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INTRODUCTION

In 1957, Miles [START_REF] Miles | On the generation of surface waves by shear flows[END_REF] discovered a linear mechanism for the amplification of infinitesimal wavy disturbances at the interface between air and water when wind blows. Ten years later, Benjamin and Feir [START_REF] Benjamin | The disintegration of wave trains on deep water[END_REF] and Zakharov [START_REF] Zakharov | Stability of periodic waves of finite amplitude on the surface of a deep fluid[END_REF] discovered independently the modulational instability of a finite amplitude wave train. While the modulational instability has been observed both experimentally and numerically [START_REF] Dias | Nonlinear gravity and capillary-gravity waves[END_REF], the effect of wind on this latter remains a matter of controversy. Indeed, experimental results show either suppression [START_REF] Bliven | Experimental study of the influence of wind on Benjamin-Feir sideband instability[END_REF] or enhancement [START_REF] Waseda | Experimental study of the stability of deep-water wave trains including wind effects[END_REF] of modulations, while numerical models predict either amplification [START_REF] Krasitskii | Stochastization of surface gravity waves generated by an induced pressure field[END_REF] or downshifting [START_REF] Hara | Frequency downshift in narrow-banded surface waves under the influence of wind[END_REF].

THE FORCED NLS EQUATION AND EXPLOSIVE MODULATIONS

Theoretically, some progress has been made recently for modulational instability under wind forcing [START_REF] Leblanc | Amplification of nonlinear surface waves by wind[END_REF]. Let

η(x, t) = Re{a(x, t)e i(kx-ωt) } + O(|a| 2 ) (1) 
be the surface elevation of a narrow-banded gravity wave packet modulated around a carrier wave with wavenumber |k| and frequency ω = g|k|, that propagates in deep water under the forcing of a steady wind with velocity profile U (z) along the x-direction, and such that U (0) = 0. Let δ = ρ a /ρ w be the density ratio between air and water (δ = 1.29 × 10 -3 ), both assumed inviscid. The amplitude of the wave packet is governed by the forced NLS equation [START_REF] Krasitskii | Stochastization of surface gravity waves generated by an induced pressure field[END_REF][START_REF] Hara | Frequency downshift in narrow-banded surface waves under the influence of wind[END_REF][START_REF] Leblanc | Amplification of nonlinear surface waves by wind[END_REF] i

(∂ t a + c g ∂ x a) -(ω/8k 2 )∂ xx a -(ωk 2 /2)|a| 2 a = 1 2 ω(α + iβ)a, (2) 
where c g = ∂ k ω is the group velocity, and α and β are real numbers defined such that α + iβ = δ(χ 0 /k + U 0 /ω -1), using the notation f 0 = (∂ z f ) |z=0 . The function χ(z) solves Rayleigh equation in the air (z > 0):

(U -c)(χ -k 2 χ) -U χ = 0, c = ω/k, (3) 
with boundary conditions χ(0) = 1 and χ(∞) = 0. Integration of (3) yields β = 0 except if there exists a critical height z c such that U c = U (z c ) = ω/k. In that case, according to Miles [START_REF] Miles | On the generation of surface waves by shear flows[END_REF], β = -πδU c |χ c | 2 /|kU c | so that β > 0 for usual wind profiles (U (z) < 0). Therefore, the wave with wavenumber k grows exponentially with time in the linear regime.

In the weakly nonlinear regime, it is convenient to recast (2) as

2iA T -1 4 A XX -|A| 2 A = iβA, (4) 
where T = ωt, X = k(x -c g t), and A(X, T ) = ka(x, t)e iωαt . If β = 0 (no wind forcing), the usual NLS equation is recovered and Stokes wave is described by the homogeneous solution A(T ) = R 0 e i(Θ0-R 2 0 T /2) . With wind forcing (β > 0), Stokes wave becomes A(T ) = R S (T )e iΘ S (T ) where: R S (T ) = R 0 e βT /2 and Θ S (T ) = Θ 0 -1 2 R 2 S (T )/β so that it grows exponentially with time without saturation. If we now disturb this solution by setting |A(X, T )| = R S (T )(1 + λ(T ) cos(KX)), Eq. (4) yields, upon linearization:

λ (T ) + γ(γ -R 2 0 e βT )λ(T ) = 0, γ = 1 8 K 2 . ( 5 
)
If β = 0, the disturbance grows exponentially when 0 < γ < R 2 0 : this is the modulational instability [START_REF] Benjamin | The disintegration of wave trains on deep water[END_REF][START_REF] Zakharov | Stability of periodic waves of finite amplitude on the surface of a deep fluid[END_REF]. If β > 0, the solution of (5) may be expressed in terms of modified Bessel function and, for large time [START_REF] Leblanc | Amplification of nonlinear surface waves by wind[END_REF]:

λ(T ) ∼ 2e f (T ) / 2πf (T ), f (T ) = 2γ 1 2 R 0 e βT /2 . (6) 
Thus, the modulations grow superexponentially under fair wind. The growth is however so rapid that nonlinear effects not considered here should rapidly interact. This is perhaps the reason why this surprising behavior have not been observed in experiments. Furthermore, the validity of the present approach is restricted to steepnesses |ka| of order √ δ; above, higher order approximations or numerical computations are needed.

NUMERICAL COMPUTATIONS AND EXPERIMENTAL RESULTS

To test the validity of the linear results mentioned above, numerical simulations of the forced Zakharov equation [START_REF] Krasitskii | Stochastization of surface gravity waves generated by an induced pressure field[END_REF]:

i∂ t A k -ω k A k - k+p=q+r T k,p,q,r A * p A q A r dpdqdr = 1 2 ω k (α k + iβ k )A k , (7) 
have been performed for three modes. Here, A k is Zakharov canonical variable [START_REF] Zakharov | Stability of periodic waves of finite amplitude on the surface of a deep fluid[END_REF] and T is Krasitskii's nonlinear transfer term. Figure below on the left shows the evolution of a Stokes wave with steepness 0.1 and wavenumber |k| = 1.97 m -1 (in red), disturbed by two sideband disturbances (blue and green) that grow with time owing to modulational instability and then decreases in a recurrent way [START_REF] Dias | Nonlinear gravity and capillary-gravity waves[END_REF]. In the presence of wind (right), Stokes waves in red starts to grow exponentially with rate 1 2 ωβ according to the theory exposed previously (here, β ≈ 7.5 × 10 -3 ). Then, the two disturbances (blue and green) grow suddenly much faster than Stokes wave, in fact close to the predicted superexponential growth. Then, nonlinearity makes its job, resulting in the acceleration of the cycles of modulation/demodulation. At larger times, energy must saturate either by breaking or by quenching of the wind profile [START_REF] Janssen | The interaction of ocean waves and wind[END_REF], effects that are taken into account neither in [START_REF] Benjamin | The disintegration of wave trains on deep water[END_REF] nor in [START_REF] Krasitskii | Stochastization of surface gravity waves generated by an induced pressure field[END_REF]. Such effects are actually under investigation, as far as computations based on the fully coupled Euler equations.

Experiments have been conducted in the large air-sea interaction facility of the IRPHE laboratory in Marseille. The water tank is 40 m long, 3 m wide, 1 m deep and the height of the aerodynamical flow above the water surface is 1.5 m. The wind velocity can be adjusted from 0.5 to 14 m/s. Mechanical waves in the frequency range 1 to 2 Hz with various amplitudes can be generated by a completely immersed wavemaker. We performed several runs with regular mechanical generated waves, with different steepness. Experiments were first conducted without wind, then with a U = 6 m/s wind blowing over the paddle waves. Waves were recorded with two capacitances wave gauges located at 2 m and 30 m away from the wavemaker. The last two figures show the normalized frequency spectrum of the water elevation for different initial wave steepness. Obviously, at 30 m away from the wavemaker, there is a large increase of the Benjamin-Feir side-band instabilities due to the presence of the wind.