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Abstract: Hierarchical data structures such as irregular pyramids are used by many applications related to image pro-

cessing and segmentation. The construction scheme of such pyramids is bottom-up. Such a scheme forbids the

definition of a level according to more global information defined at upper levels in the hierarchy. Moreover,

the base of the pyramid has to encode any single pixel of the initial image in order to allow the definition of

regions of any shape at higher levels. This last constraint raises major issues of memory usage and processing

costs when irregular pyramids are applied to large images. The objective of this paper is to define a top-down

construction scheme for irregular pyramids. Each level of such a pyramid is encoded by a combinatorial map

associated to an explicit encoding of the geometry and the inclusion relationships of the corresponding parti-

tion. The resulting structure is a stack of finer and finer partitions obtained by successive splitting operations

and is called a top-down pyramid.

1 INTRODUCTION

Quadtrees (Dyer et al., 1980; Jolion and Rosenfeld,

1994) and regular pyramids (Jolion and Rosenfeld, 1994)

belong to the first hierarchical data structures introduced

within the computer vision framework. Both models are

based on psycho-visual properties: focus of attention, for

data structure based on recursive split such as quadtrees,

and successive processings by neural layers, for bottom-

up regular pyramids. Segmentation using quadtree data

structures is based on a recursive subdivision of a ba-

sic shape (e.g. a square). On the other hand, regular or

matrix pyramids are defined as a stack of images with

decreasing resolutions. An entity (square or pixel) de-

fined at a given level of a pyramid is associated to a

connected set of entities below, called a reduction win-

dow (Bister et al., 1990). Both encoding schemes induce

several drawbacks on the segmentation process (Bister

et al., 1990).

The irregular pyramid framework introduced by

Meer and Montanvert (Meer, 1989; Montanvert et al.,

1991) partially solves these drawbacks: the stack of par-

titions is encoded as a stack of successively reduced

graphs. Irregular pyramids (Meer, 1989; Montanvert

et al., 1991; Jolion and Montanvert, 1992; Brun and

Kropatsch, 2003) may only be built using a bottom-up

construction scheme. However, a bottom-up scheme re-

quires an explicit encoding of the base level image in

order to define regions with any shapes at higher levels.

Moreover, in a bottom-up pyramid, each newly created

region has no prior information about its parents (defined

at a later stage). This last constraint prevents the man-

agement of the regions from depending on the properties

of their parents in the pyramid.

The objective of this paper is the definition of a top-

down hierarchical data structure by extending the model

of two-dimensional topological maps. For many applica-

tions related to image segmentation, it is critical to mini-

mize memory requirements, mainly for those processing

large images. A top-down approach rules out the con-

straint of the explicit storage for the base: only split re-

gions are kept in memory. Besides, it offers a perceptual

advantage as major features of an image are discerned

first in the pyramid, contrary to bottom-up models.

We first recall in Section 2, the basics of the different

models used to define our top-down irregular pyramid
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framework. Then, Section 3 defines our model of top-

down pyramid. We present in Section 4 its construction

scheme. Section 5 details the basic operations used to

build a new level of the pyramid. We finally provide,

in Section 6, several experiments which allow to eval-

uate the computational times and memory requirements

of our model.

2 RECALLS

2.1 Combinatorial maps

A combinatorial map encodes all the subdivisions and in-

cidence relationships of a topological space (Lienhardt,

1989). In two dimensions, it is composed of vertices,

edges and faces, respectively defined as cells of 0, 1 and

2 dimensions and noted i-cells. The border of an i-cell is

a set of ( j < i)-cells. Two i-cells are said incident if one

belongs to the border of the second while they are said

adjacent if they are both incident to the same ( j < i)-
cell. The degree of an i-cell is the number of adjacent

(i+1)-cells and a dangling edge is an edge incident to a

degree 1 vertex. Adjacency relations are represented by

operators noted βi and applied to darts, as we will call

the abstract basic elements resulting from a complete de-

composition of the image (Figure 1).

Definition 1 (2-dimensional combinatorial map) A

two-dimensional combinatorial map M (or 2-map) is a

triplet M = (D,β1,β2) where:

(1) D is a finite set of darts;

(2) β1 is a permutation1 on D;

(3) β2 is an involution2 on D.

A B C D

dart

Region

β1

β2

Figure 1: Construction of a 2-map by successive decomposi-
tions. (A) Original image. (B) Disconnected faces. (C) Dis-
connected edges. (D) 2-map: darts are the basic elements rep-
resented by arrows, β1 relations are represented with arcs and
β2 with bold segments.

