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Abstract

In molecular biology and bioinformatics, search-
ing RNA gene occurrences in genomic sequences
is a task whose importance has been renewed by
the recent discovery of numerous functional RNA,
often interacting with other ligands. Even if several
programs exist for RNA motif search, no program
exists that can represent and solve the problem of
searching for occurrences of RNA motifsinter-
action with other molecules

In this paper, we present a CSP formulation of this
problem. We represent such RNA as structured
motifs that occur on more than one sequence and
which are related together by possible hybridiza-
tion. Together with pattern matching algorithms,
constraint satisfaction techniques have been im-
plemented in a prototype MilPat and applied to
search for tRNA and snoRNA genes on genomic
sequences. Results show that these combined tech-
nigues allow to efficiently search for interacting
motifs in large genomic sequences and offer a sim-
ple and extensible framework to solve such prob-
lems.

Introduction

allows different regions of the same RNA strand (or of several
RNA strands) to fold together via a variety of interactions to
build structures that are essential for the biological function.
The level of organization relevant for biological function cor-
responds to the spatial organization of the entire nucleotides
chain and is called the tertiary structure. The most prevalent
interactions which stabilize folded molecules are stacking and
hydrogen bonding between nucleotides on strands oriented
in antiparallel directions. Similarly to what exists in DNA,
hydrogen bonds appear mostly between specific pairs of nu-
cleic acids to formG-C andC-G or A-U andU-A bonds.
Therefore the interactions inside an RNA molecule usually
involve one part of a molecule and the nucleic acid comple-
ment of a another part of the same molecule (for example,
5-ACUCGA-3’ and 5-UCGAGU-3’), and the two antipar-
allel regions bind together.

All together, these interactions define the molecule three-
dimensional structure which is essential to characterize its
function and interactions with other molecules. Due to the
difficulty of determining such three dimensional RNA struc-
tures, one first explores the so-called RNA secondary struc-
ture, a simplified model of the RNA three dimensional tertiary
structure.

This secondary structure gives only a subset of those inter-
actions represented -G, G-C, A-U, andU-A pairs and
provides an important constraint for determining the three di-
mensional structure of RNA molecules.

Our understanding of the role of RNA has changed in recent An RNA molecule secondary structure can be represented
years. Firstly considered as being simply the messenger thah a circular planar graph where tNenucleotides of the se-
converts genetic information from DNA into proteins, RNA is quence are represented as vertices and are connected by edges
now seen as a key regulatory factor in many of the cell's crurepresenting either (along the circle) covalent bonds between
cial functions, affecting a large variety of processes includ-successive nucleotides in the RNA sequence or (inside the
ing plasmid replication, phage development, bacterial virucircle) hydrogen bonds between nucleotides from different
lence, chromosome structure, DNA transcription, RNA pro-regions. Such a graph gives rise to characteristic secondary
cessing and modification, development control and others (fostructural elements (see Fig. 1) such as helices (a succession
review[Storz, 200). Consequently, the systematic search ofof paired nucleotides), and various kinds of loops (unpaired
non-coding RNA (ncRNA) genes, which produce functionalnucleotides surrounded by helices).

RNAs instead of proteins, represents an important challenge. A more complete definition of secondary structure of RNA

RNA sequences can be considered as texts over the foatlows for crossing edges in the representation graph making

letter alphabefA,C,G,U}. Unlike double-stranded DNA, possible the representation of another type of helix usually
RNA molecules are almost exclusively found in an orientedcalled a pseudoknot (see Fig. 1). RNA structures can also
(left or 5’ to right or 3) single-stranded form and often fold include nucleotide triples inside triple helices...

into more complex structures than DNA by making use of so This definition extends the usual definition which is of-
called complementary internal sequences. This characteristien limited to planar structures (therefore excluding pseudo-



this problem requires (1) to be able to formalize what a sig-
nature is and what it means for such a signature to occur in a
sequence (2) to design algorithms and data-structures that can
efficiently look for such occurrences in large sequences. For
sufficiently general signatures, this is an NP-complete prob-
lem [Vialette, 2004 that combines combinatorial optimiza-
tion and pattern matching issues.

Traditionally, two types of approaches have been used for
RNA gene finding: signatures can be modelled as stochastic
context free grammars (excluding pseudo-knots or complex
structures) and then searched using relatively time consum-
ing dynamic programming based parsers. This is e.g. used
in [Sakakibarat al., 1994; Eddy and Durbin, 1994or RNA
genes or ifBockhorst and Craven, 20Pfor terminators.

