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Risk Bounds for CART Classifiers under a Margin Condition

Servane Gey∗

Abstract

Risk bounds for Classification And Regression Trees (CART) classifiers are ob-
tained under a margin condition in the binary supervised classification framework.
These risk bounds are derived conditionally on the construction of the maximal bi-
nary tree and permit to prove that the linear penalty used in the CART pruning
algorithm is valid under a margin condition. It is also shown that, conditionally on
the construction of the maximal tree, the final selection by test sample does not alter
dramatically the estimation accuracy of the Bayes classifier.
In the two-class classification framework, the risk bounds obtained by using penal-
ized model selection validate the CART algorithm which is used in many data mining
applications in Biology, Medicine or Image Coding for instance.
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1 Introduction

The Classification And Regression Trees (CART) method proposed by Breiman, Fried-
man, Olshen and Stone [9] in 1984 consists in constructing an efficient algorithm that
gives a piecewise constant estimator of a classifier or a regression function from a training
sample of observations. This algorithm is based on binary tree-structured partitions and
on a penalized criterion that selects “good” tree-structured estimators among a huge col-
lection of trees. It currently yields some easy-to-interpret and easy-to-compute estimators
which are widely used in many applications in Medicine, Meteorology, Biology, Pollution
or Image Coding (see [10], [39] for example). This kind of algorithm is often performed
when the space of explanatory variables is high-dimensional. Due to its recursive compu-
tation, CART needs few computations to provide convenient classifiers, which accelerates
the computation time drastically when the number of variables is large. It is now widely
used in the genetics framework (see [16] for example), or more generally to reduce variable
dimension (see [33] [26] for example).

The CART algorithm provides classifiers or regressors represented by binary decision trees.
An example of the latter is given in Figure 1. Suppose we have a couple of covariates
(X1,X2) belonging to [0; 1]2. The partition is defined recursively by a sequence of ques-
tions asked at each node of the tree: if the answer is positive, go to the left node, if not,
go to the right node. Hence the first question corresponds to a two-part partition of the
covariate space. Then, each part is split into two subparts, and so on. Hence each node
of the tree represents a subset of the covariates space defined by the successive questions.
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Figure 1: Decision tree example

The final partition is given by the leaves of the tree. Finally, a predictive value for the
dependent variable is associated to each leaf.
To construct such a tree from a training sample of observations, the CART algorithm
consists in constructing a large dyadic recursive tree from the observations by minimizing
some local impurity function at each step. Then, the constructed tree is pruned to obtain
a finite sequence of nested trees thanks to a penalized criterion, whose penalty term is
proportional to the number of leaves. The linearity of the penalty term is fundamental to
ensure that the whole information is kept in the obtained sequence. CART differs from
the algorithm proposed by Blanchard et al. [5] by the fact that the first large tree is con-
structed locally, and not in a global way by minimizing some loss function on the whole
sample. For further results on the construction of the large tree, we refer to Nobel [30, 31],
and Nobel and Olshen [32] about Recursive Partitioning.
In this paper, our concern is the pruning step which entails the choice of the penalty
function. Gey et al. [17] gave an answer to this question in the regression framework. Fol-
lowing this previous work, the present paper aims at validating the choice of the penalty
in the two class classification framework. In what follows, we establish the link between
the CART algorithm and a model selection procedure, where the collection of models is a
collection of random decision trees constructed on the training sample of observations. In
its pruning procedure, CART selects a small collection of trees within the whole collection
of random trees. Then, a final tree belonging to the small collection is selected either by
cross-validation or by test sample. The present paper focuses on the test sample method.
We exhibit risk bounds for the chosen tree under some conditions on the joint distribution
of the variables. These risk bounds validate the choice of the penalty used in the pruning
step, and show that the impact of the selection via test sample is conveniently controled.

The CART method takes place in the following general classification framework. Sup-
pose one observes a sample L of N independent copies (X1, Y1), . . . , (XN , YN ) of the ran-
dom variable (X,Y ), where the explanatory variable X takes values in a measurable space
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X and is associated with a label Y taking values in {0, 1}. A classifier is then any function
f mapping X into {0, 1}. Its quality is measured by its misclassification rate

P(f(X) 6= Y ),

where P denotes the joint distribution of (X,Y ). If P were known, the problem of find-
ing an optimal classifier minimizing the misclassification rate would be easily solved by
considering the Bayes classifier f∗ defined for every x ∈ X by

f∗(x) = 1lη(x)>1/2, (1)

where η(x) is the conditional expectation of Y given X = x, that is

η(x) = P [Y = 1 | X = x] . (2)

As P is unknown, the goal is to construct from the sample L = {(X1, Y1), . . . , (XN , YN )}
a classifier f̃ that is as close as possible to f∗ in the following sense: since f∗ minimizes
the misclassification rate, f̃ will be chosen in such a way that its misclassification rate is
as close as possible to the misclassification rate of f∗, i.e. in such a way that the expected
loss

l(f∗, f̃) = P(f̃(X) 6= Y )− P(f∗(X) 6= Y ) (3)

is as small as possible. Then, the quality of f̃ will be measured by its risk, i.e. the
expectation with respect to the L-sample distribution

R(f̃ , f∗) = E[l(f∗, f̃)]. (4)

Numerous works have dealt with the issue of predicting a label from an input x ∈ X via
the construction of a classifier (see for example [1], [38], [11], [34], [18]). There is a large
collection of methods coming both from computational and statistical areas and based on
learning a classifier from a learning sample, where the inputs and labels are known. For
a non exhaustive yet extensive bibliography on this subject, we refer to Boucheron et al.
[6]. We based our computation of risk bounds for the CART classifier on recent results
(see for instance [25], [35], [36], [29], [20, 21], [28], [22], [19]). They stem from Vapnik’s
results (see [37], [23] for example), which show that, without any assumption on the joint
distribution P, the penalty term used in the model selection procedure is proportional to
the square root of the number of leaves over N . Nevertheless, it has also been shown that,
under the overoptimistic zero-error assumption (that is Y = η(X) almost surely, where η
is defined by (2)), this penalty term is proportional to the number of leaves over N .
In fact, these two extreme cases can be modulated by so-called margin assumptions, which
permit to compare the loss of a classifier with its L

2 distance to the Bayes classifier f∗.
Numerous margin assumptions have been investigated by the above-cited authors; some
permit to obtain penalty terms proportional to the number of leaves over N to the power
κ, with 1/2 6 κ 6 1 (see for example [36] and [29]). Hence these margin assumptions
make a link between the “global” pessimistic case (without any assumption on P) and
the zero-error case. More recent works (see [20, 21], [2] for instance) deal with data-
driven penalties based on local Rademacher complexities and use more general margin
assumptions than those proposed in [25] and [29]. Those works also show that the margin
assumption necessary to obtain a penalty term proportional to the number of leaves over
N is one of the strongest. Let us introduce the following margin assumption:

MA(1) ∃h ∈]0; 1[ ∀f : X → {0; 1} l(f∗, f) > h E
[
(f(X)− f∗(X))2

]
,
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where l is the expected loss defined by (3). Margin assumption MA(1) is implied by the
more intuitive assumption proposed by Massart et al. in [29] (see also the slightly weaker
condition proposed in [19]):

MA(2) ∃h ∈]0; 1[ P (|2η(X) − 1| 6 h) = 0.

