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Margin Adaptive Risk Bounds for Classification Trees

Servane Gey∗

February 18, 2009

Abstract

Margin adaptive risk bounds for Classification and Regression Trees (CART, Breiman
et. al. 1984) classifiers are obtained in the binary supervised classification framework.
These risk bounds are obtained conditionally on the construction of the maximal deep
binary tree and permit to prove that the linear penalty used in the CART pruning
algorithm is valid under margin condition. It is also shown that, conditionally on
the construction of the maximal tree, the final selection by test sample does not alter
dramatically the estimation accuracy of the Bayes classifier.
In the two-class classification framework, the risk bounds that are proved, obtained by
using penalized model selection, validate the CART algorithm which is used in many
data mining applications such as Biology, Medicine or Image Coding.
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1 Introduction

The main purpose of this paper is the Classification And Regression Trees (CART) method
proposed by Breiman, Friedman, Olshen and Stone [8] in 1984. This method consists in
constructing an efficient algorithm which gives a piecewise constant estimator of a classifier
or a regression function from a training sample of observations. This algorithm is based on
binary tree-structured partitions and on a penalized criterion that permits to select some
“good” tree-structured estimators among a huge collection of trees. In practice, it yields
some easy-to-interpret and easy-to-compute estimators which are widely used in many ap-
plications such as Medicine, Meteorology, Biology, Pollution or Image Coding (see [9], [29]
for example). From a more general point of view on classification methods, this kind of
algorithm is often performed when the space of explanatory variables is high-dimensional.
Indeed CART needs fewer operations than other usual methods to provide classifiers. It
is now widely used in the genetics framework (see [13] for example), or more generally to
reduce variable dimension (see [26] [18] for example).

Let us give a short account of the CART algorithm, that will be described in a precise
manner in Section 2. Given a training sample of observations, the CART algorithm con-
sists in constructing a large dyadic recursive tree from the observations by minimizing
at each step some impurity function, and then, in pruning the thus constructed tree to
obtain a finite sequence of nested trees thanks to a penalized criterion, whose penalty
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term is proportional to the number of leaves. This differs from the algorithm proposed by
Blanchard et. al [4] by the fact that the first large tree is locally constructed, and not in
a global way by minimizing some loss function on the whole sample.
Hence the pruning step raises the question of “why” this linear penalty is well-chosen. Gey
et. al [14] gave an answer to this question in the regression framework, but were unable
to have similar results in the classification framework. Following this previous work, this
paper aims at validating the choice of the penalty in the two class classification framework.
The interested reader can also find some previous discussions and results about this topic
in the paper by Nobel [23].

The CART method takes place in the following general classification framework. Sup-
pose one observes a sample L of N independant copies (X1, Y1), . . . , (XN , YN ) of the
random variable (X,Y ), where the explanatory variable X takes values in a mesurable
space X and is associated with a label Y taking values in {0, 1}. A classifier is then any
function z mapping X into {0, 1} and its quality is measured by its misclassification rate

P(z(X) 6= Y ),

where P denotes the joint distribution of (X,Y ). If P were known, the problem of find-
ing an optimal classifier minimizing the misclassification rate would be easily solved by
considering the Bayes classifier s∗ defined for every x ∈ X by

s∗(x) = 1lη(x)>1/2, (1)

where η(x) is the conditional expectation of Y given X = x, that is

η(x) = P [Y = 1 | X = x] . (2)

P is unknown, so the goal is to construct from the sample L = {(X1, Y1), . . . , (XN , YN )}
a classifier s̃ that is as close as possible to s∗ in the following sense: since s∗ minimizes
the misclassification rate, s̃ will be chosen in such a way that its misclassification rate is
as close as possible to the misclassification rate of s∗, i.e. in such a way that the expected
loss

l(s∗, s̃) = P(s̃(X) 6= Y ) − P(s∗(X) 6= Y ) (3)

is as small as possible. Then, given an estimator s̃ of s∗, the quality of s̃ will be measured
by its risk, i.e. the expectation E[l(s∗, s̃)].
Many works deal with the issue of predicting a label from an input x ∈ X via the construc-
tion of a classifier having good quality. Coming both from computational and statistical
areas, there exists a large collection of methods based on learning a classifier with respect
to a learning sample, where the inputs and labels are known in the fisrt place. For a non
exhaustive, but very complete bibliography on this subject, the interessed reader can refer
to Boucheron et. al [5]. The aforesaid article focuses more on algorithms such as Boosting
or Support Vector Machines, but gives the main ideas that are behind the viewpoint we
choose to take in this paper.

The results we obtain on the pruning procedure relie on a new oversight of the two
class classification problem initiated by Mammen and Tsybakov [17, 27] in 1999, who
introduced the margin condition. A slighter condition has been introduced by Massart et.
al [21] [20] in 2006 in the following way : there exists some absolute constant h ∈ [0; 1/2]
such that, for every x in X ,
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|η(x) − 1/2| > h, (4)

where η is the conditional expectation defined by (2). Assuming that this condition is
fulfilled will permit to obtain upper bounds for the risk of the CART classifier, leading
to the validation of the penalty chosen in the pruning algorithm. A complete overview
of this margin condition can be found in [20]. General considerations and results about
margin adaptive model selection can be found in the upcoming paper by Arlot et. al [1].

The purpose of this paper being the pruning procedure in CART, we leave aside the
construction of the first deep tree. Some results and discussions on this topic can be found
in the papers by Nobel and Olshen [24] and Nobel [22] about Recursive Partitioning.
Hence all our upper bounds for the risk of the classifier obtained by CART are considered
conditionally to the construction of the first tree, called maximal tree.
Furthermore, Breiman et. al. [8] propose two algorithms in their book, one using a test
sample and another using cross-validation. We focus on two methods that use a test
sample and give about the same results : let us split L in three independent subsamples
L1, L2 and L3, containing respectively n1, n2 and n3 observations, with n1 +n2 +n3 = N .
L1, L2 and L3 are randomly taken in L, except if the design is fixed. In that case one
takes, for example, one observation out of three to obtain each subsample. Given these
three subsamples, suppose that either a large tree is constructed using L1 and then pruned
using L2 (as done in Gelfand et al. [12]), or a large tree is constructed and pruned using
the same subsample L1 ∪ L2 (as done in [8]).
Then the final step used in both cases is to choose a subtree among the sequence by
making L3 go down each tree of the sequence and selecting the tree having the minimum
empirical misclassification rate : given for any k = 1, 2, 3 and any classifier z the empirical
misclassification rate of z on Lk

γnk
(z) =

1

nk

∑

(Xi,Yi)∈Lk

1lYi 6=z(Xi), (5)

take the final estimator of s∗ as follows :

s̃ = argmin
{ŝTi

;16i6K}
[γn3

(ŝTi
)] , (6)

where ŝTi
is the piecewise binary estimator of s∗ defined on the leaves of the tree Ti and

K is the number of trees appearing in the sequence.

The paper is organized as follows. Section 2 gives a slight overview of the CART algo-
rithm, and introduces the methods and notations used in the following sections. Section 3
gives the main theoretical results for classification trees using the two methods mentioned
above. This gives the main theorem on the whole algorithm, and more precisely upper
bounds for each part of the algorithm we consider, that is the pruning procedure and the
final choice by test sample. Finally, Section 5 is the appendix where all the proofs of the
results of Section 3 are given.

2 The CART Procedure

Let us give a short account of the CART procedure in the classification case and recall
the results associated with it, which are fully explained in [8].
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CART is based on a recursive partitioning using a training sample L̃ of the random variable
(X,Y ) ∈ X ×{0, 1} (we shall take as L̃ = L1 or L̃ = L1∪L2), and a class G of subsets of X
which tells us how to split at each step. Usually G is taken as some class of half-spaces of
X , for example the half-spaces of X with frontiers parallel to the axes (see for example [8],
[10]). In our framework, we consider a class G with finite Vapnik-Chervonenkis dimension,
henceforth refered to as VC-dimension (for a complete overview of the VC-dimension see
[28]).
The procedure is computed in two steps, that we call growing procedure and pruning
procedure. The growing procedure permits to construct, from the data, a maximal binary
tree Tmax by recursive partitioning, and then the pruning procedure permits to select,
among all the subtrees of Tmax, a sequence which contains the entire statistical information.