Another approach defines a signature as a set of interre-
Figure 1: A representation of a secondary structure as a planéated motifs. Occurrences of the signature are sought us-
graph. Thick edges represent covalent bonds. Thin edges rejmg simple pattern-matching techniques and exhaustive tree
resent hydrogen interactions. Dotted edges represent a psesearch. Such programs include RnaMGiautheretet al,,
doknot. Helices may contain local mismatches which coverl99d, RnaBob[Eddy, 1998, PatScariDsouzaet al.,, 1991,
three different types of errors which are: insertions of nu-Palingol[Billoud et al, 1994 and RnaMotifilMackeet al,,
cleotide(s), also called bulges when only on one side, dele200]]. Although most allow pseudo-knots to be represented,
tions when the insertion is on the opposite side of the hethey have very variable efficiencies and are all restricted to
lix and internal loops, when nucleotides are located on botlsingle RNA molecule signatures.
sides of the same helix. Insertion and deletion of nucleotides In this paper, we clearly separate the combinatorial aspects
are considered as symmetric operations, an insertion on orfeom the pattern matching aspect by modelling a signature as
side corresponding to a deletion on the other complementarg CSP. The CSP model captures the combinatorial features of
region. the problem while the constraints use pattern matching tech-

nigues to enhance efficiency. This combination offers an ele-
) ) ) ) ) gant and simple way to describe several RNA motifs in inter-
knots and multiple helices) and is always restricted to intrazction and a general purpose efficient algorithm to search for
sequences Interactions. occurrences of such motifs.

In this paper, we use the extended definition where the
secondary structure of an RNA gene is defined as the set  \ethods
of paired nucleotides which appear in the folded RNA, in- _ .
cluding possible pseudoknots, triple helices but also duplexeshe CSP formalism (see e.fDechter, 2008 is a power-

which are possible bindings forming helices with other RNATUl and extensively used framework for describing combi-
molecules. natorial search problems in artificial intelligence and oper-

S%t_ions research. This is usually well adapted to the defi-
r{mion of mathematical problems raised by molecular biol-
y (see[Gaspin and Westhof, 1994; Mullat al, 1993;
tman et al,, 1994; Majoret al, 1991; Barahona and Krip-
pahl, 1999) and has been used to model the structured motif

Screening a sequence database with tools designed for
guence similarity search quickly reveals similarities betwee
the query sequence and a range of database sequences.
can be achieved for ribosomal rRNA sequences and oth
NcRNASs recently reported in the literature (although it is dif- e e
ficult to establisr): thg beginning and end of(the RI\?A in ques-S€arch problem ifEidhammeret al, 2001; Policritiet al,
tion). But the nucleotide sequence of the RNA itself is poorly2004'
conserved, the observation that the funqtionally importa.ntzll Structured motifs as CSPs
structural regions are usually conserved in an RNA family : .

(see for example Fig. 2) allows one to search for those elel he elements that may characterize an RNA gene family are
ments that characterize the family more precisely. usually described:

Thus, the information contained both in the sequence itself e in terms of the gene sequence itself (e.g. it must contain
and the secondary (tertiary) structure can be viewed as a bi- some possibly degenerated pattern);

ological signal to exploit and search for. Thus, whatever the ¢ i, terms of the structures the sequence creates: loops,

method, it appears necessary to include both conserved pri- helices, hairpins and possible duplexes with other
mary sequence elements and higher order structure elements . Jiacules:

as signals to screen for. These common structural charac- o ) -

teristics can be captured by a signature that represents the® Y specifying how these various elements are positioned

structural elements which are conserved inside a set of related ~ "elatively to each other.

RNA molecules. A possible occurrence of such a structured motif on a ge-
We focus here on the problem of searching for new memsnomic sequence can be described by the positions of the var-

bers of a gene family given their common signature. Solvingous elements on the genomic sequence. A true occurrence is
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Figure 2. Alignment of a subset of ten sequences of the tRNA family extracted from the RFAM RNA database
(http://www.sanger.ac.uk/cgi-bin/Rfam). Each line gives the tRNA gene sequence. Both sides of each helix are under-
lined for each sequence of the alignment. Consensus helices are identified by boxes at the end of the alignment. tRNA genes
include four helices corresponding respectively to helix 1 called A-stem (7 nucleotide pairs), helix 2 called D-stem (from 3 to