Assumption MA(2) means that (X,Y ) is sufficiently well distributed to ensure that there
is no region in X for which the toss-up stategy could be favored over others: h can be
viewed as a measurement of the gap between labels 0 and 1 in the sense that, if η(x) is
too close to 1/2, then choosing 0 or 1 will not make a real difference for that x.
Below, we prove that, under MA(1), the penalty used by CART in the pruning step is
convenient.
In the rest of the paper, the constant h will denote the so-called margin. Of course margin
assumption MA(1) is chosen for its relevance in the particular framework of CART and
shall be adapted, or simply ignored, depending on the problem under study.

As mentioned above, we leave aside the construction of the first large tree. Thus, all
our upper bounds for the risk of the classifier obtained by CART are considered condition-
ally on the recursive construction of the first large tree, called maximal tree. Moreover,
we focus on non-asymptotic bounds.
We also leave aside the problem of consistency of CART. CART is known to be noncon-
sistent in many cases. Some results and conditions to obtain consistency can be found in
the paper by Devroye et al. [11]. Section 3 briefly presents consistent results for CART
based on the risk bounds obtained.
We focus on two methods that use a test sample: let us split L in three independent
subsamples L1, L2 and L3, containing respectively n1, n2 and n3 observations, with
n1 + n2 + n3 = N . L1, L2 and L3 are taken randomly in L, except if the design is
fixed. In that case one takes, for example, one observation out of three to obtain each
subsample. Given these three subsamples, suppose that either a large tree is constructed
using L1 and then pruned using L2 (as done in Gelfand et al. [14]), or a large tree is
constructed and pruned using the subsample L1 ∪ L2 (as done in [9]).
Then the final step used in both cases is to choose a subtree among the sequence by making
L3 go down each tree of the sequence and selecting the tree having the minimum empirical
misclassification rate : for k = 1, 2, 3 and for f a classifier, the empirical misclassification
rate of f on Lk is given by:

γnk
(f) =

1

nk

∑

(Xi,Yi)∈Lk

1lYi 6=f(Xi). (5)

The final estimator f̃ of f∗ is defined by:

f̃ = argmin
{16i6K}

[
γn3

(f̂Ti
)
]
, (6)

where f̂Ti
is the piecewise binary estimator of f∗ defined on the leaves of the tree Ti and

K is the number of trees appearing in the sequence.

The paper is organized as follows. Section 2 gives an overview of the CART algo-
rithm, and introduces the methods and notations used in the following sections. Section
3 presents the main theoretical results for classification trees: Theorem 1 bears on the
whole algorithm, while Propositions 1, 2 concern the pruning procedure and Proposition 3
concerns the final step. Section 4 offers propects about the margin effect on classification
trees. Proofs are gathered in Section 5.
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2 The CART Procedure

Let us give a short account of the CART procedure in the classification case and recall
the results associated with it, which are fully explained in [9].
CART is based on a recursive partitioning using a training sample L̃ of the random variable
(X,Y ) ∈ X × {0, 1} (L̃ = L1 or L̃ = L1 ∪ L2), and a class S of subsets of X which tells
us how to split at each step. For instance, if X = R

d, S is usually taken as some class
of half-spaces of X , for example the half-spaces of X with frontiers parallel to the axes
(see for example [9], [12]). Below, we consider a class S with finite Vapnik-Chervonenkis
dimension, henceforth referred to as VC-dimension (for a complete overview of the VC-
dimension see [37]).
The procedure is computed in two steps, called the growing procedure and the pruning
procedure. The growing procedure permits to construct a maximal binary tree Tmax from
the data by recursive partitioning, and then the pruning procedure permits to select,
among all the subtrees of Tmax, a sequence that contains the entire statistical information.

2.1 Growing and pruning procedures

2.1.1 Growing Procedure

Since our main interest in this paper is the pruning procedure, we present an overview of
the growing procedure (for more details about the growing procedure, see [9]).
The growing procedure is based on a recursive binary partitioning of X . Let us start with
the first step: X is split into two parts by minimizing some empirical convex function on
S. A strictly convex function is used in order to avoid ties, which is systematically the case
when using the simplest empirical misclassification rate (see [9], [24]). Thus this function
is chosen in such a way that the data are split into two groups where the labels of the data
in each group are as similar as possible. It implies that the empirical misclassification rate
in each subgroup is largely reduced. Note that the sum of empirical misclassification rates
of each subgroup (called node) is always smaller than the global empirical misclassification
rate on the sample L̃ (called the root t1 of the tree). In the tree terminology, one adds to
the root t1 a left node tL and a right node tR. In what follows, we always assimilate a tree
node with its corresponding subset in S. Finally, a label is given to each node by majority
vote (which corresponds to minimizing the empirical misclassification rate in each node).

Then the same elementary step is applied recursively to the two generated subsamples
{(Xi, Yi) ; Xi ∈ tL} and {(Xi, Yi) ; Xi ∈ tR} until some convenient stopping condition
is satisfied. This generates the maximal tree Tmax; one calls terminal nodes or leaves the
final nodes of Tmax.

2.1.2 Pruning Procedure

Recall that a pruned subtree of Tmax is defined as any binary subtree of Tmax having the
same root t1 as Tmax.
Now, let us introduce some notations:

(i) Take two trees T1 and T2. Then, if T1 is a pruned subtree of T2, write T1 � T2.

(ii) For a tree T , T̃ denotes the set of its leaves and |T̃ | the cardinality of T̃ .

To prune Tmax, one proceeds as follows. First simply denote by n the number of data
used. Notice that, given a tree T and FT a set of binary piecewise functions in L

2(X )
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defined on the partition given by the leaves of T , one has

f̂T = argming∈FT
γn(g)

=
∑

t∈T̃

argmax{Yi ; Xi∈t} |{Yi ; Xi ∈ t}| 1lt,

where γn is the empirical misclassification rate defined by (5) and 1lt(x) = 1 if x falls in
the leaf t, 1lt(x) = 0 otherwise.
Then, given T � Tmax and α > 0, one defines

critα(T ) = γn(f̂T ) + α
|T̃ |
n

(7)

the penalized criterion for the so called temperature α, and Tα the subtree of Tmax satis-
fying:

(i) Tα = argminT�Tmax
critα(T ),

(ii) if critα(T ) = critα(Tα), then Tα � T .

Thus Tα is the smallest minimizing subtree for the temperature α. The existence and the
unicity of Tα are proved in [9, pp 284-290].

The aim of the pruning procedure is to raise temperature α and to record the corresponding
Tα. The algorithm is iterative: it consists in minimizing a function of the nodes at each
step, which leads to a finite decreasing sequence of subtrees pruned from Tmax

Tmax � T1 ≻ . . . ≻ TK−1 ≻ TK = {t1}

corresponding to a finite increasing sequence of temperatures

0 = α1 < α2 < . . . < αK−1 < αK ,

where t1 corresponds to the root of Tmax as defined in the growing procedure.

Remark 1. T1 is the smallest subtree for temperature 0, so it is not necessarily equal to
Tmax.

Breiman, Friedman, Olshen and Stone’s Theorem [9] justifies this algorithm:

Theorem 2.1.1 (Breiman, Friedman, Olshen, Stone).
The sequence (αk)16k6K is nondecreasing, the sequence (Tk)16k6K is nonincreasing and,
given k ∈ {1, . . . ,K}, if β ∈ [αk, αk+1[, then Tβ = Tαk

= Tk.

