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Abstract

In molecular biology and bioinformatics, search-
ing RNA gene occurrences in genomic sequences
is a task whose importance has been renewed by
the recent discovery of numerous functional RNA,
often interacting with other ligands. Even if several
programs exist for RNA motif search, no program
exists that can represent and solve the problem of
searching for occurrences of RNA motifsin inter-
action with other molecules.
In this paper, we present a CSP formulation of this
problem. We represent such RNA as structured
motifs that occur on more than one sequence and
which are related together by possible hybridiza-
tion. Together with pattern matching algorithms,
constraint satisfaction techniques have been im-
plemented in a prototype MilPat and applied to
search for tRNA and snoRNA genes on genomic
sequences. Results show that these combined tech-
niques allow to efficiently search for interacting
motifs in large genomic sequences and offer a sim-
ple and extensible framework to solve such prob-
lems.

1 Introduction
Our understanding of the role of RNA has changed in recent
years. Firstly considered as being simply the messenger that
converts genetic information from DNA into proteins, RNA is
now seen as a key regulatory factor in many of the cell’s cru-
cial functions, affecting a large variety of processes includ-
ing plasmid replication, phage development, bacterial viru-
lence, chromosome structure, DNA transcription, RNA pro-
cessing and modification, development control and others (for
review[Storz, 2002]). Consequently, the systematic search of
non-coding RNA (ncRNA) genes, which produce functional
RNAs instead of proteins, represents an important challenge.

RNA sequences can be considered as texts over the four
letter alphabet{A,C,G,U}. Unlike double-stranded DNA,
RNA molecules are almost exclusively found in an oriented
(left or 5’ to right or 3’) single-stranded form and often fold
into more complex structures than DNA by making use of so
called complementary internal sequences. This characteristic

allows different regions of the same RNA strand (or of several
RNA strands) to fold together via a variety of interactions to
build structures that are essential for the biological function.
The level of organization relevant for biological function cor-
responds to the spatial organization of the entire nucleotides
chain and is called the tertiary structure. The most prevalent
interactions which stabilize folded molecules are stacking and
hydrogen bonding between nucleotides on strands oriented
in antiparallel directions. Similarly to what exists in DNA,
hydrogen bonds appear mostly between specific pairs of nu-
cleic acids to formG–C andC–G or A–U andU–A bonds.
Therefore the interactions inside an RNA molecule usually
involve one part of a molecule and the nucleic acid comple-
ment of a another part of the same molecule (for example,
5’-ACUCGA-3’ and 5’-UCGAGU-3’), and the two antipar-
allel regions bind together.

All together, these interactions define the molecule three-
dimensional structure which is essential to characterize its
function and interactions with other molecules. Due to the
difficulty of determining such three dimensional RNA struc-
tures, one first explores the so-called RNA secondary struc-
ture, a simplified model of the RNA three dimensional tertiary
structure.

This secondary structure gives only a subset of those inter-
actions represented byC–G, G–C, A–U , andU–A pairs and
provides an important constraint for determining the three di-
mensional structure of RNA molecules.

An RNA molecule secondary structure can be represented
on a circular planar graph where theN nucleotides of the se-
quence are represented as vertices and are connected by edges
representing either (along the circle) covalent bonds between
successive nucleotides in the RNA sequence or (inside the
circle) hydrogen bonds between nucleotides from different
regions. Such a graph gives rise to characteristic secondary
structural elements (see Fig. 1) such as helices (a succession
of paired nucleotides), and various kinds of loops (unpaired
nucleotides surrounded by helices).

A more complete definition of secondary structure of RNA
allows for crossing edges in the representation graph making
possible the representation of another type of helix usually
called a pseudoknot (see Fig. 1). RNA structures can also
include nucleotide triples inside triple helices...

This definition extends the usual definition which is of-
ten limited to planar structures (therefore excluding pseudo-
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Figure 1: A representation of a secondary structure as a planar
graph. Thick edges represent covalent bonds. Thin edges rep-
resent hydrogen interactions. Dotted edges represent a pseu-
doknot. Helices may contain local mismatches which cover
three different types of errors which are: insertions of nu-
cleotide(s), also called bulges when only on one side, dele-
tions when the insertion is on the opposite side of the he-
lix and internal loops, when nucleotides are located on both
sides of the same helix. Insertion and deletion of nucleotides
are considered as symmetric operations, an insertion on one
side corresponding to a deletion on the other complementary
region.

knots and multiple helices) and is always restricted to intra-
sequences interactions.