4 nucleotide pairs), helix 3 called C-stem (5 nucleotide pairs) and the last fourth helix, called, T-stem (5 nucleotide pairs). Six
loops corresponding respectively to the single strand between A-stem and D-stem (sequence UN with U invariant), D-loop (4 to
14 nucleotides), the single strand between D-stem and C-stem (one nucleotide), C-loop ( 6 to 60 nucleotides), the single strand
between C-stem and T-stem (also called V-loop, 2 to 22 nucleotides), T-loop (NUC) allow to build a signature of the family.
Note several hundred tRNA sequences are now available from biological databanks (see in particular RFAM).

such that the required patterns, structures actually appear #in example of possible use of this constraint is illustrated in
the genomic sequence and are correctly positioned relativellyig. 3(1) where variablg; is constrained to a position where
to each other. Note that a genomic sequence is representedtas AGGGCUAattern must appear with no error. A posi-
a string defined over the RNA alphalet,U,G,C}. tion satisfying this constraint (or occurrence of the pattern) is

A natural CSP model emerges from this description: theéndicated by the arrow.
variables will represent the positions on the nucleotide S€jistance s ] (3
guence of the elements of the description. More formally, "~ mins max _'1’)('2) ) "
each variable; € X will represent a position on an associated this binary constraint is use to enforce the relative position of
RNA sequence (denotégd. The initial domain of variable;, ~ eléments. Itis satisfied iff
unless otherwise stated, will therefore be equdlid;|]. In _ oy

: . H |m|n S XI2 Xll S Imax
order to represent information on required patterns, structures
and on relative positions of these elements, constraints will The parameters,i, lmax SPecify the bounds for the differ-
be used. To describe a constraint we separateahiables  ence between the two position variables. It is a simple usual
Xi, ...,Xj involved in the constraint (its scope) and possible ex-arithmetic constraint.
traparameters p, ..., px that influence the actual combination .
of values that are authorized by the constraint. Such a corf€lix [rule,error, typeer, Imin, Imax; Bmin, bmas] (Xiy , Xiz , Xi3 Xiy)
straint will be denoted asame[px, ..., px] (%, ..., Xj). We now  this 4-ary constraint is used to enforce the existence of an he-
introduce the basic constraint types which are useful for RNAix between the sequence regions delimitedky, x;,] and

signature expression: [Xi5,X,]. This constraint assumes that the four variables are
related to the same sequence (it models intra-sequence in-
composition  [word, error, typeer|(X) teractions) and each region represents a substring of this se-

this unary constraint is satisfied iff some given sequence (guence. The length and distances between these regions are

pattern) occurs at position on sequencg. The pattern that also constrained. The constraint must be specified by the fol-

must occur is specified by the following constraint parame-low'ng parameters:

ters: e rule: a binary relation on the RNA alphabet that char-

. . acterizes which pairs of nucleotides are allowed inside
¢ word is a word on the so-called IUPAC alphabet which an helix. For an RNA helix, one typically uses Watson-

includes meta-characters that match several characters Crick (A-U andG-C) pairs, possibly extended with Wob-
of the RNA alphabet. ble (G-U) pairing.

e error specifies the maximum number of tolerated mis- o error: the maximum number of tolerated mismatches be-
matches between an occurrence and the specified string.  tween the two regions (nucleotides that do not satisfy the

e type., indicates if the error count is interpreted under previous paring relation).

the Hamming or Levenstein distance mefiSmith and e typee,: the Hamming or Levenstein distance metric for
Waterman, 1981 error counts.



(case2)

(case1)

X %5 2v
Xy
AGGGCUAGG <—» | X, > .
x @D @Dy,
4
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(case3)

genomic sequence

AAAAG(iUUCC\UAGQCG{\AGCA/GGAéGgUC?CGGGG(%GGCAG\ACACCC(EUCUG}ZC}JGGCA};ACCGGA

X3
X, Xy

(case4) (case5)

Figure 3: Basic constraints. (case 1): occurrence of a pattern at one position (variable). The constraint graph contains one
variable with a unary constraint represented by a loop. (case 2): an helix and a loop defined by two related segments separated
by specified lengths. The constraint graph contains four variables, four implicit distance constraints represented by edges
and one hyper-edge (for the helix constraint) connecting all four variables with a rectangle in the middle. (case 3): a duplex
composed of two independent substrings (from two sequences). The constraint graph is similar to the previous one (two distance
constraints are removed). (cases 4 and 5): two helix constraints can describe a pseudo-knot (4) or a triple helix (5).

e |min,Imax: the interval specifying possible lengths of the e |y, Imax: the interval specifying possible lengths of the
two substrings. two substrings.