2.1 Growing and pruning procedures

2.1.1 Growing Procedure

Since what mainly interests us in this paper is the pruning procedure, we just give the
general idea of the growing procedure to focus on the pruning procedure. For more details
about the growing procedure, see [8].
The growing procedure is based on a recursive binary partitioning of X . To give the idea
of the construction, let us start with the first step : X is split into two parts by minimizing
some empirical convex function on G. The general idea is to use a strictly convex function
in order to avoid ties, what is systematically the case by using the simplest empirical
misclassification rate (see [8], [16]) . Thus this function is chosen in such a way that the
data are split into two groups where the labels of the data in each group are as similar
as possible. It implies that the empirical misclassification rate in each subgroup is largely
reduced. By the way, the sum of the empirical misclassification rates of each subgroup
(called node) is always smaller than the global empirical misclassification rate on the data
of L̃ (called the root t1 of the tree). In the tree terminology, one adds to the root t1 a left
node tL and a right node tR. In what follows, we always assimilate a tree node with its
corresponding subset in G. Finally, a label is given to each node by majority vote (what
corresponds to minimize the empirical misclassification rate in each node).

Then the same elementary step is applied recursively to the two generated subsamples
{(Xi, Yi) ; Xi ∈ tL} and {(Xi, Yi) ; Xi ∈ tR} until some convenient stopping condition is
satisfied. This provides the maximal tree Tmax and one calls terminal nodes or leaves the
final nodes of Tmax.

2.1.2 Pruning Procedure

First let us recall that a pruned subtree of Tmax is defined as any binary subtree of Tmax

having the same root t1 as Tmax.
Then, let us introduce the following notation :

(i) Take two trees T1 and T2. Then, if T1 is a pruned subtree of T2, write T1 � T2.

(ii) For a tree T , T̃ denotes the set of its leaves and |T̃ | the cardinality of T̃ .

To prune Tmax, one proceeds as follows. First simply denote by n the number of data
used. Notice that, given a tree T and ST a set of binary piecewise functions in L

2(X )
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defined on the partition given by the leaves of T , one has

ŝT = argminz∈ST
γn(z)

=
∑

t∈ eT

argmax{Yi ; Xi∈t} |{Yi ; Xi ∈ t}| 1lt,

where γn is the empirical misclassification rate defined by (5).
Then, given T � Tmax and α > 0, one defines

critα(T ) = γn(ŝT ) + α
|T̃ |
n

(7)

the penalized criterion for the so called temperature α, and Tα the subtree of Tmax satis-
fying :

(i) Tα = argminT�Tmax
critα(T ),

(ii) if critα(T ) = critα(Tα), then Tα � T .

Thus Tα is the smallest minimizing subtree for the temperature α. The existence and the
unicity of Tα are given in [8, pp 284-290].

The aim of the pruning procedure is to make the temperature α increase and to take at
each time the corresponding Tα. The algorithm is an iterative one consisting in minimizing
at each step a function of the nodes, which leads to a finite decreasing sequence of subtrees
pruned from Tmax

Tmax � T1 ≻ . . . ≻ TK−1 ≻ TK = {t1}

corresponding to a finite increasing sequence of temperatures

0 = α1 < α2 < . . . < αK−1 < αK .

Remark 1. T1 is the smallest subtree for the temperature 0, so it is not necessarily equal
to Tmax.

Breiman, Friedman, Olshen and Stone’s Theorem [8] justifies this algorithm :

Theorem 2.1.1 (Breiman, Friedman, Olshen, Stone).
The sequence (αk)16k6K is nondecreasing, the sequence (Tk)16k6K is nonincreasing and,
given k ∈ {1, . . . ,K}, if β ∈ [αk, αk+1[, then Tβ = Tαk

= Tk.

By this theorem, it is easy to check that, for any α > 0, Tα belongs to the sequence
(Tk)16k6K .
It is easily seen that this algorithm reduces the complexity of the choice of a subtree
pruned from Tmax efficiently, since by Theorem 2.1.1 the sequence of pruned subtrees
contains the whole statistical information according to the choice of the penalty function
used in (7). Consequently it is useless to look at all the subtrees. Let us also recall that
the form of the penalized criterion is essential to obtain Theorem 2.1.1. Hence, to vali-
date this algorithm completely, it remains to show that this choice of penalty is convenient.
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The final step is to choose a suitable temperature α. Instead of minimizing over α, this
issue is dealt with by using a test-sample to provide the final estimator s̃, as mentioned
in the Introduction, via equality (6). The results given in Sections 3.1 and 3.2 deal, on
the one hand, with the performance of the piecewise constant estimators given by Tα for
α fixed and, on the other hand, with the performance of s̃.

Before focusing on risk bounds, let us give the methods and notations used to obtain these
bounds.

2.2 Methods and Notations

Assume we observe a set of independent random variables L = {(X1, Y1), · · · , (XN , YN )}
such that all the (Xi, Yi)16i6N belong to X × {0; 1} and have common unknown joint
distribution P. Let s∗ be the Bayes classifier (1) and l(s∗, s̃) be the expected loss (3) of
the final estimator s̃ associated to P. Then the risk of s̃ becomes

R(s̃, s) = E [l(s∗, s̃)].

Next, for a given tree T , ST will denote the set of classifiers defined on the partition given
by the leaves of T , that is

ST =




∑

t∈ eT

at1lt ; (at) ∈ {0, 1}| eT |



 , (8)

where T̃ refers the set of the leaves of T . Thus ŝT will be the empirical risk minimizer
classifier on ST . Then a tree-structured estimator ŝ of s∗ is said to satisfy an oracle
inequality if there exists some nonnegative constant C, such that

E [l(s∗, ŝ) | L1] 6 C inf
T�Tmax

RL1
(ŝT , s∗),

where, for each subtree T pruned from Tmax, RL1
(ŝT , s∗) = E [l(s∗, ŝT ) | L1].

To estimate s∗ using the CART algorithm and to compare the performance of s̃ with those
of each ŝT , two different methods can be applied :

M1: L is split in three independent parts L1, L2 and L3 containing respectively n1, n2

and n3 observations. Hence Tmax is constructed using L1, then pruned using L2

and finally a best subtree T̂ is selected among the sequence of pruned subtrees
thanks to L3, and we define s̃ = ŝ bT

.

M2: L is split in two independent parts L1 and L3 containing respectively n1 and n3

observations. Hence Tmax is constructed and pruned using L1 and finally a best
subtree T̂ is selected among the sequence of pruned subtrees thanks to L3, and
we define s̃ = ŝ bT .

Note that a penalty is needed in both methods in order to reduce the number of candidate
tree-structured models contained in Tmax. Indeed, if one does not penalize, the number of
models to be considered grows exponentially with N , so making a selection by using a test
sample without penalizing requires to visit all the models. As we will see in Section 3.2,
since in that case the number of models considered occurs via its logarithm in the upper
bound of the risk, the resulting estimator will have a significantly large upper bound for
its risk. Hence penalizing permits to reduce significantly the number of trees taken into
account and then to get a convenient risk for s̃. Both methods M1 and M2 are considered
for the following reasons :
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• Since all the risks are considered conditionally on the growing procedure the M1
method permits to make a deterministic penalized model selection and then to obtain
sharper upper bounds than the M2 method.

• A contrario, the M2 method permits to keep the whole information given by L1, since,
in that case, the sequence of pruned subtrees is not obtained via some plug-in method
using a first split of the sample to provide the collection of tree-structured models.
This method is the one proposed by Breiman et. al. and it is more commonly applied
in practice than the M1 one. We focus on this method to ensure that it provides
classifiers that have good performance in terms of risk.