In this paper, we use the extended definition where the
secondary structure of an RNA gene is defined as the set
of paired nucleotides which appear in the folded RNA, in-
cluding possible pseudoknots, triple helices but also duplexes
which are possible bindings forming helices with other RNA
molecules.

Screening a sequence database with tools designed for se-
quence similarity search quickly reveals similarities between
the query sequence and a range of database sequences. This
can be achieved for ribosomal rRNA sequences and other
ncRNAs recently reported in the literature (although it is dif-
ficult to establish the beginning and end of the RNA in ques-
tion). But the nucleotide sequence of the RNA itself is poorly
conserved, the observation that the functionally important
structural regions are usually conserved in an RNA family
(see for example Fig. 2) allows one to search for those ele-
ments that characterize the family more precisely.

Thus, the information contained both in the sequence itself
and the secondary (tertiary) structure can be viewed as a bi-
ological signal to exploit and search for. Thus, whatever the
method, it appears necessary to include both conserved pri-
mary sequence elements and higher order structure elements
as signals to screen for. These common structural charac-
teristics can be captured by a signature that represents the
structural elements which are conserved inside a set of related
RNA molecules.

We focus here on the problem of searching for new mem-
bers of a gene family given their common signature. Solving

this problem requires (1) to be able to formalize what a sig-
nature is and what it means for such a signature to occur in a
sequence (2) to design algorithms and data-structures that can
efficiently look for such occurrences in large sequences. For
sufficiently general signatures, this is an NP-complete prob-
lem [Vialette, 2004] that combines combinatorial optimiza-
tion and pattern matching issues.

Traditionally, two types of approaches have been used for
RNA gene finding: signatures can be modelled as stochastic
context free grammars (excluding pseudo-knots or complex
structures) and then searched using relatively time consum-
ing dynamic programming based parsers. This is e.g. used
in [Sakakibaraet al., 1994; Eddy and Durbin, 1994] for RNA
genes or in[Bockhorst and Craven, 2001] for terminators.

Another approach defines a signature as a set of interre-
lated motifs. Occurrences of the signature are sought us-
ing simple pattern-matching techniques and exhaustive tree
search. Such programs include RnaMot[Gautheretet al.,
1990], RnaBob[Eddy, 1996], PatScan[Dsouzaet al., 1997],
Palingol [Billoud et al., 1996] and RnaMotif[Mackeet al.,
2001]. Although most allow pseudo-knots to be represented,
they have very variable efficiencies and are all restricted to
single RNA molecule signatures.

In this paper, we clearly separate the combinatorial aspects
from the pattern matching aspect by modelling a signature as
a CSP. The CSP model captures the combinatorial features of
the problem while the constraints use pattern matching tech-
niques to enhance efficiency. This combination offers an ele-
gant and simple way to describe several RNA motifs in inter-
action and a general purpose efficient algorithm to search for
occurrences of such motifs.

2 Methods
The CSP formalism (see e.g.[Dechter, 2003]) is a power-
ful and extensively used framework for describing combi-
natorial search problems in artificial intelligence and oper-
ations research. This is usually well adapted to the defi-
nition of mathematical problems raised by molecular biol-
ogy (see[Gaspin and Westhof, 1994; Mulleret al., 1993;
Altman et al., 1994; Majoret al., 1991; Barahona and Krip-
pahl, 1999]) and has been used to model the structured motif
search problem in[Eidhammeret al., 2001; Policritiet al.,
2004].

2.1 Structured motifs as CSPs
The elements that may characterize an RNA gene family are
usually described:

• in terms of the gene sequence itself (e.g. it must contain
some possibly degenerated pattern);

• in terms of the structures the sequence creates: loops,
helices, hairpins and possible duplexes with other
molecules;

• by specifying how these various elements are positioned
relatively to each other.

