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Abstract

Non asymptotic risk bounds for Classification And Regression Trees
(CART) classifiers are obtained in the binary supervised classification
framework under a margin assumption on the joint distribution of the
covariates and the labels. These risk bounds are derived conditionally
on the construction of the maximal binary tree and allow to prove
that the linear penalty used in the CART pruning algorithm is valid
under the margin condition.
It is also shown that, conditionally on the construction of the maximal
tree, the final selection by test sample does not alter dramatically the
estimation accuracy of the Bayes classifier.
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1 Introduction

The Classification And Regression Trees (CART) method proposed by Breiman,
Friedman, Olshen and Stone [7] in 1984 consists in constructing an efficient
procedure that gives a piecewise constant estimator of a classifier or a re-
gression function from a training sample of observations. This procedure is
based on binary tree-structured partitions and on a penalized criterion that
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selects “good” tree-structured estimators among a huge collection of trees. It
currently yields some easy-to-interpret and easy-to-compute estimators which
are widely used in many applications in Medicine, Meteorology, Biology, Pol-
lution or Image Coding (see [8], [38] for example). This type of procedure is
often performed when the space of explanatory variables is high-dimensional.
Due to its recursive computation, CART needs few computations to provide
classifiers, which accelerates the computation time drastically when the num-
ber of variables is large. It is now widely used in the genetics framework (see
[12] for example), or more generally to reduce variable dimension (see [30]
[22] for example).

To construct a decision tree from a training sample of observations, the CART
algorithm consists in constructing a deep dyadic recursive tree Tmax from the
observations by minimizing some local impurity function at each step. Then,
Tmax is pruned to obtain an uniquely defined finite sequence of nested trees
thanks to a penalized criterion, whose penalty term is of the form

penn(T ) = α
|T̃ |
n
, (1)

where α is a tuning parameter, n is the number of observations, and |T̃ | is the
size of the tree T , i.e. the number of leaves (terminal nodes) of T . Thus the
CART algorithm can be viewed as a model selection procedure, where the
collection of models is a collection of random decision trees constructed on
the training sample of observations. In its pruning procedure, CART selects
a small collection of trees within the whole collection of random trees. Then,
a final tree belonging to the small collection thus constructed is selected ei-
ther by cross-validation or by test sample. The present paper focuses on the
test sample method.

CART differs from the procedure proposed by Blanchard et al. [4] in that
the first large tree is constructed locally, and not in a global way by mini-
mizing some loss function on the whole sample. For further results on the
construction of the deep tree Tmax, we refer to Nobel [26, 27], and Nobel and
Olshen [28] about Recursive Partitioning.
In this paper, our concern is the pruning step which entails the choice of
the penalty function (1): the linearity of the penalty term is fundamental to
ensure that the whole information is kept in the obtained sequence. Gey et
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al. [14] addressed this question in the regression framework. Following this
previous work, the present paper aims at validating the choice of the penalty
in the two class classification framework. Former results on binary classi-
fication (see Nobel [27], or Scott et al. [33] in the image context) provide
optimal trees in terms of risk conditionally on the construction of the first
large dyadic tree Tmax. These trees are obtained by penalizing the empirical
misclassification rate with a penalty term of the form

penn(T ) = α

√
|T̃ | log n

n
. (2)

Unfortunately, as discussed by Scott in [32], the pruning algorithm computed
with non-linear penalties is computationally slower than the one using linear
penalties, and provides subtrees that are not necessarily unique nor nested.

The latter results are obtained without making any assumption on the joint
distribution P of the variables. By adding an assumption on P, we exhibit
non-asymptotic conditional risk bounds for the tree chosen thanks to the
usual CART algorithm as described above. These risk bounds improve those
obtained in previous papers (see [27], [32], [33] for instance); they validate
the form of the penalty (1) used in the pruning step, and show that the im-
pact of the selection via test sample is conveniently controlled.

In this paper, we leave aside the problem of consistency of CART. CART
is known to be non-consistent in many cases. Some results and conditions
to obtain consistency can be found in Devroye et al. [9]. Furthermore, Sec-
tion 4 briefly presents consistent results for CART based on the risk bounds
obtained.

The outline is the following. Section 2 gives the general framework of
binary classification, an overview of the CART procedure, and introduces
the methods and notations used in the following sections. Section 4 presents
the main theoretical results for classification trees: Theorem 1 bears on the
whole procedure, while Propositions 1, 2 concern the pruning procedure and
Proposition 3 concerns the final step. Section 5 offers propects about the
margin effect on classification trees. Proofs are gathered in Section 6.
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2 Classification with CART

2.1 Binary classification

The CART method is used in the following general classification framework.
Suppose one observes a sample of N independent copies
(X1, Y1), . . . , (XN , YN) of the random variable (X, Y ), where the explanatory
variable X takes values in a measurable space X and is associated with a
label Y taking values in {0, 1}. A classifier is then any function f mapping
X into {0, 1}. Its quality is measured by its misclassification rate

P(f(X) 6= Y ),

where P denotes the joint distribution of (X, Y ). If P were known, the
problem of finding an optimal classifier minimizing the misclassification rate
would be easily solved by considering the Bayes classifier f ∗ defined for every
x ∈ X by

f ∗(x) = 1lη(x)>1/2, (3)

where η(x) is the conditional expectation of Y given X = x, that is

η(x) = P [Y = 1 | X = x] , (4)

and 1l denotes the indicator function. As P is unknown, the goal is to con-
struct from the sample {(X1, Y1), . . . , (XN , YN)} a classifier f̃ that is as close
as possible to f ∗ in the following sense: since f ∗ minimizes the misclassifica-
tion rate, f̃ will be chosen in such a way that its misclassification rate is as
close as possible to the misclassification rate of f ∗, i.e. in such a way that
the loss

l(f ∗, f̃) = P(f̃(X) 6= Y )− P(f ∗(X) 6= Y ) (5)

is as small as possible. Then, the quality of f̃ will be measured by its risk,
i.e, the expectation with respect to the sample distribution

E[l(f ∗, f̃)]. (6)

Numerous papers have dealt with the issue of predicting a label from an in-
put x ∈ X via the construction of a classifier (see for example [1], [37], [9],
[31], [15]). There is a large collection of methods coming both from computa-
tional and statistical areas and based on learning a classifier from a learning
sample, where the inputs and labels are known. For a non exhaustive yet
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extensive bibliography on this subject, we refer to Boucheron et al. [5].
The classifiers considered in the present paper are classical empirical risk
minimizers (also referred to as ERM classifiers), where the empirical mis-
classification rate on a sample E of size m is defined, for any classifier f ,
by

Pm(f) =
1

m

∑
(Xi,Yi)∈E

1lYi 6=f(Xi). (7)

The ERM classifier f̃ studied here is computed by classical hold out: the
sample {(X1, Y1); . . . ; (XN , YN)} of the random variable (X, Y ) ∈ X ×{0, 1}
is split in two independent subsamples: a learning sample L of size nl and a
test sample T of size nt, with nl + nt = N . A collection of ERM classifiers
is computed by minimizing Pnl (equation (7) with E = L) on a collection of
models, and the final classifier f̃ is computed by minimizing Pnt (equation
(7) with E = T ) over the collection obtained in that way.

2.2 CART classifiers

The CART algorithm provides piecewise constant classifiers represented by
binary decision trees. An example of the latter is given in Figure 1 for a
couple of covariates (X1, X2) belonging to X = [0; 1]2.
The tree on the left hand side of Figure 1 defines the partition of X repre-
sented on the right hand side of Figure 1: each question asked on an internal
node relates to a split in X . If the answer to the question is positive, go to
the left child node, if not, go to the right child node. Hence the first question
corresponds to a two-part partition of the covariate space. Then, each part is
split into two subparts, and so on. Thus X is associated to the so called root
of the tree, and the final partition is associated to the terminal nodes, also
called leaves, of the tree. Hence each node of the tree represents a subset of
the covariates space defined by the successive questions. The final partition
is given by the leaves of the tree. Finally, a predictive value for the dependent
variable is associated to each leaf. Thus, if T̃ denotes the set of leaves of a
decision tree T , the classifier fT : X 7→ {0; 1} defined on T̃ can be written as

fT =
∑
t∈T̃

at1lt, (8)
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Figure 1: Decision tree example (left) and its associated partition (right).

where at ∈ {0; 1} and 1lt(x) = 1 if x falls in the leaf t, 1lt(x) = 0 otherwise.

2.3 The CART algorithm

CART is based on a recursive partitioning using a class S of subsets of X
which determines the question to be asked at each internal node of the tree.
Below, we consider general classes S with finite Vapnik-Chervonenkis dimen-
sion, henceforth referred to as VC-dimension (for a complete overview of the
VC-dimension see [36]). Let us notice that, theoretically, CART can be per-
formed with any kind of split class S, but, in practice, the more frequently
used class is that of half spaces of X with axis-parallel frontiers (which cor-
responds to axis-parallel cuts) for computational reasons.