Let us recall that the aim of this paper is to prove on the one hand that the complexity
penalty used by Breiman et al. [8] in the pruning algorithm is well-chosen under some
conditions on the distribution of Y conditionnally on X = x, and, on the other hand, that
the final selection among the pruned subtrees is, in terms of risk, not far from being op-
timal. Section 3 is devoted to the two above mentioned cases and consider separately the
pruning procedure and the final selection by test-sample. We will see that, conditionally
on the construction of Tmax, the final classifier s̃ satisfies some oracle-type inequalities
when using either method M1 or M2. Moreover, the penalty term is the same with the
two methods, although a factor log n1 can occur in the temperature when L1 = L2. In
addition, the penalized model selection is made via pruning on random models defined on
{Xi ; (Xi, Yi) ∈ L1}, so all the risks are taken conditionally on this random grid. Hence
a connection can be made between pruning and final selection by test-sample since L3 is
independent of L1 and L2.

3 Risk Bounds

This section is devoted to the results obtained on the performance of the CART classifiers
for both methods M1 and M2. We give a general theorem in a first place, then we give
some more precise results on the two last parts of the algorithm, that are the pruning
procedure and the final selection by test sample.

Assume that the margin condition (4) mentioned by Massart and Nédélec [21] is fulfilled:
there exists some absolute constant h ∈ [0; 1/2] such that, for every x in X ,

|η(x) − 1/2| > h,

where η is the conditional expectation (2) defined in Section 1.
As mentioned in [21], this assumption permits to obtain more refined upper bounds for the
risk of empirical risk minimizer classifiers than the universal bound given by the Vapnik-
Chervonenkis (VC) theory (see Lugosi [15] for instance). The so-called margin h measures
the gap between labels 0 and 1 in that sense that, if η(x) is too close to 1/2, then choosing
0 or 1 will not make a real difference for that x. So the margin condition permits to ensure
that the model is sparse enough to well-separate the labels with respect to the marginal
distribution of X. We will see in the following of the paper that the connection between
the zero error case and the non-zero error case is made via the margin by extracting some
thresholds for h, essentially depending on n, the dimension of the model used, and the VC
dimension of the class of classifiers used.
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All the results given in this section are obtained with the model selection theorems of
Massart et al. [21] [20] by conditioning with respect to L1 for the M2 method, or L1 and L2

for the M1 one. Similar methods are used in [26]. All the proofs will be found in Section 5.

Note that the constants appearing in the upper bounds for the risks are not sharp. We do
not investigate the sharpness of the constants here.

Theorem 1. Given N independant pairs of variables ((Xi, Yi))16i6N of common distribu-
tion P, with (Xi, Yi) ∈ X ×{0, 1}, let us consider the estimator s̃ (6) of the Bayes classifier
s∗ (1) obtained via the CART procedure as defined in section 2. Let h (4) be the margin
associated with P. Then we have the following results.

(i) if s̃ is constructed via M1 :

Let l(s∗, s̃) be the expected loss (3) of s̃. Assume that h > 2−1
√

|T̃1|/n2. Then there exist
some absolute constants C, C1 and C2 such that

E [l(s∗, s̃) | L1] 6 C inf
T�Tmax

{
E [l(s∗, ŝT ) | L1] + h−1 |T̃ |

n2

}
+ h−1 C1

n2
(9)

+h−1C2
log (n1)

n3
. (10)

(ii) if s̃ is constructed via M2 :
Let ln1

(s∗, s̃) = P [s̃(X) 6= Y | Xn1

1 ] − P [s∗(X) 6= Y | Xn1

1 ] be the empirical expected loss
conditionally on the grid Xn1

1 = {Xi ; (Xi, Yi) ∈ L1}. Let V be the Vapnik-Chervonenkis
dimension of the set of splits used to construct Tmax and suppose that n1 > V . Assume

that h > 2−1
√

|T̃max|/n1. Then there exist some absolute constants C ′, C ′
1 and C2 such

that

E [ln1
(s∗, s̃) | L1] 6 C ′ inf

T�Tmax

{
ln1

(s∗, ŝT ) + h−1 log
(n1

V

) |T̃ |
n1

}
+ h−1 C ′

1

n1
(11)

+h−1C2
log (n1)

n3
. (12)

Let us remark that the assumption h > 2−1
√

|T̃max|/n (where n = n2 for M1 or n = n1

for M2) is not limitating, since the growing procedure cannot give a maximal tree Tmax

having more than n leaves. Furthermore, this assumption can be controlled during the
procedure by forcing the maximal tree to stop earlier.

Let us comment a little the results given in Theorem 1. For both the M1 and M2 methods,
the inequality can be separated in two parts :

• (9) and (11) correspond to the pruning procedure. They show that, up to some
absolute constant and the final selection, the conditional risk of the final classifier
is approximately of the same order than the infimum of the penalized risks of the
collection of subtrees of Tmax. The term inside the infimum is of the same form as
the penalized criterion (7) used in the pruning procedure. This shows that, for a
sufficiently large temperature α, this criterion permits to select convenient subtrees
in term of conditional risk. Let us emphasize that the penalty term is directly
proportional to the number of leaves in the M1 method, whereas a multiplicative
logarithmical term appears in the M2 method. This term is due to the randomness
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of the models considered, since there is no more independency between the samples
used to construct and prune Tmax.

• (10) and (12) correspond to the final selection of s̃ among the collection of pruned tree
structured classifers using L3. This selection adds a term proportional to log n1/n3,
what shows that one does not lose too much by using a test sample if n3 is sufficiently
large with respect to log n1. Nevertheless, since we have no idea of the size of the
constant C2, it is difficult to deduce a general way of choosing L3 from this upper
bound.

Finally, let us emphazise the role of the margin in the quality of the selected classifier.
Theorem 1 shows that the higher the margin, the smaller the risk, what is intuitive since
the more seperable the labels are, and the easier the classification shall be. This confirms
the fact that CART does a convenient job if the margin condition is fulfilled.
Furthermore, let us give a short account on the lower bound assumed on the margin.

Massart et. al [21] show that, if h 6 2−1
√

|T̃ |/n for one model ST (where n = n2 for M1

and n = n1 for M2), then the upper bound for the risk on this model (and then the penalty

term in our framework) is of order

√
|T̃ |/n. They obtain this result via minimax bounds

for the risk that make a connection between the zero error case (corresponding to h = 1/2),
with a minimax risk of order |T̃ |/n, and the “global” pessimistic case (corresponding to
h = 0, or h too small to have an effect on the minimax risk), with a minimax risk of order√

|T̃ |/n.
These results tell us that CART will underpenalize and select classifiers having larger
number of leaves if the margin is too small, since in that case the penalty term should

be of order

√
|T̃ |/n > |T̃ |/n. Let us recall that the pruning procedure and consequently

the results of Theorem 2.1.1 heavily depends on the linearity of the penalized criterion
(7). It is not clear that these results remain valid by using a non linear penalty function,
so we have to keep a penalty term of order |T̃ |/n to ensure that the sequence of pruned
subtrees contains the whole statistical information. Hence, even if it could be proven that
the margin is too small, we cannot replace the penalty term in the algorithm by a penalty

of order

√
|T̃ |/n. This issue will be investigated in an upcoming paper cowritten with T.

Mary-Huard. Some heuristic alternative to the use of a test sample will be proposed, that
seems to automatically compensate the lack of margin by selecting a tree having smaller
number of leaves, without changing the tree selected by test sample if the margin is large
enough.

Hence, taking h > 2−1
√

|T̃max|/n in the theorem permits to ensure that h > 2−1
√

|T̃ |/n
for all the models ST given by the pruning procedure.

The two following subsections give some more precise results on the pruning algorithm
for both the M1 and M2 methods, and particularly on the constants appearing in the
penalty function. Subsection 3.2 validates the discrete selection by test-sample. Note that
the two results obtained for the validation of the pruning algorithm also hold in the case
of deterministic Xi’s.

3.1 Validation of the Pruning Procedure

In this section, we focus more particularly on the pruning algorithm and give trajectorial
risk bounds for the classifier associated with Tα, the smallest minimizing subtree for the
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temperature α defined in subsection 3.1. We show that, for a convenient constant α, ŝTα

is not far from s∗ in terms of its risk conditionally on L1. Let us emphasize that the
subsample L3 plays no role in the two following results.