The constraint is illustrated in Fig. 3(3) involving, X2 (on
e bmin,bmax: the interval specifying the possible distance 0ne sequence) arys andy, on another sequence. Values
between the two substringise(, Xi, — Xi). satisfying the constraint (an occurrence) is indicated by the
arrows.
This constraint is illustrated in Fig. 3(2), involving variables  Note that together these constraints can describe more

X1, X2, X3 andxs. Assuming Watson-Crick pairing, no error complex structures like pseudo-knots (Fig. 3(4)), triple he-
and suitable lengths, the constraint is satisfied for the valuegces (Fig. 3(5)), and so on.

indicated by arrows on the sequence below. The flexibility of the CSP formalism using simply the four
previous basic constraints can be illustrated on famous RNA
duplex  [lmin, Imax] (X1, X2, ¥3,Ya) gene families. ThéRNA signature is represented in Fig. 4

this 4-ary constraint is used to enforce the existence of avhere tRNA genes include four helices. The corresponding
(Watson-Crick based) duplex between the regions delimite€SP is build from 16 variables (the variable numbering fol-
by [x1,%] and [ys,ys]. Although semantically equivalent lows the 3'— 5’ orientation) with 15distance  constraints

to the previous one, it does not assume that the two suk{one constraint between each successive pair of variables), 2
strings represented by the two regions belong to the samemposition  constraints and Aelix  constraints.
sequence. This has important computational impact. Only The same process can be applied to $heRNA signa-
Watson-Crick pairing is considered. This constraint is usedure depicted in Fig. 5. snoRNA genes include a C box
to model RNA-RNA interactions between possibly different (RUGAUGAwith one error allowed, a single strand from
molecules. 22 to 44 nucleotides, a duplex with a target RNA from 9
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Figure 5: Signature of snoRNA genes family including its
target interaction.

already explored).

Dedicated constraint propagation

For each type of constraint, we developed specific filtering
algorithm using appropriate pattern matching algorithms (ex-
cept for thedistance

constraint where we used the filtering

Figure 4: (A) Signature of tRNA genes family. White cir- algorithm described ifHentenryclet al, 1993):

cles : nucleotides with unknown composition, black circles
: known composition, little circles : number of nucleotides

given by an interval, and edge : interaction between two nu-
cleotides. (B) Corresponding CSP model.

to 15 nucleotides and a D boxXCUGA with one error al-
lowed. The corresponding CSP is build from 4 variables cor-
responding to positions on the genomic sequence and a pair
of additional variables associated with the target RNA. The
first set of variables is linked with 8istance  constraints

and 2composition  constraints. The second set with one
distance constraint. Both sets are connected through one
duplex constraint.

2.2 Algorithms and implementation

Given such CSPs, our problem is to fialll solutions. Com-
pared to usual applications of the CSP formalism, this one is
characterized by the potential huge domain size (the length
of a complete pseudo-molecule can be greater than several
million of nucleotides) and its specific constraint types (ex-
cept for thedistance  constraint which is a usual arithmetic
constraint). For efficiency and memory space reasons, it is
not possible to represent variable domains exhaustively and to
enforce arc consistency on them. As it is done in Constraint
Programming[Dechter, 2008 we represent the domain of
each variableg by an intervalllb;,uly] and reason only on
domain bounds as done in arc-bound consist¢hhpmme,
1993. This limited bound filtering is done at each node inside
a usual tree search algorithm. For n-ary constraints, the typ-
ical form of local consistency used enforces the fact that the
bounds in the domain of one variable in the constraint scope
must participate in at least one tuple that is authorized by the
constraint and the other domains. The exploration method we
used is a depth-first search algorithm with a refutation mech-
anism (during backtracks, it propagates the removal of values

composition  [...](x): to enforce arc consistency on
the lower bound of the domain of, one can simply
update this to the position of the first occurrence of the
pattern aftetb; in the textt;. To find this occurrence, the
algorithm of Baeza-Yates and ManljBaeza-Yaltes and
Gonnet, 1992; Wu and Manber, 1994 used. This algo-
rithm is based on a boolean representation of the search
state and exploit the intrinsic parallelism of bitwise logi-
cal operations in modern CPU. It has a linear complexity
for exact string search and a complexity®(m x n) for

the Levenstein distancen(being the length of the text
andn that of the pattern sought). A similar processing
can be done on the other bound (but is not used in our
prototype).