To begin with, a collection of CART classifiers is constructed by using learn-
ing sample L. This collection is computed in two steps, called the growing
algorithm and the pruning algorithm. The growing algorithm allows to con-
struct a maximal binary tree Tmax from the data by recursive partitioning,
and then the pruning algorithm allows to select a finite collection of subtrees
of Tmax.
Since our main interest in this paper is the pruning algorithm, we skip the
growing algorithm (for more details about the growing algorithm, see [7]).
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Just notice that the maximal tree Tmax is constructed from the learning sam-
ple in such a way that, at the end of the algorithm, its leaves are pure, i.e,
contain only observations having the same label.

Then, to avoid overfitting, a decision tree having good predictive perfor-
mance has to be selected among all possible subtrees pruned from Tmax. Let
us recall that a pruned subtree of Tmax is defined as any binary subtree of
Tmax having the same root (denoted t1) as Tmax. As mentioned in [7], looking
at the whole family of subtrees pruned from Tmax is an NP-hard problem.
Then, a good alternative to the exhaustive search is the pruning algorithm,
which is computed as follows.

First, let us introduce some notations:

(i) For a tree T , t is the general notation for a node of T and, if t is an
internal node, Tt denotes the branch of T issued from t, that is the
subtree of T whose root is t.

(ii) For a tree T , T̃ denotes the set of its leaves and |T̃ | the cardinality of

T̃ .

(iii) Take two trees T1 and T2. Then, if T1 is a pruned subtree of T2, write
T1 � T2.

In the meantime, let us denote by n the size of the sample used to prune Tmax;
in the methods detailed below, we will see that, in any case, n 6 nl < N ,
where nl is the size of the learning sample L.
Second, let us notice that, given a tree T and FT the set of classifiers defined
on T̃ as defined by (8), the ERM classifier on FT is

f̂T = argminf∈FTPn(f)

=
∑
t∈T̃

ŷt1lt,

where Pn is the empirical misclassification rate defined by (7), and ŷt ∈ {0; 1}
is the majority vote inside the leaf t. Thus, if t is an internal node of T ,
f̂|Tt denotes the restriction of f̂T to the sub-partition associated with the
leaves of the branch Tt, and Pn(t) = n−1

∑
{Xi∈t} 1lŷt 6=Yi denotes the weighted

7



misclassification rate inside the node t.
Third, given any subtree T � Tmax and α > 0, one defines

critα(T ) = Pn(f̂T ) + α
|T̃ |
n
. (9)

the penalized criterion of T for the so called temperature α, and Tα the
subtree of Tmax satisfying:

(i) Tα = argminT�Tmaxcritα(T ),

(ii) if critα(T ) = critα(Tα), then Tα � T .

Thus Tα is the smallest minimizing subtree for the temperature α. The ex-
istence and the unicity of Tα are proved in [7, pp 284-290].
The pruning algorithm’s principle is to raise temperature α, and to record
the corresponding Tα. The algorithm is summarized in Table 1 (see [7, pp
59-92] for a complete overview).

Remark 1.

1) T1 is the smallest subtree for temperature 0, so it is not necessarily equal
to Tmax.

2) Tmax are T1 are constructed in such a way that, for all T � T1 and all
internal node t of T , Pn(t) > Pn(f̂|Tt); hence, αk > 0 for all k > 1.

3) The pruning algorithm is designed to catch, at each iteration k, the
minimal temperature αk+1 for which the overall energy is kept, that is
for which critαk+1

(Tk+1) = critαk+1
(Tk). This property results directly

from the linearity of the penalty used in criterion (9).

Finally, the selection of a tree among the sequence (Tk)16k6K is made by
using test sample T : choose k̂ as

k̂ = argmin
{16k6K}

[
Pnt(f̂Tk)

]
, (10)

where Pnt is the empirical misclassification rate on T as defined by (7). Then,
the final CART classifier is

f̃ = f̂Tk̂ .
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Pruning algorithm

Input Binary decision tree Tmax.

Initialization α1 = 0, T1 = Tα1 = argminT�TmaxPn(f̂T ).
Set T = T1 and k = 1.

Iteration While |T̃ | > 1,
Compute

αk+1 = min
{t internal node of T}

Pn(t)− Pn(f̂|Tt)

|T̃t| − 1
.

Prune all branches Tt of T verifying

Pn(f̂|Tt) + αk+1|T̃t| = Pn(t) + αk+1

Set Tk+1 the pruned subtree obtained in that way.
Set T = Tk+1 and k = k + 1.

Output Trees T1 � . . . � TK = {t1},
Temperatures 0 = α1 < . . . < αK .

Table 1: CART pruning algorithm.

2.4 Properties of the pruned subtrees sequence

It may be easily seen that the computational complexity of the pruning
algorithm is linear with respect to the number of nodes of Tmax. Hence, the
pruning algorithm is interesting in two ways:

1) It reduces drastically the computational complexity of the exhaustive
search from O(n2) to O(n log n) (see [32] for instance),

2) It provides a small collection of trees that can be easily evaluated on T .

Thus, to ensure that the CART algorithm provides good classifiers, it is
important to verify that

• pruning is like looking at the entire family of pruned subtrees according
to penalized criterion (9),
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• pruning provides trees having good performance in term of risk condi-
tionally on the growing algorithm,

• using a test sample does not alter too much the performance of the tree
thus selected.

The first point has already been established by Breiman et al. [7]:

Theorem 2.4.1 (Breiman, Friedman, Olshen, Stone [7]).
For all k ∈ {1, . . . , K}, Tk = Tαk and, for all α > 0, there exists k ∈
{1, . . . , K} satisfying Tα = Tk.

Theorem 2.4.1 ensures that

1) the trees of the sequence are unique and minimize penalized criterion (9)
for known temperatures,

2) whatever the choice of the temperature α used in the penalized criterion
(9), Tα belongs to the sequence.

Thus, the definition of Tα leads to an infinite collection of trees over all real
α, but only finitely many trees are possible according to criterion (9).

To the best of our knowledge, the fact that the classifiers provided by CART
perform well in terms of conditional risk remains to be seen. To proceed, two
methods are applied to construct the sequence (Tk)16k6K . These methods,
as well as the general notations and assumptions refered to in this paper, are
presented in the next section.

3 Methods, Notations and Assumptions

3.1 Methods and notations

For a given tree T , FT will denote the set of classifiers defined on the partition
given by the leaves of T , that is

FT =

∑
t∈T̃

at1lt ; (at) ∈ {0, 1}|T̃ |
 . (11)
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Thus f̂T =
∑

t∈T̃ ŷt1lt is the ERM classifier on FT .

The two different methods applied in the CART pruning algorithm are:

M1: L is split in two independent parts L1 and L2 containing respectively
n1 and n2 observations, with n1 + n2 = nl = N − nt. Hence Tmax is
constructed using L1, then pruned using L2. This method is applied
in Gelfand et al. [11] for instance.

M2: Tmax is constructed and pruned using sample L entirely. This is
the most commonly used method in the CART literature and its
applications.

Note that a penalty is needed in both methods in order to reduce the number
of candidate tree-structured models contained in Tmax. Indeed, if one does
not penalize, the number of models to be considered grows exponentially with
N (see [7]). So making a selection by using a test sample without penalizing
requires visiting all the models. As mentioned above, looking for the best
model in the collection of all subtrees pruned from the maximal one becomes
explosive. Hence pruning allows to reduce significantly the number of trees
taken into account. With both M1 and M2 methods, T is used to select a
tree among the pruned sequence. Let us mention that T usually represents
10% of the data and is randomly taken in the original sample, except if the
design is fixed. In that case one takes, for example, one observation out of
ten to obtain the test sample. In a similar way, for the M1 method L1 and
L2 are taken randomly in L, except if the design is fixed, in which case one
takes one observation out of two for instance.

Methods M1 and M2 involve different treatments for the risks of the CART
classifiers thus obtained. Indeed, by conditioning with respect to the sample
used to perform the growing algorithm, Tmax becomes deterministic with M1,
while it implies random models depending on the sample used to prune Tmax
with M2. In the latter case, union bounds on the family of all possible trees
that can be constructed on the grid {Xi ; (Xi, Yi) ∈ L} are used to obtain
risk bounds. This allows to obtain risk bounds only conditionally on this grid
instead of conditionally on the grid and the labels. To simplify the notations,
we define the loss and the L2 distance corresponding with either method M1
or M2.
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Definition 1. The loss of a classifier f is defined by λ(f ∗, f), and is com-
puted as follows:
(i) if f̃ is constructed via M1, λ(f ∗, f) := l(f ∗, f), with l defined by (5).
(ii) if f̃ is constructed via M2,

λ(f ∗, f) := E [Pnl(f)− Pnl(f
∗) | Xi ; (Xi, Yi) ∈ L]

=
1

nl

∑
{Xi ; (Xi,Yi)∈L}

|2η(Xi)− 1| 1lf(Xi)6=f∗(Xi),

where Pnl is the empirical misclassification rate on L defined by (7), and η
is defined by (4).

