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Observing a stationary time series, we propose a two-steps procedure for the prediction of its
next value. The first step follows machine learning theory paradigm and consists in determining
a set of possible predictors as randomized estimators in (possibly numerous) different predic-
tive models. The second step follows the model selection paradigm and consists in choosing
one predictor with good properties among all the predictors of the first step. We study our
procedure for two different types of observations: causal Bernoulli shifts and bounded weakly
dependent processes. In both cases, we give oracle inequalities: the risk of the chosen predictor
is close to the best prediction risk in all predictive models that we consider. We apply our pro-
cedure for predictive models as linear predictors, neural networks predictors and nonparametric
autoregressive predictors.

Keywords: adaptative inference; aggregation of estimators; autoregression estimation; model
selection; randomized estimators; statistical learning; time series prediction; weak dependence

1. Introduction

When observing a time series, one crucial issue is to predict the (nonobserved) first
future value using the observed past values. Since the seventies, different model selection
procedures have been studied for inferring how many observed past values are needed for
predicting the next value. Procedures as AIC [1], BIC (Schwarz [27]) and APE (Ing [18])
are used by practitioners to select a reasonable linear predictor. When the observations
satisfy a linear model, those procedures are proved to be asymptotically efficient (see Ing
[18] for more details).
In the same time, the progress of statistical learning theory in the i.i.d. setting brought

new perspectives in model selection (see Vapnik [30] and Massart [20] among others).
Machine-learning procedures allow to choose a predictor among a family, with the guaran-
tee that this predictor performs almost as well as the best possible predictor of the family
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(called the oracle). Such results are called oracle inequalities; they provide guarantees on
the quality of the prediction without any parametric assumption on the observations.
Few works have been done in the context of dependent observations. The machine

learning theory was used successfully in the time series prediction context by Modha
and Masry [23] and Meir [22]. However, their procedure relies on the knowledge of the
α-mixing coefficients. To our knowledge, there is no efficient estimation of this coefficients
and their procedure seems difficult to use in practice. Baraud et al. [5] use the model
selection point of view to perform regression and auto-regression on dependent observa-
tions. They prove powerful oracle inequalities when the observations satisfy an additive
auto-regressive model. When the observations are Harris recurrent Markov chains, La-
cour [19] gives also oracle inequalities for a procedure completely free of the dependence
properties. An alternative point of view is provided by the theory of individual sequences
prediction (see Lugosi and Cesa-Bianchi [10] or Stoltz [29]). In these works, no assumption
on the observations – not even a stochastic assumption – is done and oracle inequalities
are given.
In this paper, our objectives are the following:

(1) to build various predictors of different forms and using different numbers of past
observations,

(2) to select one of these predictors without any assumption on the distribution of the
observations,

(3) to prove oracle inequalities under weak assumptions on the observed time series.

In the end of this Introduction, let us fix the mathematical framework (see also Meir [22]
for more details).
Let us observe (X1, . . . ,Xn) from a stationary time series X = (Xt)t∈Z distributed as

π0 on X Z where X is an Hilbert space equipped with its usual norm ‖ · ‖. Fix a (possibly
large) family of predictors {fθ, θ ∈Θ}: for any θ and any t, fθ applied to the past values
(Xt−1,Xt−2, . . . ,X1) is a possible prediction of Xt. We discretize the family of predictors
by the number p of past values they use. Thus, we assume that

Θ=

⌊n/2⌋⋃

p=1

Θp,

where the Θp are disjoint in order that for any θ ∈Θ, there is only one p such that θ ∈Θp.
Now, for any θ ∈Θp, fθ is a function X p →X and at any time t, fθ(Xt−1, . . . ,Xt−p) is a

prediction of Xt according to θ and denoted X̂θ
t . As the predictor fθ may take different

forms (linear functions, neural networks, . . .), we write

Θp =

mp⋃

ℓ=1

Θp,ℓ

for a given mp ∈ {1, . . . , n}. Finally, the risk of the prediction, R(θ), is defined by