Intuitively, a combinatorial map may be understood

as a planar graph where relations on edges are explic-

1A permutation is a one to one mapping from S onto S.
2An involution f is a one to one mapping from S onto S

such that f = f−1.

Linel

Pointel

Pixel

Figure 2: Representation of the interpixel framework: an image
is composed of pixels, linels and pointels.

itly defined by βi operators. Darts allow to differenti-

ate the two extremities of an edge and thus, are assimi-

lated to half-edges. Each dart belongs to a single vertex,

edge and face of the map. The β1 permutation links each

dart of a face to the next dart encountered while turning

clockwise around the face (Figure 1). The β2 involution

links each dart of an edge to the other dart of the edge

which has an opposite orientation (shared edge between

the square and the triangle in Figure 1). Two darts linked

by βi are said i-sewn and two 2-sewn darts belong to two

adjacent faces.

2.2 Topological maps

Because 2-maps can only represent the topology of con-

nected objects, we introduce the notion of topological

maps (Brun et al., 2003; Damiand et al., 2004), an ex-

tension of combinatorial maps that uses three different

models to encode: topological relations, geometrical in-

formation and inclusion relationships between regions.

Topology is based on a 2-map which is minimal ac-

cording to its number of cells (Figure 3.A). Although

combinatorial maps only represent the topology of the

space, geometric elements can be added easily. This

association is called embedding. The geometry relies

on the interpixel framework where an image is consid-

ered as a subdivision of a two-dimensional space in a set

of 2-cells, 1-cells and 0-cells, respectively called pixels,

linels, and pointels (Figure 2). Each border between two

regions is thus defined as a set of linels. Since each dart

corresponds to an oriented boundary, the embedding of

a dart defines an order over the set of linels belonging to

this border. The set of linels composing a dart can be rep-

resented explicitly as a sequence of linels or implicitly,

using a two-dimensional matrix of the size of the image

(Brun et al., 2003; Damiand et al., 2004) (Figure 3.B).

A region is a set of darts delimited by a β1-loop.

Each one has a representative dart which allows to re-

trieve a dart of a given region (e.g. used as a starting

point to find the external border of the region). A set

of adjacent regions is called a connected component and

the union of all the regions create a topologically closed

space since we represent the infinite region 3 which en-

3For visibility reasons, the infinite region may not be repre-
sented in some figures.
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Figure 3: The three different models composing a topological
map. (A) A 2-map representing the topology with darts and βi

relations. (B) A geometrical matrix that points out active linels
and pointels. (C) A tree of regions for inclusion relations.

codes the background of the image. A region included

into another one is called a hole and defines an internal

border for the including region. An inclusion tree of re-

gions represents the inclusion relationships of the struc-

ture: the father of any region within the tree is defined as

the one which includes it in the image (Figure 3.C).

A topological map is a suitable model for image pro-

cessing which has been proven complete (represents both

topology and geometry), minimal (retiring any element

would change the topology) and unique (two topologi-

cally equivalent partitions have the same map) (Damiand

et al., 2004). In practice, the minimality is required to de-

crease the number of cells and minimize memory usage

and the completeness insures that we can encode parti-

tions with regions of any geometry.

2.3 Pyramids

Simple graph pyramids, first introduced by Meer and

Montanvert (Meer, 1989; Montanvert et al., 1991), then

developed by Jolion (Jolion and Montanvert, 1992) are

defined as a stack of simple graphs successively reduced.

Within the segmentation framework, each graph of such

a pyramid encodes a partition. Due to the limitation of

the simple graph data structure, many issues are encoun-

tered when we have to update these graphs after splitting

operations.

Combinatorial pyramids (Brun and Kropatsch, 2003)

are built from an initial combinatorial map successively

reduced by a sequence of contractions and removal op-

erations. These operations are ruled by a contraction

kernel (forest of the initial combinatorial map) and a

removal kernel (forest of the dual combinatorial map).

These structures are bottom-up and the initial combina-

torial map (the base) is the most detailed level: the em-

bedding of each dart of the base corresponds to a linel.

Therefore, the receptive field of any dart may be re-

trieved from its receptive field and the embedding of the

darts defined at the base (Brun and Kropatsch, 2003).

Besides, using forests avoids disjunctions of connected

components when performing merging operations: two

connected components are linked by a bridge if one is

included into the other (Brun and Kropatsch, 2006). The

model of bottom-up combinatorial pyramid has been

generalized to encode all n-dimensional, orientable or

not and with or without boundary subdivisions (Lien-

hardt, 1989; Simon et al., 2006).