Since l(f ∗, f) = E
[
|2η(X)− 1| 1lf(X)6=f∗(X)

]
for all classifier f (see [9] for

instance), λ is just the empirical version of l on the grid {Xi ; (Xi, Yi) ∈ L}
in the M2 case.

Definition 2. The L2 distance between two classifiers f and g is defined by
d(f, g), and is computed as follows:
(i) if f̃ is constructed via M1, d2(f, g) := E [(f(X)− g(X))2].
(ii) if f̃ is constructed via M2,

d2(f, g) := d2nl(f, g) =
1

nl

∑
{Xi ; (Xi,Yi)∈L}

(f(Xi)− g(Xi))
2 ,

As for λ, d is the empirical version of the L2 distance on the grid {Xi ; (Xi, Yi) ∈
L} with M2.

Remark 2. If the design is fixed, λ and d are different according to the
method only through the grid on which they are computed (the grid of
method M1 being obtained from the one of method M2 by taking one point
out of two). In this case, λ and d are no more random.

We based our computation of risk bounds for the ERM classifiers provided
by CART on recent results (see for instance [21], [34], [35], [25], [17, 18],
[24], [19], [16]). They stem from Vapnik’s results (see [36], [20] for example),
showing that, without any assumption on the joint distribution P, the penalty
term used in the penalized criterion for the model selection procedure should

be taken proportional to

√
|T̃ |/nl to obtain classifiers optimal in term of

conditional risk (see [27, 33] for instance). Nevertheless, it has also been
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shown that, under the overoptimistic zero-error assumption (that is Y =
η(X) almost surely, where η is defined by (4)), this penalty term should

be taken proportional to |T̃ |/nl, as done in criterion (9). Since we aim at
validating the choice of the penalized criterion (9) in contexts less restrictive
than the zero-error one, we consider weaker assumptions on P.

3.2 Margin assumptions

Margin assumptions are now widely known to improve risk bounds of ERM
classifiers in the binary classification context. One of the best-known margin
assumptions is that of Mammen and Tsybakov [21] that may be written as
follows:

MA(MT) There exist some constants C > 0 and κ > 1 such that, for all
t > 0,

P (|2η(X)− 1| 6 t) 6 C t
1

κ−1 , (12)

where η is defined by (4). MA(MT) implies the more intuitive assump-
tion considered by Massart and Nedelec in [25] (see also the slightly weaker
condition proposed in [16]): taking t = h ∈]0; 1[ and the limit value κ = 1,
MA(MT) leads to

MA(MN) ∃h ∈]0; 1[ P (|2η(X)− 1| 6 h) = 0.

Assumption MA(MN) means that (X, Y ) is sufficiently well distributed to
ensure that there is no region in X for which the toss-up strategy could be
favored over others: h can be viewed as a measurement of the gap between
labels 0 and 1 in the sense that, if η(x) is too close to 1/2, then choosing 0
or 1 will not make a real difference for that x.
In assumption MA(MT), η can be continuous, but has to cross the line
η(x) = 1/2 in a non smooth way.

From this simple example, the so called margin h can be viewed as a noise
level for the classification problem. From this point of view, margin assump-
tions have been generalized by Koltchinskii in [17]; they compare directly
the loss l defined by (5) with some kind of ”noise variance” related to the L2

distance to the Bayes classifier f ∗:
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MA(K) There exists some strictly convex positive function ϕ satisfying
ϕ(0) = 0 such that,

∀f : X → {0; 1} l(f ∗, f) > ϕ
(√

E [(f(X)− f ∗(X))2]
)

It is easy to check that MA(MT) and MA(MN) imply MA(K) with

ϕ(x) = Cκx
2κ

2κ−1 and ϕ(x) = hx2 respectively.

Remark 3. Taking h > 1 in MA(MN) (or more generally ϕ(x) > x2 in
MA(K)) has no sense since, for any classifier f , (see [9] for instance)

l(f ∗, f) = E
[
|2η(X)− 1| (f(X)− f ∗(X))2

]
6 E

[
(f(X)− f ∗(X))2

]
.

MA(MT) (with κ > 1) and MA(MN) (with κ = 1) lead to risk bounds
suggesting that the empirical misclassification rate of f̂T have to be penalized

by a term proportional to
(
|T̃ |/nl

)κ/(2κ−1)
to obtain ERM classifiers optimal

in terms of risk (see also [35] for instance), while MA(K) leads to more gen-

eral penalty terms given by strictly concave functions of |T̃ |/nl. Hence these
margin assumptions make the link between the “global” pessimistic case
(without any assumption on P) and the zero-error case by considering some
noise level of the classification problem. More recent results (see [17, 18],
[2] for instance) deal with data-driven penalties based on local Rademacher
complexities also derived from margin assumptions.

As it can be seen in [7], the CART pruning algorithm looks at the entire
family of pruned subtrees according to criterion (9) only if the penalty taken
in the criterion is linear. Thus, it follows from the above mentioned results
that the following margin assumption has to be fulfilled:

MA(1) ∃h ∈]0; 1[ ∀f : X 7→ {0; 1} λ(f ∗, f) > hd2(f ∗, f),

where λ and d are defined in Definitions 1 and 2 respectively.

Examples:

1) Take X = (X1, . . . , Xd) uniformly distributed on [0; 1]d. The associated
label is designed as follows: if Xj 6 1/2 or Xj > 1/2 for all j = 1, . . . , d,
then Y = 1 with probability q; otherwise Y = 1 with probability 1− q.
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2) Take X = (X1, X2) such that X1 and X2 are independently generated
with gaussian distribution N (0, 1). The associated label is designed as
follows: If X1 > 0 and X2 > 0 then Y = 1 with probability q, otherwise
Y = 1 with probability 1− q.

In these two simple examples, if q 6= 1/2, MA(MN), and consequently
MA(1), is satisfied with any value of h satisfying 0 < h < |2q − 1| in both
M1 and M2 cases; indeed η(X) = q or η(X) = 1− q, depending on where X
falls. Examples in which MA(1) fails can be found in [2].

Below, we prove that, under MA(1), the penalty used by CART in criterion
(9) for the pruning step leads to classifiers having good performance.
In the remaining part of this paper, the constant h will denote the so called
margin.

4 Risk Bounds

This section is devoted to the results obtained on the performance of the
CART classifiers for both M1 and M2 methods. These performance are re-
garded from the risk viewpoint presented in paragraph 2.1, where classifiers
are considered as estimators of the Bayes classifier f ∗. The risk of the classi-
fier f̃ provided by the CART algorithm is compared to those of the collection(
f̂T

)
T�Tmax

conditionally on the construction of Tmax.

We shall first present a general theorem, then give more precise results about
the last two parts of the algorithm, which are the pruning algorithm and the
final selection by test sample.

Theorem 1. Given N independent pairs of variables ((Xi, Yi))16i6N of com-
mon distribution P, with (Xi, Yi) ∈ X × {0, 1}, let us consider the estimator
f̃ (10) of the Bayes classifier f ∗ (3) obtained via the CART algorithm as
defined in section 2. Then we have the following results.

(i) if f̃ is constructed via M1:
Suppose that margin assumption MA(1) is satisfied. Then, there exist some
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absolute constants C, C1 and C2 such that

E
[
λ(f ∗, f̃) | L1

]
6 C inf

T�Tmax

{
inf
f∈FT

E [λ(f ∗, f) | L1] +
|T̃ |
hn2

}
+

C1

hn2

(13)

+C2
log (nl)

hnt
. (14)

(ii) if f̃ is constructed via M2:
Let PL be the L sample distribution. Let V be the Vapnik-Chervonenkis
dimension of the set of splits used to construct Tmax and suppose that nl >
V . Let K be the number of pruned subtrees of the sequence provided by the
pruning algorithm, and suppose that margin assumption MA(1) is satisfied.
Then, there exist some absolute constants C ′, C ′1, C

′′
1 and C2 such that, for

every δ ∈]0; 1[, on a set Ωδ verifying PL(Ωδ) ≥ 1− δ,

E
[
λ(f ∗, f̃) | L

]
6 C ′ inf

T�Tmax

{
inf
f∈FT

λ(f ∗, f) + log
(nl
V

) |T̃ |
hnl

}
+
Cδ
hnl

(15)

+C2
logK

hnt
, (16)

with Cδ = C ′1 + C ′′1 log (1/δ).

Note that the constants appearing in the upper bounds for the risks are not
sharp. We do not investigate the sharpness of the constants here.