R(θ) = π0[‖fθ(Xt−1, . . . ,Xt−p)−Xt‖] = π0[‖X̂θ
t −Xt‖],
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where here and all along the paper π[h] =
∫
hdπ for any measure π and any integrable

function h. Note that R(θ) does not depend on t as X is stationary.
The mathematical counterparts of the points (1), (2) and (3) of our objectives are

the following. The point (1) corresponds to build, on the basis of the observations, an

estimator θ̂p,ℓ in each model Θp,ℓ, for 1 ≤ p ≤ ⌊n/2⌋ and 1 ≤ ℓ ≤ mp. The point (2)

consists in defining a procedure to choose a θ̂ among all the possible θ̂p,ℓ. Finally, point

(3) is achieved by proving that R(θ̂) is close to infθ∈ΘR(θ). To attain these objectives, we
use the PAC-Bayesian paradigm (introduced by Shawe-Taylor and Williamson [28] and
McAllester [21]). Using this approach, Catoni [7–9], Audibert [4], Alquier [2], Tsybakov
and Dalalyan [11] solve points (1), (2) and (3) simultaneously for various regression and
classification problems in the i.i.d. setting. In this paper, we build a procedure that gives
a predictor θ̂ satisfying, under general conditions on X and with probability at least
1− ε,

R(θ̂)≤ inf
dp,ℓ≤n

{
min

θ∈Θp,ℓ

R(θ) + cst ·
√
dp,ℓ
n

log5/2(n)

}
+ cst · log(1/ε)√

n
,

where cst> 0 is an explicit constant and dp,ℓ an estimate of the complexity of Θp,ℓ.
To obtain such oracle inequalities, we use sharp estimates (close to the ones in the i.i.d.

case) on the Laplace transforms of the partial sums in dependent settings. For bounded
observations, we use the θ∞-coefficients (see [12]), introduced in Rio [25] as the γ-mixing
coefficients. These coefficients generalize the uniform mixing ones. For unbounded obser-
vations, we use the causal Bernoulli shifts representation. It includes all classical linear
ARMA models and also the more general chains with infinite memory introduced by
Doukhan and Wintenberger [15]. These bounded and unbounded dependent frameworks
are not comparable with the β or α-mixing ones as they include some dynamical systems
that are not mixing, see Andrews [3] and Dedecker and Prieur [13] for details. Finally, it
is important to note that our prediction procedure is the same for the two dependence
frameworks and and does not depend on any unknown dependence coefficient. It is an
advantage of our approach because it is impossible to estimate efficiently the dependence
coefficients we use.
The paper is organized as follows: First, the prediction procedure is detailed in Section

2; Second, the assumptions on the observed time series and the corresponding oracle
inequalities are given in Section 3. In Section 4, are given some examples of time series for
which these oracle inequalities hold. Our procedure applied on some possible prediction
models are given in Section 5. Linear predictors (with simulations), neural networks
predictors and non-parametric predictors are considered. Finally, the complete proofs
are collected in Section 6.

2. The prediction procedure

We observe (X1, . . . ,Xn) from a stationary time series X = (Xt)t∈Z distributed as π0 on
X Z where X is an Hilbert space equipped with its usual norm ‖ · ‖. We fix a family of
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predictors {fθ, θ ∈Θ} with

Θ=

⌊n/2⌋⋃

p=1

Θp =

⌊n/2⌋⋃

p=1

(
mp⋃

ℓ=1

Θp,ℓ

)

such that mp ≥ n and p(θ) is the only p such that θ ∈ Θp. For any θ ∈ Θ, we denote

X̂θ
t = fθ(Xt−1, . . . ,Xt−p) and R(θ) = π0[‖X̂θ

t −Xt‖].

2.1. The Lipschitz predictors

Let M denotes the set of all possible pairs (p, ℓ):

M =

⌊n/2⌋⋃

p=1

{p}× {1, . . . ,mp}.