This theorem allows us to check that, for any α > 0, Tα belongs to the sequence (Tk)16k6K .
This algorithm significantly reduces the complexity of the choice of a subtree pruned from
Tmax, since by Theorem 2.1.1 the sequence of pruned subtrees contains the whole statisti-
cal information according to the choice of the penalty function used in (7). Consequently
it is useless to look at all the subtrees. Notice that the form of the penalized criterion is
essential to obtain Theorem 2.1.1. Hence, to fully validate this algorithm completely, we
need to show that the choice of penalty is relevant.

The final step is to choose a suitable temperature α. Instead of minimizing over α, this
issue is dealt with by using a test-sample to provide the final estimator f̃ , as mentioned
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in the Introduction, via equality (6). The results given in Sections 3.1 and 3.2 deal with
the performance of the piecewise constant estimators given by Tα for α fixed and with the
performance of f̃ respectively.

Before focusing on risk bounds, let us present the methods and notations used to obtain
these bounds.

2.2 Methods and Notations

For a given tree T , FT will denote the set of classifiers defined on the partition given by
the leaves of T , that is

FT =




∑

t∈T̃

at1lt ; (at) ∈ {0, 1}|T̃ |



 , (8)

where T̃ refers the set of the leaves of T . Thus f̂T is the empirical risk minimizer classifier
on FT . For any tree-structured estimator f̂ of f∗, f̂ is said to satisfy an oracle inequality
if there exists some nonnegative constant C, such that

RL1
(f̃ , f∗) 6 C inf

T�Tmax

RL1
(f̂T , f

∗),

where, RL1
(., f∗) = E [l(f∗, .) | L1], and E[. | L1] denotes the conditional expectation given

the subsample L1.
To estimate f∗ using the CART algorithm and to compare the performance of f̃ with
those of each f̂T , two different methods can be applied:

M1: L is split in three independent parts L1, L2 and L3 containing respectively n1,
n2 and n3 observations, with n1+n2+n3 = N . Hence Tmax is constructed using
L1, then pruned using L2 and finally the best subtree T̂ is selected among the
sequence of pruned subtrees thanks to L3, and we define f̃ = f̂T̂ .

M2: L is split in two independent parts L1 and L3 containing respectively n1 and n3

observations, with n1 +n3 = N . Hence Tmax is constructed and pruned using L1

and finally the best subtree T̂ is selected among the sequence of pruned subtrees
thanks to L3, and we define f̃ = f̂

T̂
.

Note that a penalty is needed in both methods in order to reduce the number of candidate
tree-structured models contained in Tmax. Indeed, if one does not penalize, the number
of models to be considered grows exponentially with N (see [9]). So making a selection
by using a test sample without penalizing requires visiting all the models. In that case,
looking for the best model in the collection of all subtrees pruned from the maximal one
becomes explosive. Hence penalizing permits to reduce significantly the number of trees
taken into account; it provides a convenient risk for f̃ .

3 Risk Bounds

This section is devoted to the results obtained on the performance of the CART classifiers
for both methods M1 and M2. We shall first present a general theorem, then give more
precise results on the last two parts of the algorithm, which are the pruning procedure
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and the final selection by test sample.

Assume that the following margin assumption is fulfilled: there exists some absolute con-
stant h ∈]0; 1[ such that, for every classifier f ,

MA(1a) l(f∗, f) > h E
[
(f(X)− f∗(X))2

]
if f̃ is constructed via M1

MA(1b) ln1
(f∗, f) > h

1

n1

∑

X
n1
1

(f(Xi)− f∗(Xi))
2 if f̃ is constructed via M2

where l is the expected loss (3) defined in Section 1, Xn1

1 = {Xi ; (Xi, Yi) ∈ L1} and
ln1

(f∗, f) is the empirical expected loss conditionally on the grid Xn1

1 defined by

ln1
(f∗, f) = EY


 1

n1

∑

X
n1
1

1lf(Xi)6=Yi
− 1lf∗(Xi)6=Yi


 , (9)

with EY the expectation with respect to the marginal distribution of Y .

Theorem 1. Given N independent pairs of variables ((Xi, Yi))16i6N of common distri-
bution P, with (Xi, Yi) ∈ X × {0, 1}, let us consider the estimator f̃ (6) of the Bayes
classifier f∗ (1) obtained via the CART procedure as defined in section 2. Then we have
the following results.

(i) if f̃ is constructed via M1:
Let l(f∗, f̃) be the expected loss (3) of f̃ and h be the margin given by MA(1a). Then
there exist some absolute constants C, C1 and C2 such that

E

[
l(f∗, f̃) | L1

]
6 C inf

T�Tmax

{
inf

f∈FT

E [l(f∗, f) | L1] + h−1 |T̃ |
n2

}
+ h−1C1

n2
(10)

+h−1C2
log (n1)

n3
. (11)

(ii) if f̃ is constructed via M2:
Let PL1

be the product distribution on L1, let ln1
(f∗, f̃) be the empirical expected loss of f̃

conditionally on the grid Xn1

1 (9), and h be the margin given by MA(1b). Let V be the
Vapnik-Chervonenkis dimension of the set of splits used to construct Tmax and suppose
that n1 > V . Let K be the number of pruned subtrees of the sequence provided by the
pruning procedure. Then there exist some absolute constants C ′, C ′

1, C
′′
1 and C2 such that,

for every δ ∈]0; 1[, on a set Ωδ verifying PL1
(Ωδ) ≥ 1− δ,

E

[
ln1

(f∗, f̃) | L1

]
6 C ′ inf

T�Tmax

{
inf

f∈FT

ln1
(f∗, f) + h−1 log

(n1

V

) |T̃ |
n1

}
+ h−1Cδ

n1
(12)

+h−1C2
logK

n3
, (13)

with Cδ = C ′
1 + C ′′

1 log (1/δ).

Note that the constants appearing in the upper bounds for the risks are not sharp. We do
not investigate the sharpness of the constants here.

Let us comment the results given in Theorem 1:
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1) Both methods M1 and M2 are considered for the following reasons:

• Since all the risks are considered conditionally on the growing procedure, the M1
method permits to make a deterministic penalized model selection and then to
obtain sharper upper bounds than the M2 method.

• On the other hand, the M2 method permits to keep the whole information given
by L1. Indeed, in that case, the sequence of pruned subtrees is not obtained via
some plug-in method using a first split of the sample to provide the collection of
tree-structured models. This method is the one proposed by Breiman et al. and it
is more commonly applied in practice than the former. We focus on this method
to ensure that it provides classifiers that have good performance in terms of risk.

2) For both the M1 and M2 methods, the inequality of Theorem 1 can be separated into
two parts:

• (10) and (12) correspond to the pruning procedure. They show that, up to some
absolute constant and the final selection, the conditional risk of the final classifier
is approximately of the same order as the infimum of the penalized risks of the
collection of subtrees of Tmax. The term inside the infimum is of the same form
as the penalized criterion (7) used in the pruning procedure. This shows that,
for a sufficiently large temperature α, this criterion permits to select convenient
subtrees in term of conditional risk. Let us emphasize that the penalty term
is directly proportional to the number of leaves in the M1 method, whereas a
multiplicative logarithmic term appears in the M2 method. This term is due to
the randomness of the models considered, since the samples used to construct and
prune Tmax are no longer independent.