Several comments can be made on the basis of the results from Theorem 1:

Methods Both methods M1 and M2 are considered for the following rea-
sons:

• Since all the risks are considered conditionally on the growing pro-
cedure, the M1 method permits to make a deterministic penalized
model selection and then to obtain sharper upper bounds than the
M2 method.

• On the other hand, the M2 method permits to keep the whole informa-
tion given by L. Indeed, in that case, the sequence of pruned subtrees
is not obtained via some plug-in method using a first split of the sample
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to provide the collection of tree-structured models. This method is the
one proposed by Breiman et al. and it is more commonly applied in
practice than the former. We focus on this method to ensure that it
provides classifiers that have good performance in terms of risk.

Interpretation of the bounds For both M1 and M2 methods, the in-
equality of Theorem 1 may be divided into two parts:

• (13) and (15) correspond to the pruning algorithm. They show that,
up to some absolute constant and the final selection, the conditional
risk of the final classifier is approximately of the same order as the in-
fimum of the penalized risks of the collection of subtrees of Tmax. The
term inside the infimum is of the same form as the penalized criterion
(9) used in the pruning algorithm. This shows that, for a sufficiently
large temperature α, this criterion allows to select convenient subtrees
in term of conditional risk.
Let us emphasize that the remainder term driving the choice of the
penalty is directly proportional to the number of leaves in the M1
method, whereas a multiplicative logarithmic term appears in the M2
method. This term is due to the randomness of the models consid-
ered, since the samples used to construct and prune Tmax are no longer
independent.

• (14) and (16) correspond to the final selection of f̃ among the collection
of pruned subtrees using T . As K 6 nl, this selection adds a term
proportional to log nl/nt for both methods, showing that not much is
lost when a test sample is used provided that nt is sufficiently large
with respect to log nl. Nevertheless, since we have no idea of the size
of the constant C2, it is difficult to deduce a general way of choosing T
from this upper bound.

Consistency results Since growing and pruning are independent when
applying M1, the VC-dimension V of the set of splits S only appears with
M2. Thus, in this case, the term log (nl/V ) in the infimum has to be taken
into account if V is negligeable in front of nl. Nevertheless, if CART provides
models such that

- the maximal dimension of the models is DN = o (N/ logN),
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- the approximation properties of the models are convenient enough to
ensure that the bias tends to zero with increasing sample size N ,

then we have a result of consistency for f̃ provided that nt is conveniently
chosen with respect to log nl.

Role of the margin It has been shown in [25] and in [21] that, under mar-
gin assumptions MA(MN) and MA(MT) respectively, the ERM estimator
of f ∗ on one model is minimax if f ∗ belongs to some Hölder classes. This
means that, under margin assumption MA(1), the upper bound obtained in
Theorem 1 for the CART classifier can not be improved. On the other hand, if
margin assumption MA(MT) is fulfilled, similar bounds are obtained with

a remainder term in the infimum proportional to
(
|T̃ |/nl

)κ/(2κ−1)
. Since

κ > 1, this term is subbaditive with respect to |T̃ | (see [32] for full descrip-
tion of subbaditive penalties), so results of [32] can be applied: the subtrees
pruned by minimizing a penalized criterion with a penalty proportional to(
|T̃ |/nl

)κ/(2κ−1)
are subtrees of the CART sequence (Tk)16k6K . So, if κ is

known, the best solution is to prune Tmax with the usual pruning algorithm,
and then to extract from the sequence obtained in that way the subsequence
minimizing the criterion penalized by the subadditive penalty.

Margin dependent penalties It is important to point out that the penalty
term suggested by the risk bounds depends on margin parameters, which are
usually unknown in practice. To withdraw the margin parameter h under
margin assumption MA(1), one prunes Tmax with the pruning algorithm
given in Table 1, and then one uses a test sample or cross-validation to select
a subtree. If no margin assumption is fulfilled, the procedure of Scott [32]

can be applied, with a penalty term proportional to

√
|T̃ |/nl. Otherwise,

the margin parameters have to be estimated.

Optimality of the bounds Theorem 1 also shows that the higher the
margin, the smaller the risk, which is intuitive since the inverse of the
margin plays the role of the classification noise. Actually, to reach opti-
mality in terms of conditional risk, the penalty should be taken as cst ×(
h−1|T̃ |/nl ∧

√
|T̃ |/nl

)
since, in any case, the remainder term inside the in-
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fimum is, at worst, proportional to

√
|T̃ |/nl. Hence CART will underpenalize

trees for which h 6
√
|T̃ |/nl, leading to classifiers having an excessive num-

ber of leaves. Nevertheless, the condition h >

√
|T̃max|/nl can be controlled

during the growing algorithm by forcing the maximal tree’s construction to
stop earlier, for example. This is obviously difficult to do in practice since it
heavily depends on the data and on the size of the learning sample, and is
worth being investigated more thoroughly.

The two following subsections give more precise results on the pruning algo-
rithm for both the M1 and M2 methods, and particularly on the constants
appearing in the penalty function. Subsection 4.2 validates the discrete se-
lection by test-sample.

4.1 Validation of the Pruning algorithm

In this section, we focus more particularly on the pruning algorithm and give
trajectorial risk bounds for the classifier associated with Tα, the smallest
minimizing subtree for the temperature α defined in subsection 2.3. We
show that, for a convenient constant α, f̂Tα is not far from f ∗ in terms of its
conditional risk. Let us emphasize that the subsample T plays no role in the
two following results.

4.1.1 f̃ constructed via M1

Here we assume that L = L1 ∪ L2. Thus Tmax is constructed on the first
set of observations L1 and then pruned with the second set L2 independent
of L1. Since the set of pruned subtrees is deterministic according to L2, the
selection is made among a deterministic collection of models.
For any subtree T of Tmax, let FT be the model defined on the leaves of T
given by (11). Let Pn2 be the empirical misclassification rate on L2 as defined
by (7). Then let us consider the following:

• For T � Tmax, f̂T = argminf∈FT [Pn2(f)],

• For α > 0, Tα is the smallest minimizing subtree for the temperature
α as defined in subsection 2.3 and f̂Tα = argminf∈FTα [Pn2(f)].
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Proposition 1. Let PL2 be the product distribution on L2 and let h be the
margin given by MA(1). Let ξ > 0.
There exists a large enough positive constant α0 > 2 + log 2 such that, if
α > α0, then, there exist some nonnegative constants Σα and C such that

l(f ∗, f̂Tα) 6 C1(α) inf
T�Tmax

{
inf
f∈FT

l(f ∗, f) + h−1
|T̃ |
n2

}
+ C h−1

1 + ξ

n2

on a set Ωξ such that PL2(Ωξ) > 1−Σαe
−ξ, where l is defined by (5), C1(α) >

α0 and Σα are increasing with α.

We obtain a trajectorial non-asymptotic risk bound on a large probability
set, leading to the conclusions given for Theorem 1. Nevertheless, taking an
excessive temperature α will overpenalize and select a classifier having high
risk E[l(f ∗, f̂Tα) | L1]. Furthermore, the fact that C1(α) and Σα are increasing
with α suggests that both sides of the inequality grow with α. The choice
of the convenient temperature is then critical to make a good compromise
between the size of E[l(f ∗, f̂Tα) | L1] and a large enough penalty term.

4.1.2 f̃ constructed via M2

Here we define the different empirical risks, expected loss and estimators
exactly in the same way as in subsection 4.1.1, although l is replaced by the
empirical expected loss λ on Xnl

1 = {Xi ; (Xi, Yi) ∈ L} defined in Definition
1. In this case, we obtain nearly the same performance for f̂Tα despite the
fact that the constant appearing in the penalty term can now depend on nl:

Proposition 2. Let PL be the product distribution on L, λ be the empirical
expected loss computed on {Xi ; (Xi, Yi) ∈ L}, and let h be the margin given
by MA(1). Let ξ > 0 and

αnl,V = 2 + V/2
(

1 + log
nl
V

)
.

There exists a large enough positive constant α0 such that, if α > α0, then,
there exist some nonnegative constants Σα and C ′ such that

λ(f ∗, f̂Tα) 6 C ′1(α) inf
T�Tmax

{
inf
f∈FT

λ(f ∗, f) + h−1αnl,V
|T̃ |
nl

}
+ C ′ h−1

1 + ξ

nl

on a set Ωξ such that PL(Ωξ) > 1 − 2Σαe
−ξ, where C ′1(α) > α0 and Σα are

increasing with α.
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We obtain a similar trajectorial non-asymptotic risk bound on a large prob-
ability set. The same conclusions as those derived from M1 hold in this case.
Let us just mention that the remainder term h−1αnl,V |T̃ |/nl in the risk bound

takes into account the complexity of the collection of trees having |T̃ | leaves
which can be constructed on {Xi ; (Xi, Yi) ∈ L}. Since this complexity
is controlled via the VC-dimension V , V necessarily appears in the penalty
term. It differs from Proposition 1 in the sense that the models we consider
are random, so this complexity has to be taken into account to obtain a uni-
form bound.