Let T be a σ-algebra on Θ and Tp,ℓ be its restriction to Θp,ℓ for any (p, ℓ) ∈M . For any
(p, ℓ) ∈M , we assume that Θp,ℓ is a compact subset of Rq for some q <∞ (q depends on
(p, ℓ)) and that there exists (aj(θ))j∈{1,...,p} satisfying, for any (x1, . . . , xp), (y1, . . . , yp) ∈
X p, the relation

‖fθ(x1, . . . , xp)− fθ(y1, . . . , yp)‖ ≤
p∑

j=1

aj(θ)‖xj − yj‖. (2.1)

In order to bound the volatility of the predictors uniformly on M , we assume that

L := sup
(p,ℓ)∈M

sup
θ∈Θp,ℓ

p∑

j=1

aj(θ) satisfies L≤ log(n)− 1. (2.2)

2.2. The complexity of Θp,ℓ

To control the complexity of each Θp,ℓ we assume that, for all (p, ℓ) ∈M , there exist a
probability measure πp,ℓ on the measurable space (Θp,ℓ,Tp,ℓ) and a constant 1≤ dp,ℓ <∞
satisfying

sup
γ>e

{− log
∫
Θp,ℓ

[exp(−γ(R(θ)−R(θp,ℓ)))] dπp,ℓ(θ)

log(γ)

}
≤ dp,ℓ. (2.3)

Here θp,ℓ = argminΘp,ℓ
R for any (p, ℓ) ∈M . The parameter dp,ℓ is linked with classical

complexities as the Vapnik dimension and entropy measures. In this paper, we only
investigate the case where πp,ℓ is the Lebesgue measure on Θp,ℓ. We have the following
result.
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Proposition 2.1. Let q ∈ N
∗, x > 0 and Bq

x be the closed ℓ1-ball in R
q of radius x > 0

and centered at 0. If Θp,ℓ = Bq
cp,ℓ

for cp,ℓ > 0 and θ→R(θ) is a C-Lipschitz function then
we have:

dp,ℓ ≤ q×
(
1+ log

(
cp,ℓ

(
Ce

q
∨ 1

cp,ℓ −‖θp,ℓ‖

)))
. (2.4)

The proof of this result is given at the end of Section 6.4. Predictive models where
complexity dp,ℓ is estimated are given in Section 5.

2.3. The empirical risk

As the risk R(θ) cannot be computed, we use its empirical counterpart rn(θ):

rn(θ) =
1

n− p(θ)

n∑

t=p(θ)+1

‖Xt − X̂θ
t ‖.

2.4. The randomized estimators

For any (p, ℓ) ∈M , our randomized estimators θ̃λp,ℓ is drawn randomly through a Gibbs
measure

θ̃λp,ℓ ∼ πp,ℓ{−λrn}.
We recall that for any measure π and any measurable function h such that π[exp(h)]<
+∞, the Gibbs measure denoted π{h} is defined by the relation:

dπ{h}
dπ

(θ) =
exp(h(θ))

π[exp(h)]
. (2.5)

Here the parameter λ is called the temperature (this terminology comes from the sta-
tistical thermodynamics). For n≥ 8e(1 + L), λ takes values in a finite grid Gp,ℓ defined
as

Gp,ℓ =

{
g1

√
dp,ℓn log(dp,ℓn)

(1 +L) log3/2(n)
, . . . , gn0

√
dp,ℓn log(dp,ℓn)

(1 +L) log3/2(n)

}
∩
[
2e,

n

4(1+L)

]
,

where č≤ g1 < · · ·< gn0 ≤ ĉ with 2≤ n0 ≤ n and 0< č < 2/(1 +L)< 2e(1 +L)< ĉ <∞.
Remark that when λ grows, πp,ℓ{−λrn} tends to concentrate around the minimizer of
the empirical risk.

2.5. The model selection

One way to select a predictor is to choose the minimizer of the penalized empirical
risk argminp,ℓ[rn(θ̃

λ
p,ℓ) + pen(p, ℓ, λ)], for some well chosen penalization pen(p, ℓ, λ), see
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Massart [20]. Here we consider θ̂= θ̃λ̂
p̂,ℓ̂

where

(p̂, ℓ̂, λ̂) = arg min
(p,ℓ)∈M

λ∈Gp,ℓ

R̂(p, ℓ, λ).