• (11) and (13) correspond to the final selection of f̃ among the collection of pruned
tree structured classifers using L3. As K 6 n1, this selection adds a term pro-
portional to log n1/n3 for both methods, which shows that not much is lost when
a test sample is used provided that n3 is sufficiently large with respect to log n1.
Nevertheless, since we have no idea of the size of the constant C2, it is difficult to
deduce a general way of choosing L3 from this upper bound.

3) Let us comment the role of the Vapnik-Chervonenkis dimension of the set of splits S
used to construct Tmax. Let us take the more often used case in CART, where S is
the set of all half-spaces of X = R

d. In this particular case, we have V = d+ 1. So, if
X is low dimensional, the log n1 term has to be taken into account in the risk bound.
Nevertheless, if CART provides models such that

- the maximal dimension of the models is DN = o (N/ logN),

- the approximation properties of the models are convenient enough to ensure that
the bias tends to zero with increasing sample size N ,

then we have a result of consistency for f̃ if n3 is conveniently chosen with respect to
log n1.

4) Let us emphasize the role of the margin in the quality of the selected classifier. Theo-
rem 1 shows that the higher the margin, the smaller the risk, which is intuitive since
the more separable the labels are, the easier the classification shall be. This confirms
the fact that CART does a convenient job if margin assumption MA(1a) or MA(1b)
is fulfilled.
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Furthermore, let us comment briefly on the size of the margin to obtain oracle-type

inequalities in Theorem 1. Massart et al. [29] show that, if h 6

√
|T̃ |/n for one model

FT (where n = n2 for M1 and n = n1 for M2), then the upper bound for the risk on

this model (and then the penalty term in our framework) is of order

√
|T̃ |/n. They

obtain this result via minimax bounds for the risk that make a connection between the
zero error case (corresponding to h = 1/2), with a minimax risk of order |T̃ |/n, and
the “global” pessimistic case (corresponding to h = 0), with a minimax risk of order√

|T̃ |/n.

These results suggest that Theorem 1 gives oracle-type inequalities only if h >

√
|T̃ |/n

for every tree T pruned from Tmax. Let us recall that the pruning procedure and con-
sequently the results of Theorem 2.1.1 heavily depend on the linearity of the penalized
criterion (7). It is not clear whether these results remain valid when using a non-linear
penalty function, so we need to keep a penalty term of order |T̃ |/n to ensure that the
sequence of pruned subtrees contains the whole statistical information. Hence CART

will underpenalize trees for which h 6

√
|T̃ |/n, since in that case the penalty term

should be of order

√
|T̃ |/n > |T̃ |/n. Due to the recursiveness of the pruning algorithm,

if the above mentioned case occurs, then CART may select classifiers having an exces-
sive number of leaves.
Nevertheless, the condition on the size of the margin can be forced via the growing

procedure. Indeed, if the condition h >

√
|T̃max|/n is fulfilled, then the penalty is opti-

mal in terms of risk. This condition can be controled during the growing procedure by
forcing the maximal tree’s construction to stop earlier for example. This is obviously
difficult to do in practice since it heavily depends on the data and on the size of the
learning sample, and is worth being investigated more deeply (on going work).

The two following subsections give more precise results on the pruning algorithm for both
the M1 and M2 methods, and particularly on the constants appearing in the penalty
function. Subsection 3.2 validates the discrete selection by test-sample. Note that the
two results obtained for the validation of the pruning algorithm also hold in the case of
deterministic Xi’s.

3.1 Validation of the Pruning Procedure

In this section, we focus more particularly on the pruning algorithm and give trajectorial
risk bounds for the classifier associated with Tα, the smallest minimizing subtree for the
temperature α defined in subsection 3.1. We show that, for a convenient constant α, f̂Tα

is not far from f∗ in terms of its risk conditionally on L1. Let us emphasize that the
subsample L3 plays no role in the two following results.

3.1.1 f̃ constructed via M1

Here we consider the second subsample L2 of n2 observations. We assume that Tmax is
constructed on the first set of observations L1 and then pruned with the second set L2

independent of L1. Since the set of pruned subtrees is deterministic according to L2, we
make a selection among a deterministic collection of models.
For any subtree T of Tmax, let FT be the model defined on the leaves of T given by (8).
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f∗ will then be estimated on FT , whose dimension is |T̃ |.
Then we choose the estimators as follows: let γn2

be the empirical contrast as defined by
(5).

• For T � Tmax, f̂T = argminf∈FT
[γn2

(f)],

• For α > 0, Tα is the smallest minimizing subtree for the temperature α as defined
in subsection 2.1.2 and f̂Tα

= argminf∈FTα
[γn2

(f)].

Let us now consider the behaviour of f̂Tα
.

Proposition 1. Let PL2
be the product distribution on L2 and let h be the margin given

by MA(1a). Let ξ > 0.
There exists a large enough positive constant α0 > 2 + log 2 such that, if α > α0, then
there exist some nonnegative constants Σα and C such that

l(f∗, f̂Tα
) 6 C1(α) inf

T�Tmax

{
inf

f∈FT

l(f∗, f) + h−1 |T̃ |
n2

}
+ C h−1 1 + ξ

n2

on a set Ωξ such that PL2
(Ωξ) > 1−Σαe

−ξ, where l is defined by (3), C1(α) > α0 and Σα

are increasing with α.

We obtain a trajectorial non-asymptotic risk bound on a large probabilty set, leading to
the conclusions given for Theorem 1. Nevertheless, taking an excessive temperature α will
overpenalize and select a classifier having high risk E[l(f∗, f̂Tα

) | L1]. Furthermore, the
fact that C1(α) and Σα are increasing with α suggests that both sides of the inequality
grow with α. The choice of the convenient temperature is then critical to make a good
compromise between the size of E[l(f∗, f̂Tα

) | L1] and a large enough penalty term.
In practice, since this temperature depends on the unknown margin h and some unknown
constants, the use of a test sample as described in Section 1 is a convenient choice, as
shown by Proposition 3.

3.1.2 f̃ constructed via M2

In this subsection we define the different contrasts, expected loss and estimators exactly
in the same way as in subsection 3.1.1, although l is replaced by the empirical expected
loss on Xn1

1 = {Xi ; (Xi, Yi) ∈ L1} defined by (9),

ln1
(f∗, f) = EY [γn1

(f)− γn1
(f∗)] ,

since the models and the evaluations of the empirical errors γn1
(f̂T ) are computed on the

same grid Xn1

1 . In this case, we obtain nearly the same performance for f̂Tα
despite the

fact that the constant appearing in the penalty term can now depend on n1:

Proposition 2. Let PL1
be the product distribution on L1, ln1

(9) be the empirical expected
loss computed on {Xi ; (Xi, Yi) ∈ L1}, and let h be the margin given by MA(1b). Let
ξ > 0 and

αn1,V = 2 + V/2
(
1 + log

n1

V

)
.

There exists a large enough positive constant α0 such that, if α > α0, then there exist some
nonnegative constants Σα and C ′ such that

ln1
(f∗, f̂Tα

) 6 C ′
1(α) inf

T�Tmax

{
inf

f∈FT

ln1
(f∗, f) + h−1αn1,V

|T̃ |
n1

}
+ C ′ h−1 1 + ξ

n1
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on a set Ωξ such that PL1
(Ωξ) > 1 − 2Σαe

−ξ, where C ′
1(α) > α0 and Σα are increasing

with α.