Example: Let us consider the case where S is the set of all half-spaces of
X = Rd with axis-parallel frontiers. In this case, if d > 3,

log (d)

log 2
− 1.18 6 V 6 d,

consequently, if nl > d, we obtain a penalty proportional to(
4 + d (1 + log [nl log 2/(log d− 2 log 2)])

2h

)
|T̃ |
nl
.

So, if CART provides some minimax estimator on a class of functions, the
log nl term always appears for f ∗ in this class when working in a linear space
of low dimension.

4.2 Final Selection

We focus here on the selection of the classifier f̃ among the collection (f̂Tk)16k6K
provided by the pruning algorithm as defined in subsection 2.3. Let us recall
that f̃ is defined by

f̃ = argmin
{f̂Tk ;16k6K}

[
Pnt(f̂Tk)

]
,

where Pnt is the empirical misclassification rate on T defined by (7).
The performance of this classifier can be compared to the performance of the
collection (f̂Tk)16k6K by the following:

Proposition 3.
Let λ be the loss defined in Definition 1. For both methods M1 and M2, there
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exist three absolute constants C ′′ > 1, C ′1 > 3/2 and C ′2 > 3/2 such that

E
[
λ(f ∗, f̃) | L

]
6 C ′′ inf

16k6K
λ(f ∗, f̂Tk) + C ′1 h

−1 logK

nt
+ h−1

C ′2
nt
,

where K is the number of pruned subtrees extracted during the pruning algo-
rithm.

5 Concluding Remarks

We have proven that CART provides convenient classifiers in terms of con-
ditional risk under the margin assumption MA(1). As for the regression
case, the properties of the growing algorithm need to be analyzed to obtain
full unconditional upper bounds. Results on the performance of theoretical
procedures in which CART is viewed as a forward algorithm to approximate
an ideal, but intractable, binary tree are given in [13]. Although they do
not validate any concrete algorithm as done here, these results confirm that
the penalty term used in penalized criterion (9) is well chosen under MA(1).

The remarks made after Theorem 1 on the size of the margin h enlarge our
perspectives for the application of CART in practice. Among such perspec-
tive, we may

• use the slope heuristic (see for example [3]) to select a classifier among
a collection,

• search for a robust manner to determine if the margin assumption is
fulfilled, allowing to use the blind selection by test sample.

Some track to estimate the margin h if assumption MA(1) is fulfilled could
be to use mixing procedures as boosting (see [6] [10] for example). Hence,
this estimate could be used in the penalized criterion to help find the conve-
nient temperature. It could also give an idea of the difficulty to classify the
considered data and henceforth to help choose the most adapted classification
method.
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6 Proofs

Let us start with a preliminary result.

6.1 Local Bound for Tree-Structured Classifiers

Let (X, Y ) ∈ X×{0; 1} be a pair of random variables and {(X1, Y1), . . . , (Xn, Yn)}
be n independent copies of (X, Y ). Then given two classifiers f and g, let us
define

d2n(f, g) =
1

n

n∑
i=1

(f(Xi)− g(Xi))
2 .

Let M∗
n be the set of all possible tree-structured partitions that can be

constructed on the grid Xn
1 , corresponding to trees having all possible splits

in S and all possible forms without taking account of the response variable
Y . So M∗

n only depends on the grid Xn
1 and is independent of the variables

(Y1, . . . , Yn). Hence, for a tree T ∈M∗
n, define

FT =

∑
t∈T̃

at1lt ; (at) ∈ {0, 1}|T̃ |
 ,

where T̃ refers the set of the leaves of T . Then, for any f ∈ FT and any
σ > 0, define

BT (f, σ) = {g ∈ FT ; dn(f, g) 6 σ}

For each classifier f : X → {0, 1}, let us define the empirical contrast of f
recentered conditionally on Xn

1

Pn(f) = Pn(f)− E[Pn(f) | Xn
1 ], (17)

where Pn is defined for any given classifier f by

Pn(f) =
1

n

n∑
i=1

1lf(Xi)6=Yi .

Remark 4. If Pn is evaluated on a sample (X ′i) independent of Xn
1 , it is

easy to check that the bounds we obtain in what follows are still valid by
taking the population distance

d2(f, g) = E
[
(f(X)− g(X))2

]
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instead of its empirical version dn.

We have the following result:

Lemma 1. For any f ∈ FT and any σ > 0

E

[
sup

g∈BT (f,σ)
|Pn(g)− Pn(f)| | Xn

1

]
6 2 σ

√
|T̃ |
n
.

Proof. First of all, let us mention that, since the different variables we con-
sider take values in {0; 1}, we have for all x ∈ X and all y ∈ {0, 1}

1lg(x)6=y − 1lf(x) 6=y = (g(x)− f(x))(1− 21ly=1),

yielding

Pn(g)− Pn(f) =
1

n

n∑
i=1

(g(Xi)− f(Xi)) (1− 21lYi=1)

−E

[
1

n

n∑
i=1

(g(Xi)− f(Xi)) (1− 21lYi=1) | Xn
1

]
.

Let us now consider a Rademacher sequence of random signs (εi)16i6n inde-
pendent of (Xi, Yi)16i6n. Then, one has by a symmetrization argument

E

[
sup

g∈BT (f,σ)
|Pn(g)− Pn(f)| | Xn

1

]
6 E

[
sup

g∈BT (f,σ)

2

n

∣∣∣∣∣
n∑
i=1

εi(g(Xi)− f(Xi))(1− 21lYi=1)

∣∣∣∣∣ | Xn
1

]
.

Since g and f belong to FT , we have that

g − f =
∑
t∈T̃

(at − bt)ϕt,

where each (at, bt) takes values in [0, 1]2 and (ϕt)t∈T̃ is an orthonormal basis

of FT adapted to T̃ (i.e some normalized characteristic functions). Then,
by applying the Cauchy-Schwarz inequality, since g ∈ BT (f, σ), d2n(f, g) =∑

t∈T̃ (at − bt)2 6 σ2, we obtain that∣∣∣∣∣
n∑
i=1

εi(g(Xi)− f(Xi))(1− 21lYi=1)

∣∣∣∣∣ 6
√∑

t∈T̃

(at − bt)2

√√√√√∑
t∈T̃

(
n∑
i=1

εi(1− 21lYi=1)ϕt(Xi)

)2

6 σ

√√√√√∑
t∈T̃

(
n∑
i=1

εi(1− 21lYi=1)ϕt(Xi)

)2

.
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Finally, since (εi)16i6n and (1 − 21lYi=1)16i6n take their values in {−1; 1},
(εi)16i6n are centered and independent of (Xi, Yi)16i6n, and since, by defini-

tion, for each t ∈ T̃ n−1
∑n

i=1 ϕ
2
t (Xi) = 1, Jensen’s inequality implies

E

[
sup

g∈BT (f,σ)
|Pn(g)− Pn(f)| | Xn

1

]
6 2

σ

n

√√√√∑
t∈T̃

n∑
i=1

ϕ2
t (Xi) 6 2σ

√
|T̃ |
n
.

6.2 Proof of Proposition 1

To prove Proposition 1, we adapt results from Massart [23, Theorem 4.2],
and Massart and Nédélec [25] (see also Massart et.al. [24]).

Let n = n2. Let us give a sample L2 = {(X1, Y1), . . . , (Xn, Yn)} of the
random variable (X, Y ) ∈ X × [0, 1], where X is a measurable space and
let f ∗ ∈ F ⊂ {f : X 7→ [0, 1] ; f ∈ L2(X )} be the unknown function
to be recovered. Assume (Fm)m∈Mn is a countable collection of countable
models included in F . Let us give a penalty function penn : Mn −→ R+,
and γ : F × (X × [0, 1]) −→ R+ a contrast function, i.e. γ such that f 7→
E [γ(f, (X, Y ))] is convex and minimum at point f ∗. Hence define for all
f ∈ F the expected loss l(f ∗, f) = E [γ(f, (X, Y ))− γ(f ∗, (X, Y ))].
Finally let

γn =
1

n

n∑
i=1

γ(., (Xi, Yi)) (18)

be the empirical contrast associated with γ. For example, in the classification
context, γ(f, (x, y)) = 1lf(x)6=y, leading to the classical loss as defined by (5),
and the classical empirical misclassification rate Pn as defined by (7). Hence,
if the collection of modelsMn has finite-dimensional models with dimension
|m|, the penalty function can be taken as penn(m) = cst × |m| for instance.
Then let m̂ be defined as

m̂ = argmin
m∈Mn

[
γn(f̂m) + penn(m)

]
where f̂m = argming∈Fmγn(g) is the minimum empirical contrast estimator
of f ∗ on Fm. The final estimator of f ∗ is

f̃ = f̂m̂. (19)
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One makes the following assumptions:
H1: γ is bounded by 1, which is not a restriction since all the functions we
consider take values in [0, 1].
H2: Assume there exist c > (2

√
2)−1/2 and some (pseudo-)distance d such

that, for every pair (f, g) ∈ F2, one has

Var [γ(g, (X, Y ))− γ(f, (X, Y ))] 6 d2(g, f),

and particularly for all f ∈ F

d2(f ∗, f) 6 c2l(f ∗, f).