helix  [...](%i, Xi,, Xi3,%,): Consider for example vari-
ablex;,. To filter x; domain, we must find the first helix

(a support) that satisfies the parameters of the constraint.
By first we mean the helix with the smallest position of
the 5’ extremity of the first arm (pointed bxj). The
problem for helices (which can be seen as two related
substrings) is more complex than foomposition

since the two strings are initially unknown. This makes
it impossible to use string matching algorithms rely-
ing on a preprocessing of the string searched. The
most nhaive approach that successively tries all possi-
ble positions for the first and second string is obviously
quadratic. However, in our case, the distance between
the regions where the words may appear is constrained
by the length parametets,;, andb,.x. Together with
parameters,;, andl.., this makes the complexity of
the naive approach linear in the text length. This is there-
fore the method implemented. A similar approach can
be used for other bounds.

duplex [...](x1,X2,¥a,Ya): this constraint differs from
the previous one by the precise fact that there is no



UACUACA Software E. coli S. cereviciae
1234567 (genome size) (®10°)  (120710)
UACU PatScan 1 min. 32 1h40
RnaMotif 4s. 8h40
ACUA RnaMot 2 min. 92 h
CUAC MILPAT (order A) 39s 1 h52
UACA ML PAT (order B) 39s 20 min.

Figure 6: Thek factor tree (withk = 4) for UACUACA This Table 1: Comparison of the time efficiency.

data structure represents the set of substrings of length 4 of

the text. between D-stem and C-stem (one nucleotide), C-loop ( 6 to
60 nucleotides), the single strand between C-stem and T-stem

possiblebmi, and bya, parameters since the two in- (also called V-loop, 2 to 22 nucleotides), T-loop (NUC).
teracting substrings do not necessarily appear on the The signature of tRNAs used here is deliberately a simple
same sequence. The previous naive approach is therene that can be modelled in all existing general purpose tools.
fore impractical. We decided to use a specialized verWe have concentrated on finding sequences that can adopt
sion of suffix-treegMcCreight, 1976; Ukkonen, 1992 a cloverleaf-like secondary structure within _giv_en ranges of
that captures occurrences of patterns of bounded lengtigtem and loop lengths. We searchedfseherichia coliand
This data structure, called lkafactor tree [Allali and ~ Saccharomyces cerevisigenomes.
Sagot, 200B allows to perform string search in time  We compared the time execution ofilMPAT with three
linear in the length of the pattern searched (indepenother general purpose programs. The tRNA signature used
dently of the text length). The data structure, illustratedin our comparisons is from Gautheret aald [Gautheretet
in Fig. 6, is built once before the search, in space andl., 199d. It includes four helices constraints, 14 distance
time linear in the length of the teXMcCreight, 1976; constraints and 2 composition constraints (see Fig. 4). The
Ukkonen, 1992 The associated filtering algorithm does results of this comparison are shown in Table 1. For each
not enforce generalized bound arc consistency but igenome search test, all the programs gave the same number
only triggered when one of the two variablesor y;  Of solutions (545 solutions are found for t&e coli genome
is assignedAll the occurrences of the Watson-Crick re- and 849982 for th&. cerevisiagenome).
verse complement can then be efficiently found in the On the computing efficiency basis, three groups may be
k-factor tree and used to update the bounds of the othdprmed from the slowest to the fastest: (i) RnaMot and
variables (the position of the first and last possible oc-RnaMotif, (ii) Patscan and M PAT with variable selection
currences define the new bounds). _order A, and (iii) MLRAT with v_ariable selection order B. It_
Because these constraint propagation are quite expensi's’. well known that variable assignment order may have a sig-
compared to the simpldistance  constraint, and in or- Wificant influence on efficiency. The static order A used by
! MIL PAT consists in ordering variables according to the topo-

der to avoid repeated useless applications of the filtering _a||'ogical order of the elements in the structured motif, from 5’
gorithms, once a support is found it is memorized and will