We obtain a similar trajectorial non-asymptotic risk bound on a large probabilty set. The
same conclusions as those derived from the M1 case hold in this case. Let us just mention
that the penalty term takes into account the complexity of the collection of trees having
fixed number of leaves which can be constructed on {Xi ; (Xi, Yi) ∈ L1}. Since this com-
plexity is controlled via the VC-dimension V , V necessarily appears in the penalty term.
It differs from Proposition 1 in the sense that the models we consider are random, so this
complexity has to be taken into account to obtain an uniform bound.

Example: Let us consider the case where S is the set of all half-spaces of X = R
d (which

is the most common case in the CART algorithm). In this case, V = d+ 1, consequently,
if n1 > d+ 1, we obtain a penalty proportional to

(
4 + (d+ 1) (1 + log [n1/(d+ 1)])

2h

) |T̃ |
n1

.

So, if CART provides some minimax estimator on a class of functions, the log n1 term
always appears for f∗ in this class when working in a linear space of low dimension.

As for the M1 case, since the temperature α depends on the unknown margin h and
some unknown constants, the use of a test sample to select the final classifier among the
sequence of pruned subtrees is a convenient choice, as shown by Proposition 3.

3.2 Final Selection

We focus here on the final step of the CART procedure: the selection of the classifier f̃
among the collection of pruned subtrees given by the pruning procedure by using a test
sample L3. Given the sequence (Tk)16k6K pruned from Tmax as defined in subsection 3.1,
let us recall that f̃ is defined by

f̃ = argmin
{f̂T

k
;16k6K}

[
γn3

(f̂Tk
)
]
.

The performance of this classifier can be compared to the performance of the collection of
classifiers (ŝTk

)16k6K by the following:

Proposition 3.

(i) if f̃ is constructed via M1, let λ = l and Rn3
(f∗, f̃) = E

[
λ(f∗, f̃) | L1, L2

]
.

(ii) if f̃ is constructed via M2, let λ = ln1
and Rn3

(f∗, f̃) = E

[
λ(f∗, f̃) | L1

]
, where ln1

in defined by (9).
For both cases, there exist three absolute constants C ′′ > 1, C ′

1 > 3/2 and C ′
2 > 3/2 such

that

Rn3
(f∗, f̃) 6 C ′′ inf

16k6K
λ(f∗, f̂Tk

) +C ′
1 h−1 logK

n3
+ h−1C

′
2

n3
,

where K is the number of pruned subtrees extracted during the pruning procedure.
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4 Concluding Remarks

We have proven that CART provides convenient classifiers in terms of conditional risk
under a margin condition. Nevertheless, as for the regression case, the properties of the
growing procedure need to be analyzed to obtain full unconditional upper bounds.
The remarks made after Theorem 1 on the size of the margin h give some prospects for
the application of CART in practice. These prospects may be for example

• using the slope heuristic (see for example [4] [3]) to select a classifier among a col-
lection,

• searching for a robust manner to determine if the margin assumption is fulfilled,
permitting to use the blind selection by test sample.

Some track to estimate the margin h if assumption MA(1a) or MA(1b) is fulfilled could
be to use mixing procedures as boosting (see [8] [13] for example). Hence this estimate
could be used in the penalized criterion to help find the convenient temperature. It could
also give an idea of the difficulty to classify the considered data and henceforth to help
choose the most adapted classification method.

5 Proofs

Let us start with a preliminary result.

5.1 Local Bound for Tree-Structured Classifiers

Let (X,Y ) ∈ X × {0; 1} be a pair of random variables and {(X1, Y1), . . . , (Xn, Yn)} be n
independent copies of (X,Y ). Let ‖.‖n denote the empirical norm on Xn

1 = (Xi)16i6n.
Then given two classifiers f and g, let us define

d2n(f, g) =
1

n

n∑

i=1

(f(Xi)− g(Xi))
2 := ‖f − g‖2n.

Let M∗
n be the set of all possible tree-structured partitions that can be constructed on

the grid Xn
1 , corresponding to trees having all possible splits in S and all possible forms

without taking account of the response variable Y . So M∗
n only depends on the grid Xn

1

and is independent of the variables (Y1, . . . , Yn). Hence, for a tree T ∈ M∗
n, define

FT =




∑

t∈T̃

at1lt ; (at) ∈ {0, 1}|T̃ |



 ,

where T̃ refers the set of the leaves of T . Then, for any f ∈ FT and any σ > 0, define

BT (f, σ) = {g ∈ FT ; dn(f, g) 6 σ}

For each classifier f : X → {0, 1}, let us define the empirical contrast of f recentered
conditionally on Xn

1

γ̄n(f) = γn(f)− E[γn(f) | Xn
1 ], (14)

where γn is defined for any given classifier f by

γn(f) =
1

n

n∑

i=1

1lf(Xi)6=Yi
.
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Remark 2. If γn is evaluated on a sample (X ′
i) independent of Xn

1 , it is easy to check
that the bounds we obtain in what follows are still valid by defining the distance with
respect to the marginal distribution of X instead of the empirical distribution.

We have the following result:

Lemma 1. For any f ∈ FT and any σ > 0

E

[
sup

g∈BT (f,σ)
|γ̄n(g)− γ̄n(f)| | Xn

1

]
6 2 σ

√
|T̃ |
n

.

Proof. First of all, let us mention that, since the different variables we consider take values
in {0; 1}, we have for all x ∈ X and all y ∈ {0, 1}

1lg(x)6=y − 1lf(x)6=y = (g(x) − f(x))(1− 21ly=1),

yielding

γ̄n(g)−γ̄n(f) =
1

n

n∑

i=1

(g(Xi)− f(Xi)) (1−21lYi=1)−E

[
1

n

n∑

i=1

(g(Xi)− f(Xi)) (1− 21lYi=1) | Xn
1

]
.

Let us now consider a Rademacher sequence of random signs (εi)16i6n independent of
(Xi, Yi)16i6n. Then one has by a symmetrization argument

E

[
sup

g∈BT (f,σ)
|γ̄n(g) − γ̄n(f)| | Xn

1

]
6 E

[
sup

g∈BT (f,σ)

2

n

∣∣∣∣∣

n∑

i=1

εi(g(Xi)− f(Xi))(1 − 21lYi=1)

∣∣∣∣∣ | Xn
1

]
.

Since g and f belong to FT , we have that

g − f =
∑

t∈T̃

(at − bt)ϕt,

where each (at, bt) takes values in [0, 1]2 and (ϕt)t∈T̃ is an orthonormal basis of FT adapted

to T̃ (i.e. some normalized characteristic functions). Then by applying the Cauchy-
Schwarz inequality, since g ∈ BT (f, σ), ‖g − f‖2n = d2n(f, g) =

∑
t∈T̃ (at − bt)

2 6 σ2, we
obtain that

∣∣∣∣∣

n∑

i=1

εi(g(Xi)− f(Xi))(1− 21lYi=1)

∣∣∣∣∣ 6

√∑

t∈T̃

(at − bt)2

√√√√√
∑

t∈T̃

(
n∑

i=1

εi(1− 21lYi=1)ϕt(Xi)

)2

6 σ

√√√√√
∑

t∈T̃

(
n∑

i=1

εi(1− 21lYi=1)ϕt(Xi)

)2

.