A possible occurrence of such a structured motif on a ge-
nomic sequence can be described by the positions of the var-
ious elements on the genomic sequence. A true occurrence is



Figure 2: Alignment of a subset of ten sequences of the tRNA family extracted from the RFAM RNA database
(http://www.sanger.ac.uk/cgi-bin/Rfam). Each line gives the tRNA gene sequence. Both sides of each helix are under-
lined for each sequence of the alignment. Consensus helices are identified by boxes at the end of the alignment. tRNA genes
include four helices corresponding respectively to helix 1 called A-stem (7 nucleotide pairs), helix 2 called D-stem (from 3 to
4 nucleotide pairs), helix 3 called C-stem (5 nucleotide pairs) and the last fourth helix, called, T-stem (5 nucleotide pairs). Six
loops corresponding respectively to the single strand between A-stem and D-stem (sequence UN with U invariant), D-loop (4 to
14 nucleotides), the single strand between D-stem and C-stem (one nucleotide), C-loop ( 6 to 60 nucleotides), the single strand
between C-stem and T-stem (also called V-loop, 2 to 22 nucleotides), T-loop (NUC) allow to build a signature of the family.
Note several hundred tRNA sequences are now available from biological databanks (see in particular RFAM).

such that the required patterns, structures actually appear in
the genomic sequence and are correctly positioned relatively
to each other. Note that a genomic sequence is represented as
a string defined over the RNA alphabet{A,U,G,C}.

A natural CSP model emerges from this description: the
variables will represent the positions on the nucleotide se-
quence of the elements of the description. More formally,
each variablexi ∈X will represent a position on an associated
RNA sequence (denotedti). The initial domain of variablexi ,
unless otherwise stated, will therefore be equal to[1, |ti |]. In
order to represent information on required patterns, structures
and on relative positions of these elements, constraints will
be used. To describe a constraint we separate thevariables
xi , ...,x j involved in the constraint (its scope) and possible ex-
traparameters p1, ..., pk that influence the actual combination
of values that are authorized by the constraint. Such a con-
straint will be denoted asname[p1, ..., pk](xi , ...,x j). We now
introduce the basic constraint types which are useful for RNA
signature expression:

composition [word,error, typeerr](xi)
this unary constraint is satisfied iff some given sequence (a
pattern) occurs at positionxi on sequenceti . The pattern that
must occur is specified by the following constraint parame-
ters:

• word is a word on the so-called IUPAC alphabet which
includes meta-characters that match several characters
of the RNA alphabet.

• error specifies the maximum number of tolerated mis-
matches between an occurrence and the specified string.

• typeerr indicates if the error count is interpreted under
the Hamming or Levenstein distance metric[Smith and
Waterman, 1981].

An example of possible use of this constraint is illustrated in
Fig. 3(1) where variablex1 is constrained to a position where
the AGGGCUAGpattern must appear with no error. A posi-
tion satisfying this constraint (or occurrence of the pattern) is
indicated by the arrow.

distance [lmin, lmax](xi1,xi2)
this binary constraint is use to enforce the relative position of
elements. It is satisfied iff

lmin ≤ xi2 −xi1 ≤ lmax

The parameterslmin, lmax specify the bounds for the differ-
ence between the two position variables. It is a simple usual
arithmetic constraint.

helix [rule,error, typeerr, lmin, lmax,bmin,bmax](xi1,xi2,xi3,xi4)
this 4-ary constraint is used to enforce the existence of an he-
lix between the sequence regions delimited by[xi1,xi2] and
[xi3,xi4]. This constraint assumes that the four variables are
related to the same sequence (it models intra-sequence in-
teractions) and each region represents a substring of this se-
quence. The length and distances between these regions are
also constrained. The constraint must be specified by the fol-
lowing parameters:

• rule: a binary relation on the RNA alphabet that char-
acterizes which pairs of nucleotides are allowed inside
an helix. For an RNA helix, one typically uses Watson-
Crick (A-U andG-C) pairs,possibly extended with Wob-
ble (G-U) pairing.

• error: the maximum number of tolerated mismatches be-
tween the two regions (nucleotides that do not satisfy the
previous paring relation).