3.1.1 s̃ constructed via M1

Here we consider the second subsample L2 of n2 observations. We assume that Tmax is
constructed on the first set of observations L1 and then pruned with the second set L2

independent of L1. Since the set of pruned subtrees is deterministic according to L2, we
make a selection among a deterministic collection of models.
For any subtree T of Tmax, let ST be the model defined on the leaves of T given by (8).
s∗ will then be estimated on ST , which dimension is |T̃ |.
Then we choose the estimators as follows : let γn2

be the empirical contrast as defined by
(5).

• For T � Tmax, ŝT = argminz∈ST
[γn2

(z)],

• For α > 0, Tα is the smallest minimizing subtree for the temperature α as defined
in subsection 2.1.2 and ŝTα

= argminz∈STα
[γn2

(z)].

Let us now consider the behaviour of such ŝTα
.

Proposition 1. Let PL2
be the product distribution on L2 and let h (4) be the margin

associated with the distribution of (X,Y ) ∈ X ×{0, 1}. Assume that h > 2−1
√
|T̃max|/n2.

Let ξ > 0.
There exists a large enough positive constant α0 > 2 + log 2 such that, if α > α0, then
there exist some nonnegative constants Σα and C such that

l(s∗, ŝTα
) 6 C1(α) inf

T�Tmax

{
inf

z∈ST

l(s∗, z) + h−1 |T̃ |
n2

}
+ C h−1 1 + ξ

n2

on a set Ωξ such that PL2
(Ωξ) > 1−Σαe−ξ, where C1(α) > α0 and Σα are increasing with

α.

A proof of this proposition can be found in paragraph 5.2.1.

We obtain here a trajectorial non asymptotic risk bound on a large probabilty set, leading
to the conclusions given for Theorem 1. Nevertheless, taking a too large temperature
α will lead to overpenalize and to select a classifier having high risk E[l(s∗, ŝTα

) | L1].
Furthermore, the fact that C1(α) and Σα are increasing with α tells us that both sides
of the inequality grow with α. This is at this stage that the choice of the convenient
temperature takes its whole sense in order to make a good compromise between the size
of E[l(s∗, ŝTα

) | L1] and a large enough penalty term.
In practice, since this temperature depends on the unknown margin h and some unknown
constants, the use of a test sample as described in Section 1 is a convenient choice, as
shown by Proposition 3.

3.1.2 s̃ constructed via M2

In this subsection we define the different contrasts, expected loss and estimators exactly
in the same way as in subsection 3.1.1, despite the fact that l is replaced by the empirical
expected loss on Xn1

1 = {Xi ; (Xi, Yi) ∈ L1},
ln1

(s∗, z) = E [γ(z, (X,Y )) − γ(s∗, (X,Y )) | Xn1

1 ] , (13)
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since the models and the evaluations of the empirical errors γn1
(ŝT ) are computed on the

same grid Xn1

1 . In this case, we obtain nearly the same performance for ŝTα
despite the

fact that the constant appearing in the penalty term can now depend on n1 :

Proposition 2. Let PL1
be the product distribution on L1 and let h (4) be the margin

associated with the distribution of (X,Y ) ∈ X ×{0, 1}. Assume that h > 2−1
√
|T̃max|/n1.

Let ln1
(13) be the empirical expected loss computed on {Xi (Xi, Yi) ∈ L1}. Let ξ > 0 and

αn1,V = 2 + V/2
(
1 + log

n1

V

)
.

There exists a large enough positive constant α0 such that, if α > α0, then there exist some
nonnegative constants Σα and C ′ such that

ln1
(s∗, ŝTα

) 6 C ′
1(α) inf

T�Tmax

{
inf

z∈ST

ln1
(s∗, z) + h−1αn1,V

|T̃ |
n1

}
+ C ′ h−1 1 + ξ

n1

on a set Ωξ such that PL1
(Ωξ) > 1 − 2Σαe−ξ, where C ′

1(α) > α0 and Σα are increasing
with α.

A proof of this proposition can be found in paragraph 5.2.2.

We obtain again a trajectorial non asymptotic risk bound on a large probabilty set. The
same conclusions as the one of the M1 case hold in this case. Let us just mention that
the penalty term takes into account the complexity of the collection of trees having fixed
number of leaves which can be constructed on {Xi ; (Xi, Yi) ∈ L1}. Since this complexity
is controlled via the VC-dimension V , V necessarily appears in the penalty term. It differs
from Proposition 1 in the sense that the models we consider are random, so this complexity
has to be taken into account to obtain an uniform bound.
As for the M1 case, since the temperature α depends on the unknown margin h and
some unknown constants, the use of a test sample to select the final classifier among the
sequence of pruned subtrees is a convenient choice, as shown by Proposition 3.

3.2 Final Selection

We focus here on the final step of the CART procedure: the selection of the classifier s̃
among the collection of pruned subtrees given by the pruning procedure by using a test
sample L3. Given the sequence (Tk)16k6K pruned from Tmax as defined in subsection 3.1,
let us recall that s̃ is defined by

s̃ = argmin
{ŝTk

;16k6K}
[γn3

(ŝTk
)] .

The performance of this classifier can be compared to the performance of the collection of
classifiers (ŝTk

)16k6K by the following :

Proposition 3.

(i) if s̃ is constructed via M1, let λ = l and Rn3
(s∗, s̃) = E [λ(s∗, s̃) | L1, L2].

(ii) if s̃ is constructed via M2, let λ = ln1
and Rn3

(s∗, s̃) = E [λ(s∗, s̃) | L1], where ln1
in

defined by (13).
For both cases, there exist three absolute constants C ′′ > 1, C ′

1 > 3/2 and C ′
2 > 3/2 such

that

Rn3
(s∗, s̃) 6 C ′′ inf

16k6K
λ(s∗, ŝTk

) + C ′
1 h−1 log K

n3
+ h−1 C ′

2

n3
.
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A proof of this proposition can be found in paragraph 5.2.3.

We are now able to prove Theorem 1 via propositions 1, 2 and 3. The proof remains
the same if s̃ is constructed either via M1 or M2. So we just give the proof for the M1
method.
Actually, since we have at most one model per dimension in the pruned subtree sequence,
it suffices to note that K 6 n1. Then let α0 be the minimal constant given by Proposition
1. Hence, since for a given α > 0 Tα belongs to the sequence (Tk)16k6K ,

E [l(s∗, s̃) | L1, L2] 6 C ′′ inf
α>α0

l(s∗, ŝTα
) + C ′

1 h−1 log K

n3
+ h−1 C ′

2

n3
.

Then, by using Proposition 1 with α = 2α0 and by taking the expectation according to
L2, we obtain Theorem 1 with the appropriate constants.

4 Prospects

We have proven that CART provides convenient classifiers in term of conditional risk
under margin condition. Nevertheless, as for the regression case, it remains to analyze
the properties of the growing procedure to obtain full unconditional upper bounds. The
results obtained on the size of the margin give some prospects for the application of CART
in practice. These propects may be for example

• using the slope heuristic (see for example [3] [2]) to select a classifier among a col-
lection,

• searching for a robust manner to determine if the margin hypothesis is fulfilled,
permitting to use the blind selection by test sample,

• estimating the margin if the condition is satified.

Some track to estimate the margin could be to use mixing procedures as boosting (see [7]
[11] for example). Hence this estimate could be used in the penalized criterion to help
finding the convenient temperature. It also could permit to give an idea of the difficulty to
classify the data considered and henceforth to help choosing the most adapted classification
method.

5 Appendix

5.1 Local Bound for Tree Structured Classifiers

Let (X,Y ) ∈ X × {0, 1} be a pair of random variables and {(X1, Y1), . . . , (Xn, Yn)} be
n independant copies of (X,Y ). Let µ denote the marginal distribution of X and ‖.‖

1

denote the empirical norm on Xn
1 = (Xi)16i6n. Then given two classifiers z and u, let us

define
d2(z, u) = ‖z − u‖2

1
.