H3: For any positive σ and for any f ∈ Fm, let us define

Bm(f, σ) = {g ∈ Fm ; d(f, g) 6 σ}

where d is given by assumption H2. Let γ̄n = γn(.) − E[γn(.)]. We now
assume that for any m ∈ Mn, there exists some continuous function φm
mapping R+ onto R+ such that φm(0) = 0, φm(x)/x is non-increasing and

E

[
sup

g∈Bm(f,σ)

|γ̄n(g)− γ̄n(f)|

]
6 φm(σ)

for every positive σ such that φm(σ) 6 σ2. Let εm be the unique solution of
the equation φm(cx) = x2 , x > 0.

One gets the following result:

Theorem 2. Let {(X1, Y1), . . . , (Xn, Yn)} be a sample of independent real-
izations of the random pair (X, Y ) ∈ X × [0, 1]. Let (Fm)m∈Mn

be a count-
able collection of models included in some countable family F ⊂ {f : X 7→
[0, 1] ; f ∈ L2(X )}. Consider some penalty function penn :Mn −→ R+ and
the corresponding penalized estimator f̃ (19) of the target function f ∗. Take
a family of weights (xm)m∈Mn such that

Σ =
∑
m∈Mn

e−xm < +∞. (20)

Assume that assumptions H1, H2 and H3 hold.
Let ξ > 0. Hence, given some absolute constant C > 1, there exist some
positive constants K1 and K2 such that, if for all m ∈Mn

penn(m) > K1ε
2
m +K2c

2xm
n
,
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then, with probability larger than 1− Σe−ξ,

l(f ∗, f̃) 6 C inf
m∈Mn

[l(f ∗,Fm) + penn(m)] + C ′ c2
1 + ξ

n
,

where l(f ∗,Fm) = inffm∈Fm l(f
∗, fm) and the constant C ′ only depends on C.

Proof. The proof is inspired from Massart [23] and Massart et.al. [24]. We
give only sketches of proofs since those are now routine results in the model
selection area (see [24] for a fuller overview).

Let m ∈Mn and fm ∈ Fm. The definition of the expected loss and the fact
that

γn(f̃) + penn(m̂) 6 γn(fm) + penn(m)

lead to the following inequality:

l(f ∗, f̃) 6 l(f ∗, fm) + γ̄n(fm)− γ̄n(f̃) + penn(m)− penn(m̂) (21)

where γ̄n is defined by (17). The general principle is now to concentrate
γ̄n(fm) − γ̄n(f̃) around its expectation in order to offset the term penn(m̂).
Since m̂ ∈ Mn, we proceed by bounding γ̄n(fm) − γ̄n(f̂m′) uniformly in
m′ ∈Mn. For m′ ∈Mn and f ∈ Fm′ , let us define

wm′(f) =
[√

l(f ∗, fm) +
√
l(f ∗, f)

]2
+ y2m′ ,

with ym′ > εm′ , where εm′ is defined by assumption H3. Hence let us define

Vm′ = sup
f∈Fm′

γ̄n(fm)− γ̄n(f)

wm′(f)
.

Then (21) becomes

l(f ∗, f̃) 6 l(f ∗, fm) + Vm̂wm̂(f̃) + penn(m)− penn(m̂)

Since Vm′ can be written as

Vm′ = sup
f∈Fm′

νn

(
γ(fm, .)− γ(f, .)

wm′(f)

)
,

where νn is the recentered empirical measure, we bound Vm′ uniformly inm′ ∈
Mn by using Rio’s version of Talagrand’s inequality, whose first version can
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be found in [29], and recalled here: if F is a countable family of measurable
functions such that, for some positive constants v and b, one has for all f ∈ F
P (f 2) 6 v and ‖f‖∞ 6 b, then for every positive y, the following inequality
holds for Z = supf∈F(Pn − P )(f)

P

[
Z − E(Z) >

√
2

(v + 4bE(Z))y

n
+
by

n

]
6 e−y.

To proceed, we need to check the two bounding assumptions. First, since
by assumption H1 the contrast γ is bounded by 1, we have that, for each
f ∈ Fm′ , ∣∣∣∣γ(f, .)− γ(fm, .)

wm′(f)

∣∣∣∣ 6
1

y2m′
. (22)

Second, by using assumption H2, we have that, for each f ∈ Fm′ ,

Var

[
γ(f, (X, Y ))− γ(fm, (X, Y ))

wm′(f)

]
6

c2

4y2m′
. (23)

Then, by Rio’s inequality, we have for every x > 0

P

[
Vm′ > E(Vm′) +

√
c2 + 16E(Vm′)

2ny2m′
x+

x

ny2m′

]
6 e−x.

Let us take x = xm′+ξ, ξ > 0, where xm′ is given by (20). Then, by summing
up over m′ ∈Mn, we obtain that for all m′ ∈Mn

Vm′ 6 E(Vm′) +

√
c2 + 16E(Vm′)

2ny2m′
(xm′ + ξ) +

xm′ + ξ

ny2m′

on a set Ωξ such that P (Ωξ) > 1 − Σe−ξ. We now need to bound E(Vm′)
in order to obtain an upper bound for Vm′ on the set of large probability
Ωξ. By using techniques similar to Massart et al.’s [25], we obtain the fol-
lowing inequality via the monoticity of x 7→ φ(x)/x and the assumption
c > (2

√
2)−1/2: for all m′ ∈Mn, let um′ ∈ Fm′ be defined by

l(f ∗, um′) 6 2 inf
z∈Fm′

l(f ∗, z).
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Then we have

E(Vm′) 6 E

[
sup
z∈Fm′

|γ̄n(z)− γ̄n(um′)|
wm′(z)

]
+ E

[
|γ̄n(um′)− γ̄n(fm)|
infz∈Fm′ [wm′(z)]

]
.

For every z ∈ Fm′ , let

ω2
m′(z) = l(f ∗, um′) + E [γ(z, (X, Y ))− γ(um′ , (X, Y ))]+ .

Then, since

l(f ∗, z) = E [γ(z, (X, Y ))− γ(f ∗, (X, Y ))]

l(f ∗, z) = l(f ∗, um′) + E [γ(z, (X, Y ))− γ(um′ , (X, Y ))] ,

Then we have

l(f ∗, z) 6 ω2
m′(z) 6 5 l(f ∗, z). (24)

On the one hand we have wm′(z) > l(f ∗, z) + y2m′ > (1/5)ω2
m′(z) + y2m′ for

every z ∈ Fm′ . Hence

E

[
sup
z∈Fm′

|γ̄n(z)− γ̄n(um′)|
wm′(z)

]
6 5 E

[
sup
z∈Fm′

|γ̄n(z)− γ̄n(um′)|
ω2
m′(z) + 5y2m′

]
.

Furthermore we have

E

[
sup

{z ; ωm′ (z)6ε}
|γn(z)− γn(um′)|

]
6 E

[
sup

{z ; l(f∗,z)6ε2}
|γn(z)− γn(um′)|

]
,

and, if l(f ∗, z) 6 ε2, then l(f ∗, um′) 6 2ε2 and d(z, um′) 6 d(f ∗, z) +
d(s∗, um′) 6 cε+ cε

√
2. Hence we get that d(z, um′) 6 (1 +

√
2)cε 6 2cε

√
2.

Let us now suppose that ε > εm′ . Then we have by monoticity of x 7→ φ(x)/x
and by definition of εm′ that

φm′(2cε
√

2)

(2cε
√

2)2
6

φm′(cε)

c2ε22
√

2
6
φm′(cεm′)

c2ε2m′2
√

2
6 1

since c > (2
√

2)−1/2.
So, by assumption H3, we finally obtain that, for all ε > εm′ ,

E

[
sup

{z ; ωm′ (z)6ε}
|γn(z)− γn(um′)|

]
6 E

[
sup

{z ; d(z,um′ )62cε
√
2}
|γn(z)− γn(um′)|

]
6 φm′(2cε

√
2).
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So we can apply Lemma 5.5 in [25] and use the monoticity of x 7→ φm′(x)/x
to obtain that

E

[
sup
z∈Fm′

|γ̄n(z)− γ̄n(um′)|
wm′(z)

]
6 4

φm′(2c
√

10ym′)

y2m′
6 8
√

10
φm′(cym′)

y2m′
.