Finally, since (εi)16i6n and (1 − 21lYi=1)16i6n take their values in {−1; 1}, (εi)16i6n are
centered and independent of (Xi, Yi)16i6n, and since for each t ∈ T̃ ‖ϕt‖2n = 1, Jensen’s
inequality implies

E

[
sup

g∈BT (f,σ)
|γ̄n(g) − γ̄n(f)| | Xn

1

]
6 2

σ

n

√√√√
∑

t∈T̃

n∑

i=1

ϕ2
t (Xi) 6 2σ

√
|T̃ |
n

.

And the proof is achieved.
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5.2 Proof of Proposition 1

To prove Proposition 1, we adapt results of Massart [27, Theorem 4.2], and Massart and
Nédélec [29] (see also Massart et.al. [28]). Similar methods are used in [33].

Let n = n2. Let us give a sample L2 = {(X1, Y1), . . . , (Xn, Yn)} of the random variable
(X,Y ) ∈ X × [0, 1], where X is a measurable space and let f∗ ∈ F ⊂ {f : X 7→ [0, 1] ; f ∈
L
2(X )} be the unknown function to be recovered. Assume (Fm)m∈Mn

is a countable
collection of countable models included in F . Let us give a penalty function penn :
Mn −→ R+, and γ : F × (X × [0, 1]) −→ R+ a contrast function, i.e. γ such that
f 7→ E [γ(f, (X,Y ))] is convex and minimum at point f∗. Hence define for all f ∈ F the
expected loss l(f∗, f) = E [γ(f, (X,Y ))− γ(f∗, (X,Y ))].
Finally let

γn =
1

n

n∑

i=1

γ(., (Xi, Yi)) (15)

be the empirical contrast associated with γ. Let m̂ be defined as

m̂ = argmin
m∈Mn

[
γn(f̂m) + penn(m)

]

where f̂m = argming∈Fm
γn(g) is the minimum empirical contrast estimator of f∗ on Fm.

Then the final estimator of f∗ is
f̃ = f̂m̂. (16)

One makes the following assumptions:
H1: γ is bounded by 1, which is not a restriction since all the functions we consider take
values in [0, 1]).
H2: Assume there exist c > (2

√
2)−1/2 and some (pseudo-)distance d such that, for every

pair (f, g) ∈ F2, one has

Var [γ(g, (X,Y ))− γ(f, (X,Y ))] 6 d2(g, f),

and particularly for all f ∈ F

d2(f∗, f) 6 c2l(f∗, f).

H3: For any positive σ and for any f ∈ Fm, let us define

Bm(f, σ) = {g ∈ Fm ; d(f, g) 6 σ}

where d is given by assumption H2. Let γ̄n = γn(.) − E[γn(.)]. We now assume that for
any m ∈ Mn, there exists some continuous function φm mapping R+ onto R+ such that
φm(0) = 0, φm(x)/x is non-increasing and

E

[
sup

g∈Bm(f,σ)
|γ̄n(g) − γ̄n(f)|

]
6 φm(σ)

for every positive σ such that φm(σ) 6 σ2. Let εm be the unique solution of the equation
φm(cx) = x2 , x > 0.

One gets the following result:
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Theorem 2. Let {(X1, Y1), . . . , (Xn, Yn)} be a sample of independent realizations of the
random pair (X,Y ) ∈ X × [0, 1]. Let (Fm)m∈Mn

be a countable collection of models
included in some countable family F ⊂ {f : X 7→ [0, 1] ; f ∈ L

2(X )}. Consider some
penalty function penn : Mn −→ R+ and the corresponding penalized estimator f̃ (16) of
the target function f∗. Take a family of weights (xm)m∈Mn

such that

Σ =
∑

m∈Mn

e−xm < +∞. (17)

Assume that assumptions H1, H2 and H3 hold.
Let ξ > 0. Hence, given some absolute constant C > 1, there exist some positive constants
K1 and K2 such that, if for all m ∈ Mn

penn(m) > K1ε
2
m +K2c

2xm
n

,

then, with probability larger than 1−Σe−ξ,

l(f∗, f̃) 6 C inf
m∈Mn

[l(f∗,Fm) + penn(m)] + C ′ c2
1 + ξ

n
,

where l(f∗,Fm) = inffm∈Fm
l(f∗, fm) and the constant C ′ only depends on C.

Proof. The proof is inspired of Massart [27] and Massart et.al. [28]. We give only sketches
of proofs since those are now routine results in the model selection area (see [28] for a
fuller overview). The interested reader may find the detailed proofs in the first version of
the paper [15].

Let m ∈ Mn and fm ∈ Fm. The definition of the expected loss and the fact that

γn(f̃) + penn(m̂) 6 γn(fm) + penn(m)

lead to the following inequality:

l(f∗, f̃) 6 l(f∗, fm) + γ̄n(fm)− γ̄n(f̃) + penn(m)− penn(m̂) (18)

where γ̄n is defined by (14). The general principle is now to concentrate γ̄n(fm) − γ̄n(f̃)
around its expectation in order to offset the term penn(m̂). Since m̂ ∈ Mn, we proceed
by bounding γ̄n(fm)− γ̄n(f̂m′) uniformly in m′ ∈ Mn. For m

′ ∈ Mn and f ∈ Fm′ , let us
define

wm′(f) =
[√

l(f∗, fm) +
√

l(f∗, f)
]2

+ y2m′ ,

with ym′ > εm′ , where εm′ is defined by assumption H3. Hence let us define

Vm′ = sup
f∈F

m′

γ̄n(fm)− γ̄n(f)

wm′(f)
.

Then (18) becomes

l(f∗, f̃) 6 l(f∗, fm) + Vm̂wm̂(f̃) + penn(m)− penn(m̂)

Since Vm′ can be written as

Vm′ = sup
f∈F

m′

νn

(
γ(fm, .)− γ(f, .)

wm′(f)

)
,
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where νn is the recentered empirical measure, we bound Vm′ uniformly in m′ ∈ Mn by
using Rio’s version of Talagrand’s inequality recalled here: if F is a countable family of
measurable functions such that, for some positive constants v and b, one has for all f ∈ F
P (f2) 6 v and ‖f‖∞ 6 b, then for every positive y, the following inequality holds for
Z = supf∈F (Pn − P )(f)

P

[
Z − E(Z) >

√
2
(v + 4bE(Z))y

n
+

by

n

]
6 e−y.

To proceed, we need to check the two bounding assumptions. First, since by assumption
H1 the contrast γ is bounded by 1, we have that, for each f ∈ Fm′ ,

∣∣∣∣
γ(f, .)− γ(fm, .)

wm′(f)

∣∣∣∣ 6
1

y2m′

. (19)

Second, by using assumption H2, we have that, for each f ∈ Fm′ ,

Var

[
γ(f, (X,Y ))− γ(fm, (X,Y ))

wm′(f)

]
6

c2

4y2m′

. (20)

Then, by Rio’s inequality, we have for every x > 0

P

[
Vm′ > E(Vm′) +

√
c2 + 16E(Vm′)

2ny2m′

x+
x

ny2m′

]
6 e−x.

