j) is a tangent majorant of b1(α) at
αj . This contradicts the following property :

mj
b = min

{

m > 0|h(l) 6 h(lj) + ḣ(lj)(l − lj) +
1

2
m(l − lj)2, ∀l > 0

}

Then mb
j 6 mb

0 for all j ∈ [0;J ].
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Lemma 4.3. For all index j ∈ [0;J ], for all αj, there exists α̃j ∈ [0;αj [ such that :

φ̇j
2(α

j , αj) =
γj

b

ᾱ− αj
6 b̈(α̃j)

Proof. If αj = 0, then by construction we have

φ̇j
2(0, 0) = b̈(0)

Then lemma 4.3 holds with α̃j = 0. Let consider the case when αj > 0. Let l(α) and T (α) be defined in
(4.3) and (4.6). We have :

l̇(αj) = l̇(0) 6 Ṫ (0)

Thus,
φ̈2(α

j , αj)(ᾱ− αj) − ḃ2(α
j) 6 b̈2(0)ᾱ− ḃ2(0)

Using φ̈2(α
j , αj) =

γj

b

ᾱ−αj
, we deduce :

γj
b 6 ḃ2(α

j) + b̈2(0)ᾱ− ḃ2(0)

ḃ2(α) is continuous on [0;αj ], then there exists α̃j ∈]0;αj [ such that :

b̈2(α̃
j) =

ḃ2(0) − ḃ2(α
j)

αj

Hence :
γj

b 6 −αj b̈2(α̃
j) + b̈2(0)ᾱ

Moreover, the derivative of b2 is convexe then b̈2(α) is increasing :

γj
b 6 −αj b̈2(α̃

j) + b̈2(α̃
j)ᾱ = (ᾱ− αj)b̈2(α̃

j)

Property 4.3. If νp
1 > 0 or if A is non degenerate i.e, Ker(A) = {0}, then the tangent majorant parameters

γj
k and mj

k described in theorem 4.1 fulfill (4.9) for all j, k. Thus, assumption 2.1 holds.

Proof. Let us show that there exists some constants 0 < ν1 6 ν2 such that for each descent direction dk ∈ R
n

:

ν1‖dk‖2
6 mj

k +
γj

k

ᾱk − αj
k

6 ν2‖dk‖2 (4.9)

or equivalently :
ν1‖dk‖2

6 ḧj(αj , αj) 6 ν2‖dk‖2

ḧj(αj , αj) = mj
p + µ(φ̈j

1(α
j , αj) + φ̈j

2(α
j , αj))

φj
1(α, α

j) + φj
1(α, α

j) is a tangent majorant of b(α) at αj then we have the following inequality :

ḧj(αj , αj) > mj
p + µb̈(αj)

According to lemmas 4.2 and 4.3 and since b1 and b2 are convexe,

ḧj(αj , αj) 6 mj
p + µ

(

b̈1(0) + b̈2(α̃
j)
)

(4.10)

6 mj
p + µ

(

b̈(0) + b̈(α̃j)
)

(4.11)
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For each iteration k and for all α ∈ [0;αj
k], xk + αdk is in V according to lemma 3.1 and according to

assumption 1.1, there exists a positive bound M such that for all i and for all x ∈ V:

[Ax]i + θi + α[Ad]i 6 M, ∀α

Moreover, according to lemma 3.6,

[Ax]i + θi + α[Ad]i > ǫ0, ∀α

Hence for α = α̃j
k :

1

M2
(Adk)T diag(t)(Adk) 6 dT

k ∇2B(xk + αdk)dk 6
1

ǫ20
(Adk)T diag(t)(Adk)

t contains strictly positive terms so T = diag(t) is a symmetric positive definite matrix. Then AT TA is
symmetric positive semidefinite and there exists 0 6 η 6 η̄ such that

η‖v‖2
6 vT AT TAv 6 η̄‖v‖2

If we assume either nup
1 > 0 or η > 0 i.e., A is non degenerate, then 2.1 holds with ν1 = νp

1 + µ η
M2 and

ν2 = νp
2 + µ 2η̄

ǫ2
0

.
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5. Conclusion

The quadratic MM line search method proposed in [9] is simple and efficient, but it is restricted to
gradient-Lipschitz criteria, which excludes the cases of barrier functions that are frequently encountered in
signal and image reconstruction. Thoses cases might be treated with the MM line search presented in this
paper, which benefits from strong convergence results and is still very easy to implement. Then we eluded
the More-Thuente algorithm often coupled with a tedious adjustement of Wolfe parameters by replacing it
with an analytical iterative method, prooved to lead convergence of the overall algorithm for any value of the
number of iterates J . We have demonstrated that the convergence theorem of [9] still applied with this new
form of tangent majorant, leading to the convergence of nonlinear conjugate gradient with conjugacy PRP,
LS and also HS for the strictly convex case. Moreover, the step size strategy leads to the convergence of others
large scale methods such as the L-BFGS and truncated Newton algorithms. Finally, under an additional
assumption on the tangent majorant, the convergence is proved for NLCG with conjugacy formulas PRP+,
FR and DY.
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