Contrary to bottom-up methods, based on an explicit

encoding of the base of the pyramid, a top-down ap-

proach allows to encode only the upper levels, resulting

in a major memory reduction. Moreover, the focus of

attention, encoded by the top-down scheme, can adapt

the segmentation of each region according to the fea-

tures of its parents (e.g. with medical images, the seg-

mentation of cells in a tissue depends on the tissue it-

self). Within a top-down scheme, we have to give up on

bridges to represent inclusion relationships. Indeed, the

management of the additional connections encoded by

the bridges during splitting operations may induce cum-

bersome computations. For example, the insertion of an

edge at the two endpoints of a bridge may create an ar-

tificial face which has to be detected and removed. This

is why bridges are replaced by the use of inclusion tree

of regions. Moreover, since the top-down construction

scheme avoids an explicit encoding of the base, the ge-

ometry of the pyramid’s partitions cannot be implicitely

encoded at the base level. The borders of the partition

have thus to be explicitely encoded. These last argu-

ments justify the use of topological maps as the basis

of our top-down model.

3 MODEL FOR TOP-DOWN

PYRAMIDS

Each level of our top-down pyramid model is en-

coded by a topological map, defined by: a 2-map for the

topology, an encoding for the geometrical embedding of

darts and a tree of regions for inclusion relationships.

Definition 2 (Top-down topological pyramid) Let

(n,m,k) ∈ N
3. A top-down pyramid P is defined by

P = {Gk} where, ∀k, 0≤ k ≤ m:

(1) Gk = (Dk, βk
1, βk

2) is a topological map;

(2) Gk+1 is deduced from Gk by performing splitting op-

erations.

Since any level of the top-down pyramid results from

splitting operations (2), every region of Gk has a descen-

dant in Gk+1 and every region of Gk has at most one

antecedent in Gk−1 (same for darts). Thus, the model is

a causal structure (Guigues et al., 2006) and defines a

hierarchy of regions.
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R1 R2

1

2

3 4

5 8

6 7
R3

R∞ R∞

G0 G1

Figure 4: A top-down topological pyramid P, composed of two
levels G0 and G1. Numbers designate darts, β1 relations are
represented by arcs and β2 by segments. G1 is deduced from
G0 by splitting region R1 into two regions R2 and R3.

As a hierarchical data structure, the model has to

represent objects and relations through the levels of the

pyramid. So, each dart and region of a map Gk is con-

nected to its parent in Gk−1 and its child in Gk+1 (also

called ascendant/descendant or up/down). Note that, al-

though each element (dart or region) has a single descen-

dant, there is no loss of information: we can retrieve

for each element the corresponding set of elements in a

lower level. Indeed, the set of children of a given element

is connected so, up and down relations allow to start from

a descendant and to find all the neighbors which have the

same “up”. Neither elements from the top level nor el-

ements newly created on a level have an antecedent and

elements belonging to the base do not have a descendant

but several elements may have the same parent (Table 1).

In the following, P denotes a top-down pyramid com-

posed of m+1 levels numbered from 0 to m (m is called

the depth of the pyramid). Globally, an exponent k refers

to level k+1 of the pyramid: Gk is the map of level k+1,

Dk (resp. Rk) is the set of all darts (resp. regions) com-

posing level k+1. An edge may be noted (d,d′) where d

and d′ are the 2-sewn darts which compose it and Rk(d)
denotes the region of dart d in level k +1.

D dup ddown

1 - 4
2 - 5
3 1 -
4 1 -
5 2 -
6 - -
7 - -
8 2 -

R Rup Rdown

1 - 2
2 1 -
3 1 -

A B

Table 1: Parent/child relations in pyramid P from Figure 4.
(A) Between darts. (B) Between regions.

4 CONSTRUCTION SCHEME

This section outlines the global operations construct-

ing a pyramid. The construction is incremental: it starts

from the top and adds new levels one by one at the bot-

tom. It is composed of three main steps: the construc-

tion of the first (top) level, the creation of a new level

by copying the bottom and the segmentation of the level

that has just been added.

Several methods can be considered to build the first

level of a pyramid but only two are considered so far.

The first method creates a map composed of a single re-

gion enclosing the image and the infinite region for the

outside of the image. The second method extracts a first

topological map from a segmentation of the image in few

regions.