Hence, since ym′ > εm′ and x 7→ φm′(cx)/x is nonincreasing, we get by
definition of εm′

E

[
sup
z∈Fm′

|γ̄n(z)− γ̄n(um′)|
wm′(z)

]
6 8
√

10
φm′(cεm′)

ym′εm′
6 8
√

10
εm′

ym′
.

On the other hand, let us notice that

inf
z∈Fm′

wm′(z) > 2ym′ inf
z∈FSm′

[
√
l(f ∗, z) +

√
l(f ∗, fm)]

>
ym′
√

2

c
d(um′ , fm),

hence

E
[
|γ̄n(um′)− γ̄n(fm)|
infz∈Fm′ [wm′(z)]

]
6 c(ym′

√
2)−1E

[
|γ̄n(um′)− γ̄n(fm)|

d(um′ , fm)

]
,

leading by Jensen’s inequality to

E
[
|γ̄n(um′)− γ̄n(fm)|
infz∈Fm′ [wm′(z)]

]
6 c(ym′

√
2)−1

√
Var [γ̄n(um′)− γ̄n(fm)]

d(um′ , fm)
6

c

ym′
√

2n
.

Then we get for all m′ ∈Mn

E[Vm′ ] 6
8
√

10εm′ + c(2n)−1/2

ym′
.

Hence, taking

ym′ = K

[
8
√

10εm′ + c(2n)−1/2 + c

√
xm′ + ξ

n

]
with K > 0, we obtain that, on Ωξ, for all m′ ∈Mn,

Vm′ 6
1

K

[
1 +

√
1

2

(
1 +

8

K
√

2

)
+

1

2K
√

2

]
.
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So we finally obtain that, on the set Ωξ,

l(f ∗, f̃) 6 l(f ∗, fm) +K ′wm̂(f̃) + penn(m)− penn(m̂), (25)

with

K ′ =
1

K

[
1 +

√
1

2

(
1 +

8

K
√

2

)
+

1

2K
√

2

]
.

Finally, by using repeatedly the elementary inequality (α+ β)2 6 2α2 + 2β2

to bound y2m̂ and wm̂(f̃), we derive that, on the one hand,

y2m̂ 6 4K2

[
640ε2m̂ +

c2

2n
+ c2

xm̂ + ξ

2n

]
,

and, on the other hand,

wm̂(f̃) 6 2l(f ∗, f̃) + 2l(f ∗, fm) + y2m̂.

Hence the following inequality holds on Ωξ for any m ∈ Mn and any fm ∈
Fm:

(1− 2K ′ ) l(f ∗, f̃) 6 (1 + 2K ′) l(f ∗, fm) + penn(m) + 2K ′K2 ξ

n
+

2c2K ′K2

n

+5× 29K ′K2ε2m̂ + 2c2K ′K2xm̂
n
− penn(m̂),

with

K ′ =
C − 1

2(C + 1)
, K1 = 5× 29K ′K2, K2 = 2K ′K2.

Application to classification trees:

Let us now suppose that (X, Y ) takes values in X × {0, 1}. The contrast
is taken as γ(f, (X, Y )) = 1lf(X)6=Y , the expected loss is defined by (5), and
the collection of models is (FT )T�Tmax . The models and the collection are
countable since there is a finite number of functions in each FT , and a finite
number of nodes in Tmax. Since we are working conditionally on L1, we can
apply Theorem 2 directly with L2. To check assumption H2, let us first note
that, since all the variables we consider take values in {0, 1}, we have the
following for all classifiers f and g

(γ(f, (X, Y ))− γ(g, (X, Y )))2 =
(
1lY 6=f(X) − 1lY 6=g(X)

)2
(26)

= (f(X)− g(X))2. (27)
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Then, if we take d2(f, g) = E [(f(X)− g(X))2], we have that, for all classifiers
f and g, Var [γ(g, (X, Y ))− γ(f, (X, Y ))] 6 d2(f, g). Moreover, with the
margin condition MA(1), we have that

l(f ∗, f) > hd2(f ∗, f), (28)

hence assumption H2 is checked with d and c2 = 1/h, where h is the margin.
By definition of h, we have h 6 1 6 2

√
2, and then c > (2

√
2)−1/2.

Then, assumption H3 is checked by Lemma 1 with φT (x) = 2x

√
|T̃ |/n.

Hence, Theorem 2 is verified with εT =
√

1/h

√
|T̃ |/n.

Finally, to choose a convenient family of weights (x
T
)T�Tmax , taking x

T
=

θ|T̃ |, with θ > 2 log 2 independent of |T̃ | as done in [14], we immediately
obtain Σα = Σθ < +∞. Then, we get proposition 1 by Theorem 2.

6.3 Proof of Proposition 2

Let n = nl and let Xn
1 denote the sample {Xi ; (Xi, Yi) ∈ L}.

First we generalize Theorem 2 to random models, and then we apply it to
CART. Let (X, Y ), F , f ∗ ∈ F , L = {(X1, Y1), . . . , (Xn, Yn)}, γ and γn be
defined as in subsection 6.2. Finally, let us rewrite the expected loss of f ∈ F
conditionally on Xn

1 as in Definition 1, that is

λ(f ∗, f) = E [Pnl(f)− Pnl(f
∗) | Xn

1 ] .

Let us consider a collection of at most countable models (Fm)m∈M∗n and a sub-
collection (Fm)m∈Mn , whereMn ⊂M∗

n may depend on {(X1, Y1), . . . , (Xn, Yn)}.
Finally, let us consider a penalty function penn :Mn 7→ R+ and let us define
the estimator f̃ of f ∗ as follows: let

m̂ = argminm∈Mn
[γn(f̂m) + penn(m)],

where f̂m = argminf∈Fmγn(f) is the minimum contrast estimator of f ∗ on

Fm. Then f̃ = f̂m̂.

Let us make the following assumptions.
H1: γ is bounded by 1.
H2: Assume there exist c > (2

√
2)−1/2 and some (pseudo-)distance dn (that

may depend on Xn
1 ) such that, for every pair (g, f) ∈ F2, one has

Var [γ(g, (X, Y ))− γ(f, (X, Y )) | Xn
1 ] 6 d2n(g, f),
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and particularly for all f ∈ F

d2n(f ∗, f) 6 c2λ(f ∗, f).

H3: For any positive σ and for any f ∈ Fm, let us define

Bm(f, σ) = {g ∈ Fm ; dn(f, g) 6 σ}

where dn is given by assumption H2. Let γ̄n be defined as (17). We now
assume that for any m ∈ Mn, there exists some continuous function φm
mapping R+ onto R+ such that φm(0) = 0, φm(x)/x is non-increasing and

E

[
sup

g∈Bm(f,σ)

|γ̄n(g)− γ̄n(f)| | Xn
1

]
6 φm(σ)

for every positive σ such that φm(σ) 6 σ2. Let εm be the unique solution of
the equation φm(cx) = x2 , x > 0.

One gets the following result.

Theorem 3. Let L = {(X1, Y1), . . . , (Xn, Yn)} be a sample of independent
realizations of the random pair (X, Y ) ∈ X × [0, 1]. Let (Fm)m∈M∗n be a
countable collection of models included in some countable family F ⊂ {f :
X 7→ [0, 1] ; f ∈ L2(X )} (which may depend on Xn

1 ). Consider some subcol-
lection of models (Fm)m∈Mn, where Mn ⊂M∗

n may depend on L, and some
penalty function penn :Mn −→ R+. Let f̃ (19) be the corresponding penal-
ized estimator of the target function f ∗. Take a family of weights (xm)m∈M∗n
such that ∑

m∈M∗n

e−xm 6 Σ < +∞, (29)

with Σ deterministic. Assume that assumptions H1, H2 and H3 hold.
Let ξ > 0. Hence, given some absolute constant C > 1, there exist some
positive constants K1 and K2 such that, if for all m ∈Mn

penn(m) > K1ε
2
m +K2c

2xm
n
,

then, with probability larger than 1− 2Σe−ξ,

λ(f ∗, f̃) 6 C inf
m∈Mn

[λ(f ∗,Fm) + penn(m)] + C ′ c2
1 + ξ

n
,

where λ(f ∗,Fm) = inffm∈Fm λ(f ∗, fm) and the constant C ′ only depends on
C.
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Proof. The proof is highly similar to that of Theorem 2. The main differences
are in the conditioning and the fact that the collection of models (Fm)m∈Mn

is random. To remove these issues, all the bounds are computed uniformly
on M∗

n so that the probability of the set we finally obtain is unconditional
to Xn

1 since Σ is deterministic. The inequalities are obtained by the same
techniques as the ones used for the proof of the results on model selection on
random models done by Gey and Nédélec in [14].