not be sought again until one of its value is deleted (as itc_) 3. OrderBis aqynamlc .orderfollowmg the.f|rst fail prin-
AC2001[Bessiere and Regin, 2001 rl:lple: most constra!ned var[ables are chosen first by the back-
' track algorithm. Without this order, MPAT already has an
. . execution time close to the most efficient program, PatScan.
3 Results and discussion Just changing the order leads to an early pruning of the search
This approach has been implemented in C++ and results intiee and a considerably improved execution spee8docha-
specific solver called M. PAT: Motifs andInter-md_ecular ~ romyces cerevisiae
motifs searching tool using PsformAlism and solving
Techniques. We tested our approach on different RNA gen8-2 SNORNAs
search problems in order to assess its efficiency and modro validate the ability of ML PAT to model interactions be-
elling capacities. tween different molecules, we performed a computational
scan of thePyrococcus abyssgenome for C/D snoRNA
3.1 tRNAs genes. Since no existing general purpose tool allows to model
The tRNA structure and sequence profiles are perhaps the basteraction between a snoRNA and its target, we compared
studied among RNAs; hence, they are very appropriate for 1L PAT to Snoscan, a tailored software for the C/D snoRNA
first benchmarking. genes. This program sequentially identifies six specific com-
tRNA genes include four helices corresponding respecponents of these genes (see Fig. 5): a RUGAUGA string (so
tively to A-stem (7 nucleotide pairs), D-stem (from 3 to 4 called C box), a sequence region, able to form a duplex with
nucleotide pairs), C-stem (5 nucleotide pairs) and T-stem (&nother “target” sequence and a CUGA string (so called D
nucleotide pairs), six loops corresponding respectively to théox). We used &. cerevisiadailored version of snoScan as
single strand between A-stem and D-stem (sequence UN witho archae-bacteria version is available. This fact probably ex-
U invariant), D-loop (4 to 14 nucleotides), the single strandplains the limited sensitivity shown in Table 2. The descriptor



Software  Solutions  True positives  Time [Bessiere and Regin, 20D Bessiere and C Regin, J. Re-
SnoScan 1611 27 20 min. fining the basic constraint propagation algorithm. 1Ja
ML PAT 852 42 8s. CAl, pages 309-315, 2001.
[Billoud et al, 1996 B Billoud, M Kontic, and A Viari.
Table 2: Pyrococcus abysgjenome (171C° characters) - 59 Palingol: a declarative programming language to describe
annotated snoRNAs. nucleic acids’ secondary structures and to scan sequence

databaseNucleic Acids Re224(8):1395-403, 1996.

used by MLPAT is described in Fig. 5. The missing anno- [Bockhorst and Craven, 20D Bockhorst and M Craven.
tated genes (17 out of 59) are due to the current limitation of Refining the structure of a stochastic context-free gram-
the duplex constraint to Watson/Crick matches. These first mar. InlJCAI, pages 1315-1322, 2001.

results show the modelling flexibility and solving efficiency

of MIL PaT [Dechter, 200B R Dechter.Constraint ProcessingMorgan

Kaufmann, 2003.

[Dsouzaet al, 1997 M Dsouza, N Larsen, and R Overbeek.

Searching for patterns in genomic datdrends Genet
The main aim of our work is to offer a way of describing new  13(12):497-8, 1997.
generations of RNA patterns, including the specificafcion Of[Eddy and Durbin, 19094SR Eddy and R Durbin. Rna se-
complexes which can be formed by anti-sense interactions be- quence analysis using covariance mode¥sicleic Acids
tween different regions of a genome. The use of CSP method- Res 22(11):2079-88, 1994
ology together with efficient pattern matching data structures ' '
and algorithms provides increased efficiency, extended modEddy, 1996 SR Eddy. Rnabob: a program to search for rna
elling capabilities for intermolecular interactions and an eas- secondary structure motifs in sequence databases. Manual,
ily extensible framework. 1996.

Beypnd th_is ability to des'cr_i.be inter and intra—molepularin—[Eidhammelet al, 2004 |  Eidhammer, D Gilbert,
teractions with a great flexibility, a number of evolutions are” | jonassen, and M Ratnayake. A constraint based
possible to improve M.PAT efficiency and modelling capa-  gyrycture description language for biosequenceson-
b_|||t|es, [nclud_lng the ability to descrlt_)e opuonal or aIt_erna- straints 6:173—200, 2001.
tive motifs. Within the framework of biological applications, )
these possibilities are essential to be closer to the structurbaspin and Westhof, 1994C Gaspin and E Westhof. The
reality of the molecules. determination of the secondary structures of RNA as a con-