We create a new level by duplicating the last one of

the pyramid. This is why, we build a map equivalent

to the bottom (same topology, same geometry and same

tree of regions), link corresponding elements between

the two levels, and finally, add this map at the bottom

of the pyramid (Algorithm 1 and Figure 5.B).

Algorithm 1: Duplication of a level

Data: A pyramid P of depth m+1.

Result: A pyramid P of depth m+2.

Create a new void map Gm+1;

Copy the geometry of Gm into Gm+1;

foreach dart dup ∈ Gm do

Create a new dart ddown in Gm+1 ;

Set dup as parent of ddown;

Sew (in Gm+1) ddown with the corresponding

down darts of β1(dup) and β2(dup);

foreach region Rup ∈ Gm do

Create a new region Rdown in Gm+1;

Set Rup as parent of Rdown;

Establish inclusions in Gm+1 by setting the

relations of Rdown like those of Rup;

Set Gm as parent of Gm+1;

The last step of the construction process is the seg-

mentation of the level that has just been duplicated. This

segmentation is based on splitting and merging opera-

tions that transform the level (Algorithm 2).

Algorithm 2 is composed of four main steps:

• L.1: The splitting criterion indicates if a region has

to be segmented. It is used upstream from the con-

struction process as an optimization since it moves

uninteresting areas further apart (notion of focus of

attention (Jolion and Rosenfeld, 1994));

• L.2: This step decomposes region R into a set of
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Algorithm 2: Segmentation of a level

Data: A level Gk of a pyramid P.

Result: P with a new segmentation on level Gk.

foreach region R ∈ Gk do

if splitting criterion(R) is true then1

Split(R);2

Merge(Gk, merging criterion);3

Simplify Gk;4

Compute the new tree of regions;5

square-unit regions, each one enclosing a single

pixel (Figure 5.C). This operation is detailed in Sec-

tion 5.1;

• L.3: The merging criterion determines if two adja-

cent regions should be merged. In order to preserve

the causality property, we restrict the merging op-

eration to new regions resulting from the split of a

same region (Figure 5.D). Therefore, two different

regions of a level Gp will never be merged in a level

Gq, p < q. This operation is detailed in Section 5.2;

• L.4: The simplification step removes all remaining

2-degree vertices;

• L.5: Because new regions are created, the tree for in-

clusion relations has to be rebuilt. Indeed, it would

be too expensive to keep it up-to-date as many re-

gions are created from a level to another.

Steps L.4 and L.5 rely on the algorithms defined for

topological maps (Damiand et al., 2004). Figure 5 illus-

trates a simple example of the building process.

5 BASIC OPERATIONS

5.1 Splitting operation

As mentioned in Section 4, our splitting step decomposes

a region into a set of basic regions, each one enclosing

a single pixel. Later, a merging step will merge these

regions: since any couple of adjacent regions may be

merged, any subdivision of the initial region can be en-

coded. The operation insures that each created region is

both topologically and geometrically correct (Figure 6).

Assuming that the region to split is denoted R, Algo-

rithm 3 describes the splitting operation which may be

divided into the following steps:

• L.1: All the edges belonging to the borders of R are

split into one-linel long edges to allow further edge

insertions;

A B

DC

G0

G1

G0

G1

R0
2R0

1

R1
1 R1

2

R0
2R0

1

R0
1 R0

2 R0
1 R0

2

R1
1 R1

1
R1

2

R1
3

Figure 5: Main steps of the construction process of a top-down
pyramid. (A) Initial step: the pyramid is composed of a single
level G0. (B) Duplicate and link: G1 is a copy of G0 and cor-
responding elements are linked together (for visibility reasons,
dotted lines represent only up/down relations between regions).
(C) Split: R0

2 is split into a set of square-unit regions enclosing
a single pixel. (D) Merge and simplify: some of the created
regions are merged and draw R1

2 and R1
3.

• L.2: We create a list which initially contains all the

darts resulting from the previous decomposition of

external and internal borders of the region;

• L.3: We retrieve the geometry associated to the dart.

As all edges have been split, the embedding of each

dart of list is a single linel;

R1

10

1615

14

13

12 11

9

R5

R2R3

R4

23

4

5

6 7

8

1

BA

C D

Figure 6: Decomposition in 4 steps of the splitting process
applied on a region R1 enclosing 4 pixels. (A) Initial region.
(B) Splitting edges: darts 1 to 8 are stored into list (external
border of R1). (C) Insertion of 4 dangling edges while testing
darts 1, 3, 5 and 7. (D) Sewing correctly dangling edges while
testing darts 9 and 13.
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Algorithm 3: Splitting region

Data: A region R.