Let Mn∗ be the set of all possible tree structured partitions that can be constructed on
the grid Xn

1 , corresponding to trees having all possible splits in G and all possible forms
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without taking account of the response variable Y . So Mn∗ depends only on the grid Xn
1

and is independent of the variables (Y1, . . . , Yn). Hence, for a tree T ∈ Mn∗, define

ST =




∑

t∈ eT

at1lt ; (at) ∈ {0, 1}| eT |



 ,

where T̃ refers the set of the leaves of T . Then, for any u ∈ ST and any σ > 0, define

BT (u, σ) = {z ∈ ST ; d(u, z) 6 σ}

For each classifier z : X → {0, 1}, let us define the empirical contrast of z recentered
conditionally on Xn

1

γ̄n(z) = γn(z) − E[γn(z) | Xn
1 ], (14)

where γn is defined for any given classifier z by

γn(z) =
1

n

n∑

i=1

1lz(Xi)6=Yi
.

Remark 2. If γn is evaluated on a sample (X ′
i) independent of Xn

1 , it is easy to check that
the bounds we obtain in what follows are still valid by taking the marginal distribution µ
of X instead of the empirical distribution, and the distance d associated with the L

2(X , µ)-
norm instead of the empirical norm ‖.‖

1
.

We have the following result :

Lemma 1. For any u ∈ ST and any σ > 0

E

[
sup

z∈BT (u,σ)
|γ̄n(z) − γ̄n(u)| | Xn

1

]
6 2 σ

√
|T̃ |
n

.

Proof. First of all, let us mention that, since the different variables we consider take values
in {0.1}, we have for all x ∈ X and all y ∈ {0, 1}

1lz(x)6=y − 1lu(x)6=y = −(z(x) − u(x)),

yielding
|γ̄n(z) − γ̄n(u)| = |νn(z − u)|,

where νn is the recentered empirical measure on Xn
1 .

Let us now consider a Rademacker sequence of random signs (εi)16i6n independent of Xn
1 .

Then one has by a symmetrization argument

E

[
sup

z∈BT (u,σ)
|νn(z − u)| | Xn

1

]
6 E

[
sup

z∈BT (u,σ)

2

n

∣∣∣∣∣

n∑

i=1

εi(z(Xi) − u(Xi))

∣∣∣∣∣ | Xn
1

]
.

Since z and u belong to ST , we have that

z − u =
∑

t∈ eT

(at − ut)ϕt,
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where each (at, ut) takes values in [0, 1]2 and (ϕt)t∈ eT is an orthonormal basis of ST adapted

to T̃ (i.e. some normalized characteristic functions). Then by applying the Cauchy-
Schwarz inequality, since z ∈ BT (u, σ), ‖z − u‖

1
= d2(z, u) =

∑
t∈ eT (at − ut)

2 6 σ2, we
obtain that

∣∣∣∣∣

n∑

i=1

εi(z(Xi) − u(Xi))

∣∣∣∣∣ 6

√∑

t∈ eT

(at − ut)2

√√√√√
∑

t∈ eT

(
n∑

i=1

εiϕt(Xi)

)2

6 σ

√√√√√
∑

t∈ eT

(
n∑

i=1

εiϕt(Xi)

)2

.

Finally, since (εi)16i6n are centered random variables with variance equal to 1, indepen-

dent with Xn
1 , and since for each t ∈ T̃ ‖ϕt‖1

= 1, Jensen’s inequality implies

E

[
sup

z∈BT (u,σ)
|γ̄n(z) − γ̄n(u)| | Xn

1

]
6 2

σ

n

√√√√
∑

t∈ eT

n∑

i=1

ϕ2
t (Xi) 6 2σ

√
|T̃ |
n

.

And the proof is achieved.

5.2 Proofs

All the proofs are based on results obtained by Massart et. al. [19] [21]. The main
difference between our viewpoint and the one of Sauvé at. al. [26] lies in the concentration
inequality used. Arlot et. al. [1] give margin adaptive upper bounds for classifiers obtained
from nested models under some more general margin condition. Since the models we
consider are not nested in a first place, we choose to keep the viewpoint taken by Massart
et. al. in this paper, what is sufficient to obtain the validation of the pruning algorithm
in CART.

5.2.1 Proof of Proposition 1

To prove Proposition 1, we first adapt a theorem by Massart [19, Theorem 4.2] in the same
way as Massart and Nédélec [21] by using the Rio’s version of the Talagrand concentration
inequality [25] instead of the version used by Massart in [19], mainly to obtain sharper
upper bounds. Let us give this result.

Let n = n2. Let us give a sample L2 = {(X1, Y1), . . . , (Xn, Yn)} of the random variable
(X,Y ) ∈ X × [0, 1], where X is a measurable space and let s∗ ∈ S ⊂ {z : X 7→ [0, 1] ; z ∈
L

2(X )} be the unknown function to be recovered. Assume (Sm)m∈Mn
is a countable

collection of at most countable models included in S. Let us give a penalty function
penn : Mn −→ R+, and γ : S × (X × [0, 1]) −→ R+ a contrast function, i.e. γ such that
z 7→ E [γ(z, (X,Y ))] is convex and minimum at point s∗. Hence define for all z ∈ S the
expected loss l(s∗, z) = E [γ(z, (X,Y )) − γ(s∗, (X,Y ))].
Finally let

γn =
1

n

n∑

i=1

γ(., (Xi, Yi)) (15)
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be the empirical contrast associated with γ. Let m̂ be defined as

m̂ = argmin
m∈Mn

[γn(ŝm) + penn(m)]

where ŝm = argminz∈Sm
γn(z) is the minimum empirical contrast estimator of s∗ on Sm.

Then the final estimator of s∗ is
s̃ = ŝm̂. (16)

One makes the following assumptions:
H1: γ is bounded by 1 (what is not restricting since all the functions we consider take
values in [0, 1]).
H2: Assume there exist c > (2

√
2)−1/2 and some pseudo-distance d such that, for every

pair (z, u) ∈ S2, one has

Var [γ(z, (X,Y )) − γ(u, (X,Y ))] 6 d2(z, u),

and particularly for all z ∈ S
d2(s∗, z) 6 c2l(s∗, z).

H3 : For any positive σ and for any u ∈ Sm, let us define

Bm(u, σ) = {t ∈ Sm ; d(u, t) 6 σ}
where d is given by assumption H2. Let γ̄n = γn(.) − E[γn(.)]. We now assume that for
any m ∈ Mn, there exists some continuous function φm mapping R+ onto R+ such that
φm(0) = 0, φm(x)/x is non-increasing and

E

[
sup

t∈Bm(u,σ)
|γ̄n(t) − γ̄n(u)|

]
6 φm(σ)

for every positive σ such that φm(σ) 6 σ2. Let εm be the unique solution of the equation
φm(cx) = x2 , x > 0.

One gets the following result :

Theorem 5.2.1 (adapted from Massart [19] and Massart, Nédélec [21]).
Let {(X1, Y1), . . . , (Xn, Yn)} be a sample of independant realizations of the random pair
(X,Y ) ∈ X × [0, 1]. Let (Sm)m∈Mn

be a countable collection of models included in some
countable family S ⊂ {z : X 7→ [0, 1] ; z ∈ L

2(X )}. Consider some penalty function
penn : Mn −→ R+ and the corresponding penalized estimator s̃ (16) of the target function
s∗. Take a family of weights (xm)m∈Mn

such that

Σ =
∑

m∈Mn

e−xm < +∞. (17)

Assume that assumptions H1, H2 and H3 hold.
Let ξ > 0. Hence, given some absolute constant C > 1, there exist some positive constants
K1 and K2 such that, if for all m ∈ Mn

penn(m) > K1ε
2
m + K2c

2 xm

n
,

then, with probability larger than 1 − Σe−ξ,

l(s∗, s̃) 6 C inf
m∈Mn

[l(s∗, Sm) + penn(m)] + C ′ c2 1 + ξ

n
,

where l(s∗, Sm) = infsm∈Sm
l(s∗, sm) and the constant C ′ only depends on C.
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Proof. Let m ∈ Mn and sm ∈ Sm. The definition of the expected loss and the fact that

γn(s̃) + penn(m̂) 6 γn(sm) + penn(m)

lead to the following inequality:

l(s∗, s̃) 6 l(s∗, sm) + γ̄n(sm) − γ̄n(s̃) + penn(m) − penn(m̂) (18)

where γ̄n is defined by (14). The general principle is now to concentrate γ̄n(sm) − γ̄n(s̃)
around its expectation in order to offset the term penn(m̂). Since m̂ ∈ Mn, we proceed
by bounding γ̄n(sm) − γ̄n(ŝm′) uniformly in m′ ∈ Mn. For m′ ∈ Mn and z ∈ Sm′ , let us
define

wm′(z) =
[√

l(s∗, sm) +
√

l(s∗, z)
]2

+ y2
m′ ,

with ym′ > εm′ , where εm′ is defined by assumption H3. Hence let us define

Vm′ = sup
z∈S

m′

γ̄n(sm) − γ̄n(z)

wm′(z)
.