The model criterion R̂(p, ℓ, λ) is given by the PAC-Bayesian approach:

R̂(p, ℓ, λ) =− 1

λ
log

∫

Θp,ℓ

exp(−λrn(θ)) dπp,ℓ(θ) +
1

λ
log

(
n

⌊
n

2

⌋
mp

)
+
λ(1 +L)2 log3(n)

n(1− p/n)2
.

3. Main results

In order to prove that R(θ̂) is close to infθ∈ΘR(θ) with high probability, we restrict our

study to two different contexts. Note that θ̂ is defined independently of these contexts
and that a practitioner may compute our predictor on any observed time series.

3.1. Bounded weakly dependent processes (WDP)

In this case, X is bounded, that is, ‖X‖∞ := supt ‖Xt‖ < ∞. We use the θ∞,n(1)-
coefficients in Dedecker et al. [12], a version of the γ-mixing of Rio [26]) adapted to
stationary time series. If Z is a bounded variable in X q (q ≥ 1) defined on (Ω,A,P), for
any σ-algebra S of A we have:

θ∞(S, Z) = sup
f∈Λ1

‖|E(f(Z)|S)−E(f(Z))|‖∞,

where Λ1 is the set of real 1-Lipschitz functions on X q equipped with the norm ‖z‖=∑q
i=1 ‖zi‖. Let us define the σ-algebraSp = σ(Xt, t≤ p) for any p ∈ Z and the coefficients

θ∞,k(1) = sup{θ∞(Sp, (Xj1 , . . . ,Xjℓ)), p+ 1≤ j1 < · · ·< jℓ,1≤ ℓ≤ k}.

Moreover, assume that there is a constant C > 0 such that for any n, θ∞,n(1) < C (the
short memory condition). Causal Bernoulli shifts with bounded innovations, uniform ϕ-
mixing sequences and dynamical systems are classical θ∞ weakly-dependent examples,
see Section 4 for more details. In this context, we prove the following oracle inequality.

Theorem 3.1. Under (WDP) and condition (2.3), there are explicit constants

(cst1, cst2) = cst(č, ĉ, L,C,‖X0‖∞)

such that for all n≥ 8e(1 +L) with probability at least 1− ε

R(θ̂) ≤ inf
dp,ℓ≤n

{
min

θ∈Θp,ℓ

R(θ) + cst1 ·
√
dp,ℓ
n

log5/2(n)

}
+ cst2 ·

log(1/ε)√
n
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+ 4(1 +L)

(
(‖X0‖∞ + C)2

2
− log3(n)

)

+

.

The proof of this result is given in Section 6.2 page 18.

3.2. Causal Bernoulli shifts (CBS)

Let X ′ be some Banach space equipped with a norm also denoted ‖·‖. LetH :X ′N 7→ X be

a satisfying, for some sequence (aj(H))j∈N, and for any v = (vj)j∈N, v
′ = (v′j)j∈N ∈ X ′N,

the relations:

‖H(v)−H(v′)‖ ≤
∞∑

j=0

aj(H)‖vj − v′j‖, (3.1)

with
∞∑

j=0

jaj(H)<+∞. (3.2)

We denote
∑∞

j=0 aj(H) := a(H),
∑∞

j=0 jaj(H) = ã(H). The causal Bernoulli shifts are
defined by the relation

Xt =H(ξt, ξt−1, ξt−2, . . .) ∀t ∈ Z,

where ξt for t ∈ Z are i.i.d. variables called the innovations and distributed as µ. We
assume that we can choose, by quantile transformation, innovations that admit a finite
Laplace transform µ[exp(c∗‖ξ0‖)] := Ψ(c∗)<+∞ (the Cramer condition) for c∗ ≥ a(H).
Classical examples of such processes are causal linear ARMA models and chains with
infinite memory with low-tail innovations, see Section 4 for more details. In this context,
we prove the following oracle inequality

Theorem 3.2. Under (CBS) and condition (2.3), there are explicit constants

(cst′1, cst
′
2) = cst′(č, ĉ, L, a(H), ã(H),Ψ(1))

such that for all n≥ 8e(1 +L) with probability at least 1− ε

R(θ̂) ≤ inf
dp,ℓ≤n

{
min

θ∈Θp,ℓ

R(θ) + cst′1 ·
√
dp,ℓ
n

log5/2(n)

}
+ cst′2 ·

log(1/ε)√
n

+

√
dp̂,ℓ̂
n

log(dp̂,ℓ̂n)4(1 +L)

× ĉ

(
4a(H)Ψ(a(H)) + 2 log2(n)

(
1 +

ã(H)

a(H)

)2

− log3(n)

)

+

.
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The proof of this result is given in Section 6.3 page 20.