Result: R is split into a set of basic regions

enclosing a single pixel.

Split edges of R into unit edges;1

Create list containing every dart of R;2

while ∃ d ∈ list|d is unmarked do

l← getLinel(d);3

if l⊥ is not activated then4

Insert edge(di,d j) on d;5

Add(di,d j) at the end of list;

else if β2(d) = β1(d) then

1-sew correctly d and β2(d) around the6

pointel p incident to β2(d);

Mark(d);

• L.4: The external border of a region is clockwise ori-

ented. Let us denote by ld and l⊥d , the oriented linels

encoding respectively the embedding of the dart d

and the next linel encountered after ld when turning

counter-clockwise around the pointel associated to d

(e.g. in Figure 6, l⊥2 = l1). Since the β1 permutation

connects two consecutive darts in a clockwise orien-

tation around a face, only l⊥d needs to be considered

at this stage. If other darts remain around the ver-

tex incident to β2(d), they will be considered during

further iterations.

• L.5: Actually, an edge insertion on a dart d consists

in adding two one-linel long darts di and d j (whose

embedding is perpendicular to ld) on the pointel p

incident to d. Two configurations may happen as de-

scribed in Figure 7;

• L.6: In order to sew the 2 darts of the dangling edge

e = (d,β2(d)), we geometrically look for edges per-

pendicular to e as illustrated in Figure 8. This op-

eration 1-sew the two darts according to its number

(one or two) of perpendicular edges. At least one

perpendicular edge exists (inserted during the previ-

ous iteration when processing β2(d)). If four edges

are incident to p, processing e will sew two edges

around p and the two others will be sewn in a further

iteration (Figure 6).

This process ensures that each linel within the initial

region is added. Moreover, no dangling edges remain:

the initial region is initially minimal (i.e. without dan-

gling edges) and if one is inserted, it is added to the list

and then processed and correctly sewn. Consequently,

the splitting operation produces a set of square-unit re-

gions corresponding to the initial region.

23

4 1 1

2

A B

6 5 34

1

2

Figure 7: Insertion of a dangling edge on dart 1. (A) Insertion
of edge (5,6) on a degree 2 vertex. (B) Insertion of edge (3,4)
on a degree 1 vertex.

4

3

12

12

3

4

12

3

45

6

12

3

4

6

5

BA

Figure 8: 1-sewing operations when processing dangling edge
(1,2). (A) One perpendicular edge: 1-sew (1,4) and (3,2).
(B) Two perpendicular edges: 1-sew (1,4) and (5,2).

5.2 Merging operation

Once the splitting process is done, we need to traverse

all the created square-unit regions to segment the level

according to our merging criterion. Actually, the merg-

ing operation is a global process which operates on a list

of darts corresponding to the edges that were inserted by

the splitting operation. This solution was selected for op-

timization matter as it avoids a complete traversal of all

the regions. Each edge contained in this list is incident

to a couple of adjacent regions (R,R′).
Two configurations may be encountered: simple or

multi adjacency. In the first case, the edge is removed if

the merging criterion is satisfied for (R,R′) (Figure 9.A).

In case of multi-adjacency, R and R′ share several edges.

If the merging criterion determines that (R,R′) must be

merged, all the shared edges have to be removed (Fig-

ure 9.B). Algorithm 4 details the whole process:

• L.1: This list allows to traverse the regions created by

the splitting operation instead of traversing the whole

map. Note that we only need to store one dart d per

edge (the second one is β2(d));

• L.2: The first condition aims to detect cases of multi-

adjacency. The merging criterion is a test between

two adjacent regions along the current edge (i.e.

(d,β2(d)));

• L.3: Let the geometry know that the linel is not active

any more;
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3
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21

R2

R3

R1 R2

R3 R4

R1 R2

B

A

R3

R1 R1

Figure 9: Configurations encountered during the merging op-
eration between two adjacent regions. (A) Simple adjacency
between (R1,R3) and (R2,R4): the corresponding edges (1,2)
and (3,4) are removed if the merging criterion is verified.
(B) Multi-adjacency between (R1,R2): if (1,2) has been re-
moved, (3,4) is removed independently of the merging crite-
rion.

• L.4: This step updates the darts previously compos-

ing R(β2(d)) as now belonging to R(d);

• L.5: Removal of the two darts, according to the

method in (Damiand and Lienhardt, 2003).