• typeerr: the Hamming or Levenstein distance metric for
error counts.
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Figure 3: Basic constraints. (case 1): occurrence of a pattern at one position (variable). The constraint graph contains one
variable with a unary constraint represented by a loop. (case 2): an helix and a loop defined by two related segments separated
by specified lengths. The constraint graph contains four variables, four implicit distance constraints represented by edges
and one hyper-edge (for the helix constraint) connecting all four variables with a rectangle in the middle. (case 3): a duplex
composed of two independent substrings (from two sequences). The constraint graph is similar to the previous one (two distance
constraints are removed). (cases 4 and 5): two helix constraints can describe a pseudo-knot (4) or a triple helix (5).

• lmin, lmax: the interval specifying possible lengths of the
two substrings.

• bmin,bmax: the interval specifying the possible distance
between the two substrings (i.e., xi3 −xi3).

This constraint is illustrated in Fig. 3(2), involving variables
x1, x2, x3 andx4. Assuming Watson-Crick pairing, no error
and suitable lengths, the constraint is satisfied for the values
indicated by arrows on the sequence below.

duplex [lmin, lmax](x1,x2,y3,y4)
this 4-ary constraint is used to enforce the existence of a
(Watson-Crick based) duplex between the regions delimited
by [x1,x2] and [y3,y4]. Although semantically equivalent
to the previous one, it does not assume that the two sub-
strings represented by the two regions belong to the same
sequence. This has important computational impact. Only
Watson-Crick pairing is considered. This constraint is used
to model RNA-RNA interactions between possibly different
molecules.

• lmin, lmax: the interval specifying possible lengths of the
two substrings.

The constraint is illustrated in Fig. 3(3) involvingx1, x2 (on
one sequence) andy3 and y4 on another sequence. Values
satisfying the constraint (an occurrence) is indicated by the
arrows.

Note that together these constraints can describe more
complex structures like pseudo-knots (Fig. 3(4)), triple he-
lices (Fig. 3(5)), and so on.

The flexibility of the CSP formalism using simply the four
previous basic constraints can be illustrated on famous RNA
gene families. ThetRNA signature is represented in Fig. 4
where tRNA genes include four helices. The corresponding
CSP is build from 16 variables (the variable numbering fol-
lows the 3’→ 5’ orientation) with 15distance constraints
(one constraint between each successive pair of variables), 2
composition constraints and 4helix constraints.

The same process can be applied to thesnoRNA signa-
ture depicted in Fig. 5. snoRNA genes include a C box
(RUGAUGA) with one error allowed, a single strand from
22 to 44 nucleotides, a duplex with a target RNA from 9



Figure 4: (A) Signature of tRNA genes family. White cir-
cles : nucleotides with unknown composition, black circles
: known composition, little circles : number of nucleotides
given by an interval, and edge : interaction between two nu-
cleotides. (B) Corresponding CSP model.

to 15 nucleotides and a D box (CUGA) with one error al-
lowed. The corresponding CSP is build from 4 variables cor-
responding to positions on the genomic sequence and a pair
of additional variables associated with the target RNA. The
first set of variables is linked with 3distance constraints
and 2composition constraints. The second set with one
distance constraint. Both sets are connected through one
duplex constraint.

2.2 Algorithms and implementation
Given such CSPs, our problem is to findall solutions. Com-
pared to usual applications of the CSP formalism, this one is
characterized by the potential huge domain size (the length
of a complete pseudo-molecule can be greater than several
million of nucleotides) and its specific constraint types (ex-
cept for thedistance constraint which is a usual arithmetic
constraint). For efficiency and memory space reasons, it is
not possible to represent variable domains exhaustively and to
enforce arc consistency on them. As it is done in Constraint
Programming[Dechter, 2003], we represent the domain of
each variablexi by an interval[lbi ,ubi ] and reason only on
domain bounds as done in arc-bound consistency[Lhomme,
1993]. This limited bound filtering is done at each node inside
a usual tree search algorithm. For n-ary constraints, the typ-
ical form of local consistency used enforces the fact that the
bounds in the domain of one variable in the constraint scope
must participate in at least one tuple that is authorized by the
constraint and the other domains. The exploration method we
used is a depth-first search algorithm with a refutation mech-
anism (during backtracks, it propagates the removal of values

Figure 5: Signature of snoRNA genes family including its
target interaction.

already explored).