3.3. Comments on the results

The constants are roughly (but explicitly) estimated in the proofs, see Sections 6.2 and

6.3. For example, we obtain

cst1 ≤ (1 +L)

(
6

č
+8ĉ(1 + ‖X0‖∞ + C)2

)
and cst2 ≤

7(1 +L)

č
.

For n sufficiently large, the last terms in the oracle inequalities vanish. Then it exists a
constant C > 0 such that under (WDP) or (CBS) for all n≥ 8e(1 +L) with probability
at least 1− ε:

R(θ̂)≤ inf
dp,ℓ≤n

{
min

θ∈Θp,ℓ

R(θ) +C

√
dp,ℓ
n

log5/2(n)

}
+C

log(1/ε)√
n

.

Similar oracles inequalities have already been proved by Modha and Masry [23] and
Baraud et al. [5]. These inequalities are given in expectation while ours are true with
high probability. Remark that integrating our oracle inequalities with respect to ε leads
to a result in expectation: there exists a constant C > 0 independent of n such that in

both (WDP) and (CBS) cases

π0[R(θ̂)]≤ inf
dp,ℓ≤n

{
min

θ∈Θp,ℓ

R(θ) +C

√
dp,ℓ
n

log5/2(n)

}
.

The converse is not true: results in expectation do not lead to results that hold with high

probability.
It is difficult to compare our oracle inequalities with the ones in [23] and [5]. Unlike

our paper, those articles deal with the quadratic risk and (β− or α−) mixing time series.
However, remark that the additional terms in our oracle inequalities are proportional to√
dp,ℓ/n, the rate in the i.i.d. case, times a term log5/2(n) term. Baraud et al. [5] obtain

an oracle inequality for the quadratic risk with the same rate than in the i.i.d. case, while
the one in Modha and Masry [23] suffers a loss (n/dp,ℓ)

c for some c > 0.

4. Examples of time series satisfying (WDP) or
(CBS)

We present several examples of time series satisfying (WDP) or (CBS).
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4.1. Causal Bernoulli shifts

Causal Bernoulli shifts are stationary time series that admit the representation

Xt =H(ξt, ξt−1, ξt−2, . . .) ∀t ∈ Z, (4.1)

where the ξt are i.i.d. variables called innovations. Almost all known stationary and
ergodic processes have this form. However, we work here under the restrictive assump-
tion (4.3). Remark that under this Lipschitz condition the existence of the stationary
time series (Xt) follows from (4.1) and it satisfies the Cramer condition as soon as the
innovations do. Some examples of causal Bernoulli shifts are presented below.

4.1.1. Linear models

Let (Xt) be a real time series admitting the MA(∞) representation

Xt =

∞∑

j=0

ajξt−j with

∞∑

j=0

j|aj |<+∞.

Then it satisfies (CBS) if the i.i.d. innovations ξt satisfy the Cramer condition. As an
example, there is any causal AR(∞) model Xt = φ0 +

∑∞
j=1 φjXt−j + ξt with φ(z) =

1 −∑∞
j=1 φjz

j that have no root for |z| ≤ 1 (such that causal ARMA(p, q) models).
Indeed, as φ is a real analytic function on the unit disc, 1/φ is a well a real analytic
function 1/φ(z) =

∑∞
j=1 ψjz

j with the coefficients ψj that decrease exponentially fast
(i.e., (3.2) is automatically satisfied).