Let us take x = xm′ + ξ, ξ > 0, where xm′ is given by (17). Then by summing up over
m′ ∈ Mn, we obtain that for all m′ ∈ Mn

Vm′ 6 E(Vm′) +

√
c2 + 16E(Vm′)

2ny2m′

(xm′ + ξ) +
xm′ + ξ

ny2m′

on a set Ωξ such that P (Ωξ) > 1−Σe−ξ. We now need to bound E(Vm′) in order to obtain
an upper bound for Vm′ on the set of large probability Ωξ. By using techniques similar to
Massart et al.’s [29], we obtain the following inequality via the monoticity of x 7→ φ(x)/x
and the assumption c > (2

√
2)−1/2: for all m′ ∈ Mn,

E[Vm′ ] 6
8
√
10εm′ + c(2n)−1/2

ym′

.

Hence, taking

ym′ = K

[
8
√
10εm′ + c(2n)−1/2 + c

√
xm′ + ξ

n

]

with K > 0, we obtain that, on Ωξ, for all m
′ ∈ Mn,

Vm′ 6
1

K

[
1 +

√
1

2

(
1 +

8

K
√
2

)
+

1

2K
√
2

]
.

Finally, by using repeatedly the elementary inequality (α+ β)2 6 2α2 + 2β2 to bound y2m̂
and wm̂(f̃), we derive that the following inequality holds on Ωξ for any m ∈ Mn and any
fm ∈ Fm:

(
1− 2K ′

)
l(f∗, f̃) 6

(
1 + 2K ′

)
l(f∗, fm) + penn(m) + 2K ′K2 ξ

n
+

2c2K ′K2

n

+5× 29K ′K2ε2m̂ + 2c2K ′K2xm̂
n

− penn(m̂),
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with

K ′ =
C − 1

2(C + 1)
, K1 = 5× 29K ′K2, K2 = 2K ′K2,

achieving the proof.

Application to classification trees:

Let us now suppose that (X,Y ) takes values in X × {0, 1}. The contrast is taken as
γ(f, (X,Y )) = 1lf(X)6=Y , the expected loss is defined by (3), and the collection of models
is (FT )T�Tmax

. The models and the collection are countable since there is a finite number
of functions in each FT , and a finite number of nodes in Tmax. Since we are working
conditionally on L1, we can apply Theorem 2 directly with L2. To check assumption H2,
let us first note that, since all the variables we consider take values in {0, 1}, we have the
following for all classifiers f and g

(γ(f, (X,Y ))− γ(g, (X,Y )))2 =
(
1lY 6=f(X) − 1lY 6=g(X)

)2
(21)

= (f(X)− g(X))2. (22)

Then if we take d2(f, g) = E
(
(f(X)− g(X))2

)
= ‖f − g‖2, where ‖.‖ is the L

2-norm
with respect to the marginal distribution of X, we have that, for all classifiers f and g,
Var [γ(g, (X,Y ))− γ(f, (X,Y ))] 6 d2(f, g). Moreover, with the margin conditionMA(1a),
we have that

l(f∗, f) > h‖f − f∗‖2, (23)

hence assumption H2 is checked with d2(f, g) = ‖f − g‖2 and c2 = 1/h, where h is the
margin. By definition of h, we have h 6 1 6 2

√
2, and then c > (2

√
2)−1/2.

Then assumption H3 is checked by Lemma 1 with φT (x) = 2x

√
|T̃ |/n. Hence Theorem 2

is verified with εT =
√

1/h

√
|T̃ |/n.

Finally, to choose a convenient family of weights (x
T
)T�Tmax

, taking x
T

= θ|T̃ |, with

θ > 2 log 2 independent of |T̃ | as done in [17], we immediately obtain Σα = Σθ < +∞.
Then we get proposition 1 by Theorem 2.

5.3 Proof of Proposition 2

In what follows, we denote by L1 the sample {(X1, Y1), . . . , (Xn, Yn)} of size n of the
random variable (X,Y ), and by Xn

1 the sample {X1, . . . ,Xn}.
First we generalize Theorem 2 to random models, and then we apply it to CART. Let
(X,Y ), F f∗ ∈ F , L1 = {(X1, Y1), . . . , (Xn, Yn)}, γ and γn be defined as in subsection
5.2. Finally let us rewrite the expected loss of f ∈ F conditionally on Xn

1 as

ln(f
∗, f) = EY

[
1

n

n∑

i=1

(γ(f, (Xi, Yi))− γ(f∗, (Xi, Yi)))

]
,

where EY is the expectation with respect to the marginal distribution of Y .
Let us consider a collection of at most countable models (Fm)m∈M∗

n
and a subcollection

(Fm)m∈Mn
, where Mn ⊂ M∗

n may depend on {(X1, Y1), . . . , (Xn, Yn)}. Finally let us
consider a penalty function penn : Mn 7→ R+ and let us define the estimator f̃ of f∗ as
follows: let

m̂ = argminm∈Mn
[γn(f̂m) + penn(m)],
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where f̂m = argminf∈Fm
γn(f) is the minimum contrast estimator of f∗ on Fm. Then

f̃ = f̂m̂.

Let us make the following assumptions.
H1: γ is bounded by 1.
H2: Assume there exist c > (2

√
2)−1/2 and some (pseudo-)distance dn (that may depend

on Xn
1 ) such that, for every pair (g, f) ∈ F2, one has

Var [γ(g, (X,Y ))− γ(f, (X,Y )) | Xn
1 ] 6 d2n(g, f),

and particularly for all f ∈ F

d2n(f
∗, f) 6 c2ln(f

∗, f).

H3: For any positive σ and for any f ∈ Fm, let us define

Bm(f, σ) = {g ∈ Fm ; dn(f, g) 6 σ}

where dn is given by assumption H2. Let γ̄n be defined as (14). We now assume that for
any m ∈ Mn, there exists some continuous function φm mapping R+ onto R+ such that
φm(0) = 0, φm(x)/x is non-increasing and

E

[
sup

g∈Bm(f,σ)
|γ̄n(g) − γ̄n(f)| | Xn

1

]
6 φm(σ)

for every positive σ such that φm(σ) 6 σ2. Let εm be the unique solution of the equation
φm(cx) = x2 , x > 0.

One gets the following result.

Theorem 3. Let L1 = {(X1, Y1), . . . , (Xn, Yn)} be a sample of independent realizations of
the random pair (X,Y ) ∈ X × [0, 1]. Let (Fm)m∈M∗

n

be a countable collection of models

included in some countable family F ⊂ {f : X 7→ [0, 1] ; f ∈ L
2(X )} (which may depend

on Xn
1 ). Consider some subcollection of models (Fm)m∈Mn

, where Mn ⊂ M∗
n may depend

on L1, and some penalty function penn : Mn −→ R+. Let f̃ (16) be the corresponding
penalized estimator of the target function f∗. Take a family of weights (xm)m∈M∗

n
such

that ∑

m∈M∗

n

e−xm 6 Σ < +∞, (24)

with Σ deterministic. Assume that assumptions H1, H2 and H3 hold.
Let ξ > 0. Hence, given some absolute constant C > 1, there exist some positive constants
K1 and K2 such that, if for all m ∈ Mn

penn(m) > K1ε
2
m +K2c

2xm
n

,

then, with probability larger than 1− 2Σe−ξ,

ln(f
∗, f̃) 6 C inf

m∈Mn

[ln(f
∗,Fm) + penn(m)] +C ′ c2

1 + ξ

n
,

where ln(f
∗,Fm) = inffm∈Fm

ln(f
∗, fm) and the constant C ′ only depends on C.
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Proof. The proof is highly similar to that of Theorem 2. The main differences are in the
conditioning and the fact that the collection of models (Fm)m∈Mn

is random. To remove
these issues, all the bounds are computed uniformly on M∗

n so that the probability of the
set we finally obtain is unconditional to Xn

1 since Σ is deterministic. The inequalities are
obtained by the same techniques as the ones used for the proof of the results on model
selection on random models done by Gey and Nédélec in [17].