Dedicated constraint propagation
For each type of constraint, we developed specific filtering
algorithm using appropriate pattern matching algorithms (ex-
cept for thedistance constraint where we used the filtering
algorithm described in[Hentenrycket al., 1992]):
• composition [...](xi): to enforce arc consistency on

the lower bound of the domain ofxi , one can simply
update this to the position of the first occurrence of the
pattern afterlbi in the textti . To find this occurrence, the
algorithm of Baeza-Yates and Manber[Baeza-Yaltes and
Gonnet, 1992; Wu and Manber, 1991] is used. This algo-
rithm is based on a boolean representation of the search
state and exploit the intrinsic parallelism of bitwise logi-
cal operations in modern CPU. It has a linear complexity
for exact string search and a complexity inO(m×n) for
the Levenstein distance (m being the length of the text
andn that of the pattern sought). A similar processing
can be done on the other bound (but is not used in our
prototype).

• helix [...](xi1,xi2,xi3,xi4): Consider for example vari-
ablexi1. To filter xi domain, we must find the first helix
(a support) that satisfies the parameters of the constraint.
By first we mean the helix with the smallest position of
the 5’ extremity of the first arm (pointed byx1). The
problem for helices (which can be seen as two related
substrings) is more complex than forcomposition
since the two strings are initially unknown. This makes
it impossible to use string matching algorithms rely-
ing on a preprocessing of the string searched. The
most naive approach that successively tries all possi-
ble positions for the first and second string is obviously
quadratic. However, in our case, the distance between
the regions where the words may appear is constrained
by the length parametersbmin andbmax. Together with
parameterslmin and lmax, this makes the complexity of
the naive approach linear in the text length. This is there-
fore the method implemented. A similar approach can
be used for other bounds.

• duplex [...](x1,x2,y3,y4): this constraint differs from
the previous one by the precise fact that there is no
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possiblebmin and bmax parameters since the two in-
teracting substrings do not necessarily appear on the
same sequence. The previous naive approach is there-
fore impractical. We decided to use a specialized ver-
sion of suffix-trees[McCreight, 1976; Ukkonen, 1992]
that captures occurrences of patterns of bounded length.
This data structure, called ak-factor tree [Allali and
Sagot, 2003] allows to perform string search in time
linear in the length of the pattern searched (indepen-
dently of the text length). The data structure, illustrated
in Fig. 6, is built once before the search, in space and
time linear in the length of the text[McCreight, 1976;
Ukkonen, 1992]. The associated filtering algorithm does
not enforce generalized bound arc consistency but is
only triggered when one of the two variablesx1 or y3
is assigned.All the occurrences of the Watson-Crick re-
verse complement can then be efficiently found in the
k-factor tree and used to update the bounds of the other
variables (the position of the first and last possible oc-
currences define the new bounds).

Because these constraint propagation are quite expensive
compared to the simpledistance constraint, and in or-
der to avoid repeated useless applications of the filtering al-
gorithms, once a support is found it is memorized and will
not be sought again until one of its value is deleted (as in
AC2001[Bessiere and Regin, 2001]).

3 Results and discussion
This approach has been implemented in C++ and results in a
specific solver called MIL PAT: Motifs andInter-moLecular
motifs searching tool using csP formAlism and solving
Techniques. We tested our approach on different RNA gene
search problems in order to assess its efficiency and mod-
elling capacities.

3.1 tRNAs
The tRNA structure and sequence profiles are perhaps the best
studied among RNAs; hence, they are very appropriate for a
first benchmarking.

tRNA genes include four helices corresponding respec-
tively to A-stem (7 nucleotide pairs), D-stem (from 3 to 4
nucleotide pairs), C-stem (5 nucleotide pairs) and T-stem (5
nucleotide pairs), six loops corresponding respectively to the
single strand between A-stem and D-stem (sequence UN with
U invariant), D-loop (4 to 14 nucleotides), the single strand

Software E. coli S. cereviciae
(genome size) (4.6106) (12.07106)

PatScan 1 min. 32 1 h 40
RnaMotif 4 s. 8h40
RnaMot 2 min. 92 h

M IL PAT (order A) 39 s 1 h52
M IL PAT (order B) 39 s 20 min.