4.1.2. Chains with infinite memory

Chains with infinite memory is a class of time series (Xt) introduced by Doukhan and
Wintenberger [15] as the solution of the equation

Xt = F (Xt−1,Xt−2, . . . ; ξt) almost surely (4.2)

for some function F :X (N\{0}) ×X ′ →X . Assume also that for some u > 0, for all x =
(xk)k∈N\{0}, x

′ = (x′k)k∈N\{0} ∈ XN\{0} with xk = x′k = 0 for all k > N for some N > 0,
the following condition holds

‖F (x;y)− F (x′;y′)‖ ≤
∞∑

j=1

aj(F )‖xj − x′j‖+ u‖y− y′‖, (4.3)

with
∞∑

j=1

aj(F ) := a(F )< 1. (4.4)

Many non linear econometrics time series are chains with infinite memory. The following
proposition gives sufficient assumptions such that chains with infinite memory satisfy
(CBS).
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Proposition 4.1. Under (4.3) and (4.4) there exists a unique solution (Xt) of equation
(4.2) satisfying (CBS) if ξ0 satisfies the Cramer condition.

The proof of Proposition 4.1 is given in Section 6.5.

4.2. Weakly dependent processes

4.2.1. Bounded causal Bernoulli shifts

Bounded causal Bernoulli shifts are examples of time series satisfying (WDP).

Proposition 4.2. Under condition (4.3) and (3.2), any solution of the equation (4.1)
is bounded by 2a(H)‖ξ0‖∞ and is weakly dependent (WDP) with C = 2‖ξ0‖∞ã(H).

The proof of this already known result is given in Section 6.5 for completeness. Below
are presented two examples of time series satisfying (WDP) that are not bounded causal
Bernoulli shifts.

4.2.2. Uniform ϕ-mixing processes

Let us recall the definition of the ϕ-mixing coefficients introduced in Ibragimov [17];

ϕ(r) = sup
(A,B)∈S0×Fr

|π(B/A)− π(B)|,

where Fr = σ(Yt, t ≥ r). The class of ϕ-mixing processes gives examples of time series
that satisfied (WDP).

Proposition 4.3. If (Xt) is a stationary bounded process, then it satisfies (WDP) with

θ∞,n(1)≤ 2‖X0‖∞
n∑

r=1

ϕ(r).

The proof of this already known result is given in Section 6.5 for completeness. Re-
mark that (Xt) satisfies the short memory condition as soon as (ϕ(r)) is summable. All
uniform ergodic Markov chains are examples of ϕ-mixing processes with short memory,
see Doukhan [14].

4.2.3. Dynamical systems on [0,1]

The AR(1) process Xt = 2−1(Xt−1 + ξt) with ξt Bernoulli distributed is not mixing, see
[3] for more details. Through a reversion of the time, it can be viewed as a dynamical
system Xt = T (Xt+1) where T (x) = 2x if 0 ≤ x < 1/2, T (x) = 2x − 1 if 1/2 ≤ x ≤ 1.
Dedecker and Prieur [13] extended this counter-example to processes (Xt) such that
Xt = T (Xt+1) where T is an expanding map on [0,1], see Section 4.4 of [13] for a proper
definition. Then (Xt) satisfies (WDP) with C =Kσ/(1− σ) where K > 0, 0≤ σ < 1, see
Section 7.2 of [13].
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5. Examples of predictors

We give some examples of Lipschitz predictors where we can estimate the complexity of
the Θp,ℓ and then apply our main results. In this section, C > 0 is a constant independent
of ε and n that may be different from one inequality to another.

5.1. Linear predictors

Let X =R and we consider predictors of the form:

fθ(Xt−1, . . . ,Xt−p) = θ0 +

p∑

i=1

θiXt−i,

where θ ∈Θp ⊂R
p+1 with

Θp =Θp,1 =

{
θ ∈R

p+1,‖θ‖1 =
p∑

i=0

|θi| ≤B

}

for some B > 0 (mp = 1 for all p and we omit the index ℓ). Using Proposition 2.1 it
follows that

dp ≤ (p+1) log

(
eB

(
e

p+ 1
∨ 1

B − ‖θp‖

))
,

where θp = argminΘp
R(θ). As a consequence of Theorems 3.1 and 3.2, we obtain the

following corollary.