Then (18) becomes

l(s∗, s̃) 6 l(s∗, sm) + Vm̂wm̂(s̃) + penn(m) − penn(m̂)

Since Vm′ can be written as

Vm′ = sup
z∈S

m′

νn

(
γ(sm, .) − γ(z, .)

wm′(z)

)
,

where νn is the recentered empirical measure, we bound Vm′ uniformly in m′ ∈ Mn by
using the Rio’s version of the Talagrand’s inequality recalled here : if F is a countable
family of measurable functions such that, for some positive constants v and b, one has for
all f ∈ F P (f2) 6 v and ‖f‖∞ 6 b, then for every positive y, the following inequality
holds for Z = supf∈F (Pn − P )(f)

P

[
Z − E(Z) >

√
2
(v + 4bE(Z))y

n
+

by

n

]
6 e−y.

To proceed, we need to check the two bounding assumptions. First, since by assumption
H1 the contrast γ is bounded by 1, we have that, for each z ∈ Sm′ ,

∣∣∣∣
γ(z, .) − γ(sm, .)

wm′(z)

∣∣∣∣ 6
1

y2
m′

. (19)

Second, by using assumption H2, we have that, for each z ∈ Sm′ ,

Var

[
γ(z, (X,Y )) − γ(sm, (X,Y ))

wm′(z)

]
6

d2(z, sm)

w2
m′(z)

(20)

6
c2

4y2
m′

. (21)

Then, by Rio’s inequality, we have for every x > 0

P

[
Vm′ > E(Vm′) +

√
c2 + 16E(Vm′)

2ny2
m′

x +
x

ny2
m′

]
6 e−x.
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Let us take x = xm′ + ξ, ξ > 0, where xm′ is given by (17). Then by summing up over
m′ ∈ Mn, we obtain that for all m′ ∈ Mn

Vm′ 6 E(Vm′) +

√
c2 + 16E(Vm′)

2ny2
m′

(xm′ + ξ) +
xm′ + ξ

ny2
m′

on a set Ωξ such that P (Ωξ) > 1−Σe−ξ. We have now to bound E(Vm′) in order to obtain
an upper bound for Vm′ on the set of large probability Ωξ. Let um′ ∈ Sm′ be defined by

l(s∗, um′) 6 2 inf
z∈S

m′

l(s∗, z).

Then we have

E(Vm′) 6 E

[
sup

z∈S
m′

|γ̄n(z) − γ̄n(um′)|
wm′(z)

]
+ E

[ |γ̄n(um′) − γ̄n(sm)|
infz∈S

m′
[wm′(z)]

]
.

Let
ω2

m′(z) = l(s∗, um′) + E [γ(z, (X,Y )) − γ(um′ , (X,Y ))]+ .

Then, since

l(s∗, z) = l(s∗, um′) + E [γ(z, (X,Y )) − γ(um′ , (X,Y ))] ,

we have

l(s∗, z) 6 ω2
m′(z) 6 5 l(s∗, z). (22)

On the one hand we have wm′(z) > l(s∗, z) + y2
m′ > (1/5)ω2

m′(z) + y2
m′ for every z ∈ Sm′ .

Hence

E

[
sup

z∈S
m′

|γ̄n(z) − γ̄n(um′)|
wm′(z)

]
6 5 E

[
sup

z∈S
m′

|γ̄n(z) − γ̄n(um′)|
ω2

m′(z) + 5y2
m′

]
.

Furthermore we have

E

[
sup

{z ; ω
m′ (z)6ε}

|γn(z) − γn(um′)|
]

6 E

[
sup

{z ; l(s∗,z)6ε2}
|γn(z) − γn(um′)|

]
,

and, if l(s∗, z) 6 ε2, then l(s∗, um′) 6 2ε2 and d(z, um′) 6 d(s∗, z)+d(s∗, um′ ) 6 cε+cε
√

2.
Hence we get that d(z, um′ ) 6 (1 +

√
2)cε 6 2cε

√
2.

Let us now suppose that ε > εm′ . Then we have by monoticity of x 7→ φ(x)/x and by
definition of εm′ that

φm′(2cε
√

2)

(2cε
√

2)2
6

φm′(cε)

c2ε22
√

2
6

φm′(cεm′)

c2ε2
m′2

√
2

6 1

since c > (2
√

2)−1/2.
So, by assumption H3, we finally obtain that, for all ε > εm′ ,

E

[
sup

{z ; ω
m′ (z)6ε}

|γn(z) − γn(um′)|
]

6 E

[
sup

{z ; d(z,u
m′)62cε

√
2}
|γn(z) − γn(um′)|

]
6 φm′(2cε

√
2).
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So we can apply Lemma 5.5 in [21] and use the monoticity of x 7→ φm′(x)/x to obtain
that

E

[
sup

z∈S
m′

|γ̄n(z) − γ̄n(um′)|
wm′(z)

]
6 4

φm′(2c
√

10ym′)

y2
m′

6 8
√

10
φm′(cym′)

y2
m′

.

Hence, since ym′ > εm′ and x 7→ φm′(cx)/x is nonincreasing, we get by definition of εm′

E

[
sup

z∈S
m′

|γ̄n(z) − γ̄n(um′)|
wm′(z)

]
6 8

√
10

φm′(cεm′)

ym′εm′

6 8
√

10
εm′

ym′

.

On the other hand, let us notice that

inf
z∈S

m′

wm′(z) > 2ym′ inf
z∈S

m′

[
√

l(s∗, z) +
√

l(s∗, sm)]

>
ym′

√
2

c
d(um′ , sm),

hence

E

[ |γ̄n(um′) − γ̄n(sm)|
infz∈S

m′
[wm′(z)]

]
6 c(ym′

√
2)−1

E

[ |γ̄n(um′) − γ̄n(sm)|
d(um′ , sm)

]
,

leading by Jensen’s inequality to

E

[ |γ̄n(um′) − γ̄n(sm)|
infz∈S

m′
[wm′(z)]

]
6 c(ym′

√
2)−1

√
Var [γ̄n(um′) − γ̄n(sm)]

d(um′ , sm)
6

c

ym′

√
2n

.

Then we get for all m′ ∈ Mn

E[Vm′ ] 6
8
√

10εm′ + c(2n)−1/2

ym′

.

Hence we have that, on the set Ωξ, for all m′ ∈ Mn,

Vm′ 6
8
√

10εm′ + c(2n)−1/2

ym′

+

√
c2 + 16(8

√
10εm′ + c(2n)−1/2)y−1

m′

2ny2
m′

(xm′ + ξ) +
xm′ + ξ

ny2
m′

.

Let us define

ym′ = K

[
8
√

10εm′ + c(2n)−1/2 + c

√
xm′ + ξ

n

]

with K > 0. Then we obtain that, on Ωξ, for all m′ ∈ Mn,

Vm′ 6
1

K

[
1 +

√
1

2

(
1 +

8

K
√

2

)
+

1

2K
√

2

]
.