Table 1: Comparison of the time efficiency.

between D-stem and C-stem (one nucleotide), C-loop ( 6 to
60 nucleotides), the single strand between C-stem and T-stem
(also called V-loop, 2 to 22 nucleotides), T-loop (NUC).

The signature of tRNAs used here is deliberately a simple
one that can be modelled in all existing general purpose tools.
We have concentrated on finding sequences that can adopt
a cloverleaf-like secondary structure within given ranges of
stem and loop lengths. We searched theEscherichia coliand
Saccharomyces cerevisiaegenomes.

We compared the time execution of MIL PAT with three
other general purpose programs. The tRNA signature used
in our comparisons is from Gautheret andal. [Gautheretet
al., 1990]. It includes four helices constraints, 14 distance
constraints and 2 composition constraints (see Fig. 4). The
results of this comparison are shown in Table 1. For each
genome search test, all the programs gave the same number
of solutions (545 solutions are found for theE. coli genome
and 849982 for theS. cerevisiaegenome).

On the computing efficiency basis, three groups may be
formed from the slowest to the fastest: (i) RnaMot and
RnaMotif, (ii) Patscan and MIL PAT with variable selection
order A, and (iii) MIL PAT with variable selection order B. It
is well known that variable assignment order may have a sig-
nificant influence on efficiency. The static order A used by
M IL PAT consists in ordering variables according to the topo-
logical order of the elements in the structured motif, from 5’
to 3’. Order B is a dynamic order following the first fail prin-
ciple: most constrained variables are chosen first by the back-
track algorithm. Without this order, MIL PAT already has an
execution time close to the most efficient program, PatScan.
Just changing the order leads to an early pruning of the search
tree and a considerably improved execution speed forSaccha-
romyces cerevisiae.

3.2 snoRNAs
To validate the ability of MIL PAT to model interactions be-
tween different molecules, we performed a computational
scan of thePyrococcus abyssigenome for C/D snoRNA
genes. Since no existing general purpose tool allows to model
interaction between a snoRNA and its target, we compared
M IL PAT to Snoscan, a tailored software for the C/D snoRNA
genes. This program sequentially identifies six specific com-
ponents of these genes (see Fig. 5): a RUGAUGA string (so
called C box), a sequence region, able to form a duplex with
another “target” sequence and a CUGA string (so called D
box). We used aS. cerevisiaetailored version of snoScan as
no archae-bacteria version is available. This fact probably ex-
plains the limited sensitivity shown in Table 2. The descriptor



Software Solutions True positives Time
SnoScan 1611 27 20 min.
M IL PAT 852 42 8 s.

Table 2:Pyrococcus abyssigenome (1.7106 characters) - 59
annotated snoRNAs.

used by MIL PAT is described in Fig. 5. The missing anno-
tated genes (17 out of 59) are due to the current limitation of
the duplex constraint to Watson/Crick matches. These first
results show the modelling flexibility and solving efficiency
of M IL PAT.

4 Conclusion

The main aim of our work is to offer a way of describing new
generations of RNA patterns, including the specification of
complexes which can be formed by anti-sense interactions be-
tween different regions of a genome. The use of CSP method-
ology together with efficient pattern matching data structures
and algorithms provides increased efficiency, extended mod-
elling capabilities for intermolecular interactions and an eas-
ily extensible framework.

Beyond this ability to describe inter and intra-molecular in-
teractions with a great flexibility, a number of evolutions are
possible to improve MIL PAT efficiency and modelling capa-
bilities, including the ability to describe optional or alterna-
tive motifs. Within the framework of biological applications,
these possibilities are essential to be closer to the structural
reality of the molecules.

In its current version, MIL PAT is just providing all the
true occurrences (satisfying all constraints). It does not op-
timize any scoring system based on mismatches, thermo-
dynamics or probabilistic parameters. Taking into account
such information would require the use of more complex
Weighted CSP algorithms such as in[Schiexet al., 1995;
Larrosa and Schiex, 2004].
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