Corollary 5.1. If ‖θp‖1 ≤ B − e/(p+ 1) for all p ≥ 0, then, under (WDP) or (CBS),
for all n≥ 8e(1 +L) with probability at least 1− ε:

R(θ̂)≤ inf
p+1≤n/2

{
min
θ∈Θp

R(θ) +C

√
p

n
log5/2(n)

}
+C

log(1/ε)√
n

.

Let us detail two examples: AR(p0) and AR(∞) models with innovations ξt i.i.d.
satisfying the Cramer condition and med(ξ0) = 0.
First, consider (Xt) a causal AR(p0) process (0≤ p0 <∞)

Xt = a0 +

p0∑

j=1

ajXt−j + ξj for all t ∈ Z.

If B ≥∑p
j=0 |aj |+ e/(p+ 1) for all 0 ≤ p ≤ p0, the error of the best linear predictor is

µ[|εj |]. Corollary 5.1 implies, for any 0< ε< 1 and any n≥ 2(p0 + 1), the relation:

R(θ̂)− µ[|ε0|]≤C

(√
p0
n

log5/2(n) +
log(1/ε)√

n

)
with probability at least 1− ε.
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For ε > 0 fixed independently of n, the rate of convergence of the excess risk is estimated
by
√
p0/n log

5/2(n). Note that θ̂ achieves this rate even if p0 is unknown. One says that
our procedure is adaptive in p0 and, using the terminology of [23], memory-universal.
Second, consider (Xt) a causal AR(∞) process

Xt = a0 +

∞∑

i=1

aiXt−i + ξt for all t ∈ Z. (5.1)

If B ≥∑p
j=0 |aj | + e/(p+ 1) for all p ≥ 0, we have θp = (a0, . . . , ap). Then we roughly

bound R(θp) = π0[|
∑

i>p aiX−i+ ξ0|]≤ µ[|ξ0|]+π0[|X−i|]
∑

i>p |ai| and with probability
at least 1− ε:

R(θ̂)− µ[|ξ0|]≤ inf
p+1≤n/2

[
π0[|X0|]

∑

i>p

|ai|+C

√
p

n
log5/2(n)

]
+C

log(1/ε)√
n

.

In this nonparametric setting, to obtain a rate of convergence for the excess risk we have
to specify the decay rate of the |ai|. For example, if

∃γ > 0,∃β > 0,∀p:
∑

i>p

|ai| ≤
γ

pβ

then the convergence rate is (log5(n)/n)β/(2β+1) (consider the optimal p = n1/(2β+1)×
log5/(2β+1)(n)).

Simulations

We implement our linear prediction procedure using the R software [24]. We compare
the results to the one obtained using the standard ARIMA procedure of R with the
AIC criterion for model selection. Our theoretical penalization terms, driven by “the
worst-case type” bounds, are necessarily pessimistic: our procedure systematically over-
penalizes large models. Thus, for having an efficient procedure in practice, adjustments
have been done. However, we aim with these simulations to show that

(1) our linear prediction procedure is easily implementable;
(2) its performances are reasonable when the implemented penalization term is smaller

than the theoretical one.

We only consider observations from simulations of AR(p0) models of the form

Xt =

p0∑

i=1

aiXt−i + ξt,

where the ξt are i.i.d., either N (0, σ2)-distributed, either (δ0+E(λ))/2 distributed, where
δ0 is the Dirac mass on 0 and E(λ) the exponential distribution with parameter λ > 0.
In both cases the Cramer condition is satisfied and med(ξ0) = 0. Unlike the first case,
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mean and median are different in the second case. Thus, the minimizers of the ℓ1 and
the quadratic risks are the same in the first case and differ in the second one.
We use p0 = 3, a1 = 0.2, a2 = 0.3, a3 = 0.2, σ2 ∈ {1,3}, λ ∈ {1,1/

√
12}, and n= 500,

Θ =

8⋃

p=1

Θp =

8⋃

p=1

{θ ∈R
p: ‖θ‖1 ≤ 1}

and

λ ∈ G = {2,4,8, . . . ,1024}.
In view of our procedure, we compute the simplified penalized criterion

(λ̂, p̂) = arg min
1≤p≤8

λ∈G

− 1

λ
log

∫

Θp,ℓ

exp(−λrn(θ)) dπp,ℓ(θ) + λ
K2

n
.