The only constraint applied to the splitting and merg-

ing operations is to preserve the causality of the struc-

ture: merging is thus restricted to the basic regions gen-

erated by the split of a same region. Therefore, within

these regions, our merging operation is unrestricted and

may group into a single region, any connected set of

pixels. Any partition of the initial region may thus be

encoded by our split and merge process. Contrary to

quadtrees, our splitting operation is independent of any

geometrical constraint.

Algorithm 4: Merging operation

Data: A list of darts corresponding to all the edges1

inserted on Gk during splitting operation.

Result: Gk segmented according to merging

criterion.

foreach dart d ∈ list do

if R(d) = R(β2(d)) or merging2

criterion(R(d), R(β2(d)))is true then

Turn off getLinel(d) (geometry);3

Relabel the darts of R(β2(d));4

Remove d and β2(d) (topology);5

A B C D

Figure 10: Visualization of the top-down construction process:
first row is the original image followed by levels G1, G2 and
G3 (G0 is a single region). Segmentations are based on user-
defined thresholds (A,D) or rely on the standard deviation of
the parent region (B,C).

6 RESULTS AND ANALYSIS

This top-down model has been implemented in C++

and results have been computed on a personal computer

with a CPU AMDX2 3800+ (2GHz) and 1Gb of RAM

on a Linux system.

The splitting and merging criteria used to obtain the

different segmentations in Figure 10 are defined as fol-

low: let (R,R′) a couple of adjacent regions, M,m and

A denoting the maximum, minimum and average gray

level of R. The symbol tr denotes the threshold used by

the merging criterion.

In Figure 10.A and D, the merging criterion is a com-

parison between the average gray levels of two adjacent

regions: (R,R′) is merged if |A−A′|< tr. In Figure 10.B

and C, tr is proportional to the standard deviation of the

parent region of (R,R′): the more homogeneous a par-

ent region is, the more our segmentation algorithm will

search for fine details within its sons.

The splitting criterion avoids regions with less than

≤ 10 pixels and those which are going to be “com-

pletely” merged: R is split if M−m > tr. In Figure 10.A

and D, the values of tr are respectively set to 80/40/20

and 100/40/10 for the levels G1/G2/G3 of the images

Lena and Boat. Our splitting and merging operations

are independent of any specific criteria: more elaborated

ones, using geometrical, colorimetric or topological fea-

tures, may be designed without modifying our model.

Table 2 gives the number of elements, the memory

usage and processing times for each topological map
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G1 G2 G3

darts 600 7 728 19 090

regions 134 1 624 3 953

total memory (Kb) 306 808 1 604

splitting (s) 2.23 1.42 1.29

merging (s) 0.37 0.27 0.27

total level
3.11 2.05 1.94

construction (s)

Table 2: Statistics of the top-down construction from the image
of Lena (512*512) in Figure 10.B.

composing the pyramid of the image Lena. The num-

ber of darts and regions strongly increases from a level

to another as the merging threshold differentiates more

regions. It directly impacts the memory size of the asso-

ciated topological map. Indeed, the topology of a map

requires most of the memory, except for low segmented

maps where geometry could require more. The construc-

tion time of a level remains constant because, although

more regions are split, they are smaller in number of pix-

els.

7 CONCLUSION

This paper defines a model of top-down hierarchi-

cal data structure based on topological maps. Topolog-

ical maps are based on three models: a combinatorial

map encoding multiple adjacency of regions, an explicit

encoding of the geometry of the regions border and an

encoding of the inclusion relationships. Such a model

provides a complete description of a partition and is

adapted to splitting operations. Our top-down pyramid is

based on an initial topological map successively refined

by splitting operations.

This structure is particularly well suited for applica-

tions in segmentation that process large images: a top-

down construction scheme allows to store, at each step

of the algorithm, only the currently split regions and

we avoid the storage of very fine partitions (first lev-

els of bottom-up irregular pyramids). Besides, can use

global properties of upper levels to refine the segmen-

tation in lower levels and we retrieve the dual relation

between quadtrees and matrix pyramids with top-down

and bottom-up approaches.

In our future work, we plan to study different encod-

ing of the geometry and of the inclusion relationships

of topological maps. We also plan to use other splitting

methods such as (Brun et al., 2003) and to compare our

results with results obtained from other kinds of pyra-

mids. Finally, we should define segmentation operations

which fully exploit the top-down structure of the pyra-

mid.
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