In its current version, M.PAT is just providing all the straint satisfaction problem. In Frontiers in Artificial Intel-
true occurrences (satisfying all constraints). It does not op- ligence and Applications. I0S Press, editdkglvances in
timize any scoring system based on mismatches, thermo- Molecular BioinformaticsS. Schulze-Kremer, 1994.

dynamics or probabilistic parameters. Taking into accounfGautherett al, 1994 D Gautheret, F Major, and R Ced-
such information would require the use of more complex ergren. Pattern searching/alignment with RNA primary

4 Conclusion

Weighted CSP algorithms such as[@chiexet al, 1995; and secondary structures: an effective descriptor for trna.
Larrosa and Schiex, 2004 Comput Appl Biosci6(4):325-31, 1990.

[Hentenrycket al, 1994 V Hentenryck, P, Y Deville, and
References M Teng, C. A generic arc-consistency algorithm and its

most k-deep factor tree.Theory of Computer Science [Larrosa and Schiex, 20D4). Larrosa and T. Schiex. Solving
2003. in submission. Weighted CSP by maintaining Arc Consistengytificial

[Altmanet al, 1994 RB Altman, B Weiser, and HF Noller. Intelligence 159(1-2):1-26, 2004.
Constraint satisfaction techniques for modeling large com{Lhomme, 1998 O Lhomme. Consistency techniques for
plexes: Application to the central domain of 16s ribosomal numeric CSPs. Ithe 13-th International Joint Conference
rna. InProceedings of the second international confer-  on Artificial Intelligence pages 232-238, 1993.

igiié),nlgngi?hgent Systems for Molecular Blologages [Mackeet al, 2001 TJ Macke, DJ Ecker, RR Gutell,

D Gautheret, DA Case, and R Sampath. Rnamotif, an
[Baeza-Yaltes and Gonnet, 199R  Baeza-Yaltes and RNA secondary structure definition and search algorithm.
GH Gonnet. A new approach to text searching. In Nucleic Acids Re9(22):4724-35, 2001.
Communications of the ACMolume 35, pages 74-82,

1992 [Major et al, 1991 F Major, M Turcotte, D Gautheret,
' G Lapalme, E Fillion, and R Cedergren. The combi-
[Barahona and Krippahl, 1999 Barahona and L Krippabhl. nation of symbolic and numerical computation for three-

Applying constraint programming to protein structure de-  dimensional modeling of RNAScience253:1255-1260,
termination.CP, pages 289-302, 1999. 1991.



[McCreight, 1976 EM McCreight. A space-economical suf-
fix tree construction algorithm. Journal of the ACM
23(2):262-272, 1976.

[Muller et al, 1993 G Muller, C Gaspin, A Etienne, and
E Westhof. Automatic display of RNA secondary struc-
tures.Cabios 9(275):551-561, 1993.

[Policriti et al,, 2004 Alberto Policriti, Nicola Vitacolonna,
Michele Morgante, and Andrea Zuccolo. Structured mo-
tifs search. InProceedings of the eighth annual inter-
national conference on Computational molecular biology
pages 133-139. ACM Press, 2004.

[Sakakibar®t al, 1994 Y  Sakakibara, M  Brown,
R Hughey, IS Mian, K ¢lander, RC Underwood,
and D Haussler. Recent methods for rna modeling using
stochastic context-free grammars. GPM '94: Pro-
ceedings of the 5th Annual Symposium on Combinatorial
Pattern Matchingpages 289-306. Springer-Verlag, 1994.

[Schiexet al, 1999 T Schiex, H Fargier, and G Verfaillie.
Valued Constraint Satisfaction Problems: hard and easy
problems. InProc. of the International Joint Conference
in Al, Montreal, Canada1995.

[Smith and Waterman, 1981TF Smith and MS Waterman.
Identification of common molecular subsequenckMol
Biol, 147(1), 1981.

[Storz, 2002 G Storz. An expanding universe of noncoding
rnas.Science296(5571):1259, 2002.

[Ukkonen, 199P E Ukkonen. Constructing suffix-trees on-
line in linear time. InAlgorithms, Software, Architecture:
Information Processing 9ages 484-492, 1992.

[Vialette, 2004 S. Vialette. On the computational complex-
ity of 2-interval pattern matching problem3heor. Com-
put. Sci, 312(2-3):223-249, 2004.

[Wu and Manber, 1991S Wu and U Manber. Fast text
searching with errors. Technical report, University of Ari-
zona, 1991.