So we finally obtain that, on the set Ωξ,

l(s∗, s̃) 6 l(s∗, sm) + K ′wm̂(s̃) + penn(m) − penn(m̂), (23)

with

K ′ =
1

K

[
1 +

√
1

2

(
1 +

8

K
√

2

)
+

1

2K
√

2

]
.
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We are now able to achieve the proof. By using repeatedly the elementary inequality
(α + β)2 6 2α2 + 2β2 we derive that, on the one hand,

y2
m̂ 6 4K2

[
640ε2

m̂ +
c2

2n
+ c2 xm̂ + ξ

2n

]
,

and, on the other hand,

wm̂(s̃) 6 2l(s∗, s̃) + 2l(s∗, sm) + y2
m̂.

Hence the following inequality holds on Ωξ:

(
1 − 2K ′ ) l(s∗, s̃) 6

(
1 + 2K ′) l(s∗, sm) + penn(m) + 2K ′K2 ξ

n
+

2c2K ′K2

n

+5 × 29K ′K2ε2
m̂ + 2c2K ′K2 xm̂

n
− penn(m̂).

We can now choose the constants K ′ (and then K), K1 and K2 in order to control the
multiplier of l(s∗, sm) and the last term of (23). If we take

K ′ =
C − 1

2(C + 1)
, K1 = 5 × 29K ′K2, K2 = 2K ′K2,

then we obtain that, on the set Ωξ,

l(s∗, s̃) 6 C l(s∗, sm) + penn(m) + C ′ c2 1 + ξ

n
,

with C ′ = 4
√

2K ′K2. Since this inequality is true for any m ∈ Mn and any sm ∈ Sm, the
proof is achieved.

Application to classification trees:

Let us now suppose that (X,Y ) takes values in X × {0, 1}. The contrast is taken as
γ(z, (X,Y )) = 1lz(X)6=Y , the expected loss is defined by (3), and the collection of models
is (ST )T�Tmax

. The models and the collection are countable since there is a finite number
of functions in each ST , and a finite number of nodes in Tmax. Since we are working
conditionally on L1, we can apply Theorem 5.2.1 directly with L2. To check assumption
H2, let us first note that, since all the variables we consider take values in {0, 1}, we have
the following for all classifiers u and z

|γ(u, (X,Y )) − γ(z, (X,Y ))| =
∣∣1lY 6=u(X) − 1lY 6=z(X)

∣∣ (24)

= |u(X) − z(X)|. (25)

Then if we take d2(u, z) = E
(
(u(X) − z(X))2

)
= ‖u − z‖2, where ‖.‖ is the L

2-norm
with respect to the marginal distribution of X, we have that, for all classifiers u and z,
Var [γ(z, (X,Y )) − γ(u, (X,Y ))] 6 d2(u, z). Moreover, with the margin condition, we have
that

l(s∗, z) = E
[
|2η(X) − 1|(z(X) − s∗(X))2

]
> 2h‖z − s∗‖2, (26)

hence assumption H2 is checked with d2(u, z) = ‖u − z‖2 and c2 = 1/2h, where h is the
margin. By definition of h, we have h 6 1 6

√
2, and then c > (2

√
2)−1/2.

Then assumption H3 is checked by Lemma 1 with φT (x) = 2x

√
|T̃ |/n. Then, to ensure
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that the upper bound in Theorem 5.2.1 covers the global bound given by the Vapnik

theory, Theorem 5.2.1 is verified with εT =
√

2/h

√
|T̃ |/n ∧ (|T̃ |/n)1/4. If it is assumed

that h > 2−1
√

|T̃ |/n for all T � Tmax, then the first term in the penalty function is

proportional to |T̃ |/(hn). The assumption on the margin is automatically satisfied if we

suppose that h > 2−1
√

|T̃max|/n.

Finally, to choose a convenient family of weights (x
T
)T�Tmax

, taking x
T

function of the
number of leaves of T , one has:

Σ =
∑

T�Tmax

e−x
T

6
∑

D>1

∣∣∣{T � Tmax ; |T̃ | = D}
∣∣∣ e−xD .

Furthermore, for any given number of leaves D, the number of balanced binary trees
having D leaves is the Catalan number (1/D)

(2(D−1)
D−1

)
. Thus we have

Σ 6
∑

D>1

1

D

(
2(D − 1)

D − 1

)
e−xD

6
∑

D>1

1

D
exp (2 log 2D − xD) .

Taking xD = θD, with θ > 2 log 2 independent of D, we immediately obtain Σα = Σθ <
+∞. Then we get proposition 1 by Theorem 5.2.1.

5.2.2 Proof of Proposition 2

In what follows, we denote by L1 the sample {(X1, Y1), . . . , (Xn, Yn)} of size n of the
random variable (X,Y ), and by Xn

1 the sample {X1, . . . ,Xn}.
First we generalize Theorem 5.2.1 to random models, and then we apply it to CART. Let
(X,Y ), S s∗ ∈ S, L1 = {(X1, Y1), . . . , (Xn, Yn)}, γ and γn be defined as in sebsection
5.2.1. Finally let us define the expected loss of z ∈ S conditionally on Xn

1 as

ln(s∗, z) = E [γ(z, (X,Y )) − γ(s∗, (X,Y )) | Xn
1 ] .

Let us consider an at most countable collection of at most countable models (Sm)m∈M∗

n

and a subcollection (Sm)m∈Mn
, where Mn ⊂ M∗

n may depend on {(X1, Y1), . . . , (Xn, Yn)}.
Finally let us consider a penalty function penn : Mn 7→ R+ and let us define the estimator
s̃ of s∗ as follows : let

m̂ = argminm∈Mn
[γn(ŝm) + penn(m)],

where ŝm = argminz∈Sm
γn(z) is the minimum contrast estimator of s∗ on Sm. Then

s̃ = ŝm̂.

Let us make the following assumptions.
H1 : γ is bounded by 1.
H2 : Assume there exist c > (2

√
2)−1/2 and some pseudo-distance dn (that may depend

on Xn
1 ) such that, for every pair (z, u) ∈ S2, one has

Var [γ(z, (X,Y )) − γ(u, (X,Y )) | Xn
1 ] 6 d2

n(z, u),
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and particularly for all z ∈ S
d2

n(s∗, z) 6 c2ln(s∗, z).

H3 : For any positive σ and for any u ∈ Sm, let us define

Bm(u, σ) = {t ∈ Sm ; dn(u, t) 6 σ}

where dn is given by assumption H2. Let γ̄n be defined as (14). We now assume that for
any m ∈ Mn, there exists some continuous function φm mapping R+ onto R+ such that
φm(0) = 0, φm(x)/x is non-increasing and

E

[
sup

t∈Bm(u,σ)
|γ̄n(t) − γ̄n(u)| | Xn

1

]
6 φm(σ)

for every positive σ such that φm(σ) 6 σ2. Let εm be the unique solution of the equation
φm(cx) = x2 , x > 0.

One gets the following result.

Theorem 2. Let L1 = {(X1, Y1), . . . , (Xn, Yn)} be a sample of independant realizations
of the random pair (X,Y ) ∈ X × [0, 1]. Let (Sm)m∈M∗

n
be a countable collection of models

included in some countable family S ⊂ {z : X 7→ [0, 1] ; z ∈ L
2(X )} (depending eventually

on Xn
1 ). Consider some subcollection of models (Sm)m∈Mn

, where Mn ⊂ M∗
n may depend

on L1, and some penalty function penn : Mn −→ R+. Let s̃ (16) be the corresponding
penalized estimator of the target function s∗. Take a family of weights (xm)m∈M∗

n
such

that ∑

m∈M∗

n

e−xm 6 Σ < +∞, (27)

with Σ deterministic. Assume that assumptions H1, H2 and H3 hold.
Let ξ > 0. Hence, given some absolute constant C > 1, there exist some positive constants
K1 and K2 such that, if for all m ∈ Mn

penn(m) > K1ε
2
m + K2c

2 xm

n
,

then, with probability larger than 1 − 2Σe−ξ,

ln(s∗, s̃) 6 C inf
m∈Mn

[ln(s∗, Sm) + penn(m)] + C ′ c2 1 + ξ

n
,

where ln(s∗, Sm) = infsm∈Sm
ln(s∗, sm) and the constant C ′ only depends on C.