Let m ∈ Mn and fm ∈ Fm. Starting from (18), we have

ln(f
∗, f̃) 6 ln(f

∗, fm) + wm̂,m(f̃)Vm̂,m + penn(m)− penn(m̂), (25)

where for all m′ and M in M∗
n, for all f ∈ Fm′ and fM ∈ FM,

wm′,M (f) =
[√

l(f∗, f) +
√

ln(f∗, fM )
]2

+ (ym′ + yM )2,

Vm′,M = sup
f∈F

m′

[
γ̄n(fM )− γ̄n(f)

wm′,M(f)

]
,

with ym′ > εm′ and yM > εM . The general principle is now exactly the same as in the
proof of Theorem 2 despite the fact that we have to bound Vm′,M not only uniformly in
m′ ∈ M∗

n, but also in M ∈ M∗
n in order to have an in-probabilty inequality that does not

depend on Xn
1 .

Assumption H2 permits to give exactly the same upper bounds (except that they depend
onXn

1 and that ym′ is replaced by ym′+yM) as (19) and (20). By using the same techniques
as in the proof of Theorem 2 and the same considerations as in [17], we obtain that

Vm′,M 6
1

ym′ + yM

(
8
√
10εm′ +

c(2n)−1/2

2
+ 8

√
10εM +

c(2n)−1/2

2

)

+

√
c2 + 16(8

√
10(εm′ + εM ) + c(2n)−1/2)(ym′ + yM )−1

2n(y2m′ + y2M )
(xm′ + xM + ξ)

+
1

y2m′ + y2M

(
xm′ + ξ/2

n
+

xM + ξ/2

n

)

on a set Ωξ such that P (Ωξ | Xn
1 ) > 1 − 2Σe−ξ. Then, since Σ is deterministic, we get

that P (Ωξ) > 1− 2Σe−ξ.

Hence, if we take for all m′ ∈ M∗
n

ym′ = 2K

[
8
√
10εm′ +

c(2n)−1/2

2
+ c

√
xm′ + ξ/2

n

]
,

we obtain that, on Ωξ, for all m
′ and M in M∗

n,

Vm′,M 6
1

K

[
1 +

√
1

2

(
1 +

8

K
√
2

)
+

1

2K
√
2

]
.

Finally the proof is achieved in the same way as the proof of Theorem 2.

Application to classification trees:
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Let us consider the classification framework and the collection of models (FT )T�Tmax

obtained via the growing procedure in CART (see subsection 3.1) as recalled in subsection
5.2. Since the growing and the pruning procedures are made on the same sample L1,
the conditions of Theorem 3 hold. Since n1 is fixed, let us consider M∗

n as the set of all
possible tree-structured partitions that can be constructed on the grid Xn

1 , corresponding
to trees having all possible splits in S and all possible forms without taking account of
the response variable Y . So M∗

n depends only on the grid Xn
1 and is independent of

the variables (Y1, . . . , Yn). Then {T � Tmax} ⊂ M∗
n and we are able to apply Theorem

3. Considering (21), we take dn(g, f) = ‖f − g‖2n, where ‖.‖n is the empirical norm on
Xn1

1 . Using the margin condition MA(1b), (23) is also verified for ln and dn, and we
have assumption H2 with c2 = 1/h. Then, by Lemma 1, assumption H3 is checked with

φT (x) = 2x

√
|T̃ |/n and, in the same way as in the proof of Proposition 1, εT is taken as

εT =
√

1/h

√
|T̃ |/n.

Finally, to choose a convenient family of weights (x
T
)T∈M∗

n
, taking (see [17])

xT = V
(
θ + log

n1

V

)
|T̃ |,

where V is the VC-dimension of the set of splits S used to construct Tmax and θ > 1, we
obtain

Σα = Σθ =
∑

D>1

exp (−(θ − 1)DV ) < +∞.

And we have Proposition 2.

5.4 Proof of Proposition 3

Proposition 3 is a direct application of the theorem obtained by Boucheron, Bousquet and
Massart [7] recalled here: assume that we observe N + n independent random variables
with common distribution P depending on a parameter f∗ to be estimated. Suppose
the first N observations Z ′ = Z ′

1, . . . , Z
′
N are used to build some preliminary collection

of estimators (f̂m)m∈Mn
and the remaining observations Z1, . . . , Zn are used to select an

estimator f̃ among this collection by minimizing the empirical contrast as defined by (15)
(with (X,Y ) replaced by Z). Hence we have the following result.

Theorem 5.4.1 (Boucheron, Bousquet, Massart [7]).
Suppose that Mn is finite with cardinal K. Assume that there exists some continuous
function w mapping R+ onto R+ such that x 7→ w(x)/x is nonincreasing, and which
satisfies for all ε > 0

sup
{f∈F ; l(f∗,f)6ε2}

Var [γ(f, Z)− γ(f∗, Z)] 6 w(ε). (26)

Then one has for every θ ∈ (0, 1)

(1− θ)E
[
l(f∗, f̃) | Z ′

]
6 (1 + θ) inf

m∈Mn

l(f∗, f̂m) + δ2∗

(
2θ + (1 + log (K))(

1

3
+

1

θ
)

)
,

where l is defined by (3) and δ∗ satisfies
√
nδ2∗ = w(δ∗).

Taking w(ε) = (1/
√
h)ε for both methods M1 and M2, where h is the margin, leads

to proposition 3 with

C =
1 + θ

1− θ
, C1 =

θ + 3

2θ(1− θ)
, C2 = C1 +

θ

1− θ
.
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5.5 Proof of Theorem 1

We are now able to prove Theorem 1 via propositions 1, 2 and 3. The beginning of the
proof remains the same if f̃ is constructed either via M1 or M2. So we just give the first
step of the proof for the M1 method.
Actually, since we have at most one model per dimension in the pruned subtree sequence,
it suffices to note that K 6 n1. Then let α0 be the minimal constant given by Proposition
1. Hence, since for a given α > 0 Tα belongs to the sequence (Tk)16k6K,

E

[
l(f∗, f̃) | L1, L2

]
6 C ′′ inf

α>α0

l(f∗, f̂Tα
) +C ′

1 h−1 logK

n3
+ h−1C

′
2

n3
.

Starting from this inequality, if f̃ is constructed via M1, by using Proposition 1 with
α = 2α0 and by taking the expectation according to L2, we obtain Theorem 1 with the
appropriate constants.

Yet, if f̃ is constructed via M2, we apply Proposition 2 with α = 2α0αn1,V and, for each
δ ∈]0; 1[, ξ = log (2Σα/δ). Then we obtain Theorem 1 with the appropriate constants.
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