Let m ∈Mn and fm ∈ Fm. Starting from (21), we have

λ(f ∗, f̃) 6 λ(f ∗, fm) + wm̂,m(f̃)Vm̂,m + penn(m)− penn(m̂), (30)

where for all m′ and M in M∗
n, for all f ∈ Fm′ and fM ∈ FM,

wm′,M(f) =
[√

l(f ∗, f) +
√
λ(f ∗, fM)

]2
+ (ym′ + yM)2,

Vm′,M = sup
f∈Fm′

[
γ̄n(fM)− γ̄n(f)

wm′,M(f)

]
,

with ym′ > εm′ and yM > εM . The general principle is now exactly the same
as in the proof of Theorem 2 despite the fact that we have to bound Vm′,M
not only uniformly in m′ ∈ M∗

n, but also in M ∈ M∗
n in order to have an

in-probability inequality that does not depend on Xn
1 .

Assumption H2 allows to give exactly the same upper bounds (except that
they depend on Xn

1 and that ym′ is replaced by ym′ + yM) as (22) and (23).
By using the same techniques as in the proof of Theorem 2 and the same
considerations as in [14], we obtain that

E [Vm′,M | Xn
1 ] 6 8

√
10
φm′(cym′ + cyM)

(ym′ + yM)2
+

c

(ym′ + yM)
√

2n
.

Then, since ym′ + yM > ym′ > εm′ and εM > 0, we get by definition of εm′

8
√

10
φm′(cym′ + cyM)

(ym′ + yM)2
6 8
√

10
φ(cεm′)

(ym′ + yM)εm′
6 8
√

10
εm′ + εM
ym′ + yM

.

So we have

E [Vm′,M | Xn
1 ] 6

8
√

10(εm′ + εM) + c(2n)−1/2

ym′ + yM
.
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Summing up over m′ ∈M∗
n and M ∈M∗

n, that leads by Rio’s inequality, to

Vm′,M 6
1

ym′ + yM

(
8
√

10εm′ +
c(2n)−1/2

2
+ 8
√

10εM +
c(2n)−1/2

2

)
+

√
c2 + 16(8

√
10(εm′ + εM) + c(2n)−1/2)(ym′ + yM)−1

2n(y2m′ + y2M)
(xm′ + xM + ξ)

+
1

y2m′ + y2M

(
xm′ + ξ/2

n
+
xM + ξ/2

n

)
on a set Ωξ such that P (Ωξ | Xn

1 ) > 1−2Σe−ξ. Then, since Σ is deterministic,
we get that P (Ωξ) > 1− 2Σe−ξ.

Hence, if we take for all m′ ∈M∗
n

ym′ = 2K

[
8
√

10εm′ +
c(2n)−1/2

2
+ c

√
xm′ + ξ/2

n

]
,

we obtain that, on Ωξ, for all m′ and M in M∗
n,

Vm′,M 6
1

K

[
1 +

√
1

2

(
1 +

8

K
√

2

)
+

1

2K
√

2

]
.

Finally the proof is achieved in the same way as the proof of Theorem 2.

Application to classification trees:

Let us consider the classification framework and the collection of models
(FT )T�Tmax obtained via the growing algorithm in CART (see subsection 4.1)
as recalled in subsection 6.2. Since the growing and the pruning algorithms
are made on the same sample L, the conditions of Theorem 3 hold. Since
n = nl is fixed, let us consider M∗

n as the set of all possible tree-structured
partitions that can be constructed on the grid Xn

1 , corresponding to trees
having all possible splits in S and all possible forms without taking account
of the response variable Y . So M∗

n depends only on the grid Xn
1 and is

independent of the variables (Y1, . . . , Yn). Then {T � Tmax} ⊂ M∗
n and we

are able to apply Theorem 3. Considering (26), we take

d2n(f, g) =
1

n

n∑
i=1

(f(Xi)− g(Xi))
2 ,
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corresponding with the distance d given in Definition 2. Using the margin
condition MA(1), (28) is also verified for λ and dn, and we have assumption
H2 with c2 = 1/h. Then, by Lemma 1, assumption H3 is checked with

φT (x) = 2x

√
|T̃ |/n and, in the same way as in the proof of Proposition 1,

εT is taken as εT =
√

1/h

√
|T̃ |/n.

Finally, to choose a convenient family of weights (x
T
)T∈M∗n , taking (see [14])

xT = V
(
θ + log

n1

V

)
|T̃ |,

where V is the VC-dimension of the set of splits S used to construct Tmax
and θ > 1, we obtain

Σα = Σθ =
∑
D>1

exp (−(θ − 1)DV ) < +∞.

And we have Proposition 2.

6.4 Proof of Proposition 3

Proposition 3 is a direct application of the theorem obtained by Blanchard
and Massart in [18], reformulated for our purpose here: assume that we
observe N + n independent random variables with common distribution P
depending on a parameter f ∗ to be estimated. Suppose the first N obser-
vations Z ′ = Z ′1, . . . , Z

′
N are used to build some preliminary collection of

estimators (f̂m)m∈Mn and the remaining observations Z1, . . . , Zn are used to
select an estimator f̃ among this collection by minimizing the empirical con-
trast as defined by (18) (with (X, Y ) replaced by Z). Hence, we have the
following result.

Theorem 6.4.1 (Blanchard and Massart [18]).
Suppose that Mn is finite with cardinal K. Assume that there exists some
continuous function w mapping R+ onto R+ such that x 7→ w(x)/x is non-
increasing, and which satisfies for all ε > 0

sup
{f∈F ; l(f∗,f)6ε2}

Var [γ(f, Z)− γ(f ∗, Z)] 6 w(ε). (31)

Then one has for every θ ∈ (0, 1)

(1−θ)E
[
l(f ∗, f̃) | Z ′

]
6 (1+θ) inf

m∈Mn

l(f ∗, f̂m)+δ2∗

(
2θ + (1 + log (K))(

1

3
+

1

θ
)

)
,
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where l is defined by (5) and δ∗ satisfies
√
nδ2∗ = w(δ∗).

Taking w(ε) = (1/
√
h)ε for both methods M1 and M2, where h is the

margin, leads to proposition 3 with

C =
1 + θ

1− θ
, C1 =

θ + 3

2θ(1− θ)
, C2 = C1 +

θ

1− θ
.

6.5 Proof of Theorem 1

We are now able to prove Theorem 1 via propositions 1, 2 and 3. The
beginning of the proof remains the same if f̃ is constructed either via M1 or
M2. So we just give the first step of the proof for the M1 method.
Actually, since we have at most one model per dimension in the pruned
subtree sequence, it suffices to note that K 6 n1. Then let α0 be the minimal
constant given by Proposition 1. Hence, since for a given α > 0 Tα belongs
to the sequence (Tk)16k6K ,

E
[
l(f ∗, f̃) | L1, L2

]
6 C ′′ inf

α>α0

l(f ∗, f̂Tα) + C ′1 h
−1 logK

nt
+ h−1

C ′2
nt
.

Starting from this inequality, if f̃ is constructed via M1, by using Proposition
1 with α = 2α0 and by taking the expectation according to L2, we obtain
Theorem 1 with the appropriate constants.

Yet, if f̃ is constructed via M2, we apply Proposition 2 with α = 2α0αn1,V

and, for each δ ∈]0; 1[, ξ = log (2Σα/δ). Then, we obtain Theorem 1 with
the appropriate constants.
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[30] Sauvé, M., and Tuleau, C. Variable selection through cart. Tech.
Rep. 5912, Institut National de Recherche en Informatique et en Au-
tomatique, 2006.

[31] Schapire, R. E., Freund, Y., Bartlett, P., and Sun Lee, W.
Boosting the margin : a new explanation for the effectiveness of voting
methods. The Annals of Statistics 26, 5 (1998), 1651–1686.

[32] Scott, C. Tree pruning with subadditive penalties. IEEE Transactions
on Signal Processing 53, 14 (2005), 4518–4525.

[33] Scott, C., and Nowak, R. Minimax-optimal classification with
dyadic decision trees. IEEE Trans. on Information Theory 52, 4 (2006),
1335–1353.

[34] Tsybakov, A. B. Optimal aggregation of classifiers in statistical learn-
ing. Ann. Statist. 32, 1 (2004), 135–166.

[35] Tsybakov, A. B., and van de Geer, S. A. Square root penalty:
adaptation to the margin in classification and in edge estimation. Ann.
Statist. 33, 3 (2005), 1203–1224.

[36] Vapnik, V. N. Statistical Learning Theory. Wiley Inter-Sciences, 1998.

[37] Vapnik, V. N., and Chervonenkis, A. Y. Teoriya raspoznavaniya
obrazov. Statisticheskie problemy obucheniya. Izdat. “Nauka”, Moscow,
1974.

[38] Wernecke, Possinger, Kalb, and Stein. Validating classification
trees. Biometrical Journal 40, 8 (1998), 993–1005.

40