Proof. Since there are just a few lines that change from the proof of Theorem 5.2.1, we
just give a sketch of proof. The main differences are in the conditioning and the fact that
the collection of models (Sm)m∈Mn

is random. To remove these issues, all the bounds
are computed uniformly on M∗

n so that the probability of the set we obtain at the end is
unconditional to Xn

1 since Σ is deterministic. The inequalities are obtained by the same
techniques as the ones used for the proof of the results on model selection on random
models done by Gey and Nédélec in [14].

Let m ∈ Mn and sm ∈ Sm. Starting from (18), we have

ln(s∗, s̃) 6 ln(s∗, sm) + wm̂,m(s̃)Vm̂,m + penn(m) − penn(m̂), (28)
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where for all m′ and M in M∗
n, for all z ∈ Sm′ and sM ∈ SM ,

wm′,M (z) =
[√

l(s∗, z) +
√

ln(s∗, sM )
]2

+ (ym′ + yM )2,

Vm′,M = sup
z∈S

m′

[
γ̄n(sM ) − γ̄n(z)

wm′,M (z)

]
,

with ym′ > εm′ and yM > εM . The general principle is now exactly the same as in the
proof of Theorem 5.2.1 despite the fact that we have to bound Vm′,M not only uniformly
in m′ ∈ M∗

n, but also in M ∈ M∗
n in order to have an in-probabilty inequality that does

not depend on Xn
1 .

Assumption H2 permits to give exactly the same upper bounds (except that they depend
on Xn

1 and that ym′ is replaced by ym′+yM ) as (19) and (20). Then we bound E[Vm′,M | Xn
1 ]

to apply the Rio’s version of the Talagrand inequality conditionally on Xn
1 . By using the

same technique as in the proof of Theorem 5.2.1, we obtain that

E
[
Vm′,M | Xn

1

]
6 8

√
10

φm′(cym′ + cyM )

(ym′ + yM )2
+

c

(ym′ + yM)
√

2n
.

Then, since ym′ + yM > ym′ > εm′ and εM > 0, we get by definition of εm′

8
√

10
φm′(cym′ + cyM)

(ym′ + yM )2
6 8

√
10

φ(cεm′ )

(ym′ + yM )εm′

6 8
√

10
εm′ + εM

ym′ + yM
.

So we have

E
[
Vm′,M | Xn

1

]
6

8
√

10(εm′ + εM ) + c(2n)−1/2

ym′ + yM
.

Summing up over m′ ∈ M∗
n and M ∈ M∗

n, that leads by Rio’s inequality, to

Vm′,M 6
1

ym′ + yM

(
8
√

10εm′ +
c(2n)−1/2

2
+ 8

√
10εM +

c(2n)−1/2

2

)

+

√
c2 + 16(8

√
10(εm′ + εM ) + c(2n)−1/2)(ym′ + yM )−1

2n(y2
m′ + y2

M )
(xm′ + xM + ξ)

+
1

y2
m′ + y2

M

(
xm′ + ξ/2

n
+

xM + ξ/2

n

)

on a set Ωξ such that P (Ωξ | Xn
1 ) > 1 − 2Σe−ξ. Then, since Σ is deterministic, we get

that P (Ωξ) > 1 − 2Σe−ξ.

Hence, if we take for all m′ ∈ M∗
n

ym′ = 2K

[
8
√

10εm′ +
c(2n)−1/2

2
+ c

√
xm′ + ξ/2

n

]
,

we obtain that, on Ωξ, for all m′ and M in M∗
n,

Vm′,M 6
1

K

[
1 +

√
1

2

(
1 +

8

K
√

2

)
+

1

2K
√

2

]
.

Finally the proof is achieved in the same way as the proof of Theorem 5.2.1.
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Application to classification trees :

Let us consider the classification framework and the collection of models (ST )T�Tmax

obtained via the growing procedure in CART (see subsection 3.1) as recalled in subsection
5.2.1. Since the growing and the pruning procedures are made on the same sample L1,
we are exactly in the conditions of Theorem 2. Since n1 is fixed, let us consider Mn∗
as the set of all possible tree structured partitions that can be constructed on the grid
Xn

1 , corresponding to trees having all possible splits in G and all possible forms without
taking account of the response variable Y . So Mn∗ depends only on the grid Xn

1 and
is independent of the variables (Y1, . . . , Yn). Then {T � Tmax} ⊂ M∗

n and we are able
to apply Theorem 2. Considering (24), we take dn(z, u) = E

[
(z(X) − u(X))2 | Xn1

1

]
=

‖u − z‖2
1
, where ‖.‖

1
is the empirical norm on Xn1

1 . Using the margin condition (4), (26)
is also verified for ln, and we have assumption H2 with c = 1/2h. Then, by Lemma 1,

assumption H3 is checked with φT (x) = 2x

√
|T̃ |/n and, in the same way as in the proof

of Proposition 1, εT is taken as εT =
√

2/h

√
|T̃ |/n under assumption h > 2−1

√
|T̃ |/n for

all T � Tmax.
Finally, to choose a convenient family of weights (x

T
)T∈M∗

n
, taking x

T
function of the

number of leaves of T , one has:

∑

T∈M∗

n

e−x
T 6

∑

D>1

∣∣∣{T ∈ M∗
n ; |T̃ | = D}

∣∣∣ e−xD .

We now use a result on the number of trees that can be constructed on n1 points in X
(see [14, Lemma 2] for more details). Let V be the Vapnik-Chervonenkis dimension of the
set of splits G used to construct Tmax and let us recall that n > V . Then we have

∣∣∣{T ∈ M∗
n ; |T̃ | = D}

∣∣∣ 6

(en1

V

)DV
.

So it suffices to take for all T ∈ M∗
n

xT = V
(
θ + log

n1

V

)
|T̃ |,

with θ > 1, to obtain

Σα = Σθ =
∑

D>1

exp (−(θ − 1)DV ) < +∞.

And we have Proposition 2.

5.2.3 Proof of Proposition 3

We apply a result obtained by Boucheron, Bousquet and Massart [6] in the framework
of data-driven penalties. For a sake of completeness, we recall this result in the hold-out
case.

Assume that we observe N + n independant random variables with common distribution
P depending on a parameter s∗ to be estimated. Suppose the first N observations Z ′ =
Z ′

1, . . . , Z
′
N are used to build some preliminary collection of estimators (ŝm)m∈Mn

and the
remainding observations Z1, . . . , Zn are used to select an estimator s̃ among this collection
by minimizing the empirical contrast as defined by (15) (with (X,Y ) replaced by Z).
Hence we have the following result.
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Theorem 5.2.2 (Boucheron, Bousquet, Massart [6]).
Suppose that Mn is finite with cardinal K. Assume that there exists some continuous
function w mapping R+ onto R+ such that x 7→ w(x)/x is nonincreasing, and which
satisfies for all ε > 0

sup
{z∈S ; l(s∗,z)6ε2}

Var [γ(z, Z) − γ(s∗, Z)] 6 w(ε). (29)

Then one has for every θ ∈ (0, 1)

(1 − θ)E
[
l(s∗, s̃) | Z ′]

6 (1 + θ) inf
m∈Mn

l(s∗, ŝm) + δ2
∗

(
2θ + (1 + log (K))(

1

3
+

1

θ
)

)
,

where δ∗ satisfies
√

nδ2
∗ = w(δ∗).

We are exactly in the conditions of Theorem 5.2.2 since the collection of estimators
(ŝTk

)16k6K is built on L1 ∪L2 if s̃ is constructed via M1, and on L1 if s̃ is constructed via
M2. Furthermore, we derive from (26) that w can be taken as w(ε) = (1/

√
2h)ε for both

methods M1 and M2, where h is the margin. Then we have δ∗ = 1/
√

2hn and the proof
of proposition 3 is achieved by Theorem 5.2.2 with

C =
1 + θ

1 − θ
, C1 =

θ + 3

2θ(1 − θ)
, C2 = C1 +

θ

1 − θ
.
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