The theoretical value K = 2(logn)3/2 ≈ 9 systematically over-penalizes the large mod-
els and always selects the simplest one (p = 1). Thus, we fix in practice K = 0,1. To
compute the criteria, the integrand term is approximated using an acceptation-reject
algorithm with gaussian proposal and 10,000 iterations. To compare one simulation of
θ̂ ∼ πp̂{−λ̂rn} with θ̂AIC obtained by the classical R procedure, we simulate indepen-
dently (X ′

1, . . . ,X
′
500) distributed as (X1, . . . ,X500) and we compare

err1(θ̂) =
1

n− 8

500∑

i=9

∣∣∣∣∣X
′
i −

p̂∑

p=1

(θ̂)pX
′
i−p

∣∣∣∣∣

with err1(θ̂AIC). As the classical R procedure is based on least square estimators, we also
compare the quadratic prevision error

err2(θ̂) =
1

n− 8

500∑

i=9

(
X ′

i −
p̂∑

p=1

(θ̂)pX
′
i−p

)2

with err2(θ̂AIC). The results of 20 experiments are reported in Table 1.
The results are coherent with the theory: in the Gaussian cases, the optimal values of

θ for the ℓ1 and the quadratic risks of prediction are the same. Both procedures estimate
efficiently the same θ and their prediction risks are the same. In the other cases, the
optimal values of θ for the ℓ1 and the quadratic risks are not the same. We observe
err1(θ̂) < err1(θ̂AIC) and err2(θ̂) > err2(θ̂AIC). The choice between the two procedures
only depends on the prediction risk considered.

5.2. Neural networks predictors

Similarly than in [23], we present a procedure that approximates the best possible pre-
dictor using the best possible number of past values p for the one-step prediction. Given
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p, the best possible predictor for the L1-risk is med(X0|X−1, . . . ,X−p). We denote R∗
p the

corresponding risk. For X =R, we use the abstract neural networks predictors defined in
Barron [6] by the relation

fθ = c0 +

ℓ∑

i=1

ciφ(ai · x+ bi) for all x ∈R
p

for ai ∈R
p and ci, bi ∈R for all 1≤ i≤ ℓ, the sigmoidal function φ(x) = (1+ exp(−x))−1

for all x ∈ R and θ = (c0, a1,1, . . . , a1,p, b1, c1, . . . , aℓ,1, . . . , aℓ,p, bℓ, cℓ) in Bq
cp,ℓ

for some

cp,ℓ > 0, q = ℓ(p+2)+ 1 and ℓ≤ n. For any p≥ 1, we denote

rp(x) =med(X0|(X−1, . . . ,X−p) = x) for all x ∈R
p

and we assume that there exists a complex-valued function r̃p on R
p satisfying

∀x ∈R
p rp(x)− rp(0) =

∫

Rp

(eiwx − 1)r̃p(w) dw and

∫

Rp

‖w‖1|r̃p(w)|dw ≤C′pc

for some C′, c > 0. Then

Corollary 5.2. Under (WDP) if for any (p, ℓ) ∈M
q

e
+ 2

√
ℓ‖X‖∞(C′pc + ℓ log ℓ)≤ cp,ℓ (5.2)

Table 1. For each experiment, we report the median, mean and standard deviation of the
erri(·) quantities on the 20 experiments realized. The best results, for both err1(·) and err2(·),
are bolded for each serie

ξt err1(θ̂) err1(θ̂AIC) err2(θ̂) err2(θ̂AIC)

N (0,1) median 0.790 0.792 0.975 0.975

mean 0.797 0.798 0.985 0.988
s.d. 0.023 0.024 0.054 0.054

N (0,3) median 2.433 2.432 0.918 0.916

mean 2.409 2.412 0.911 0.912
s.d. 0.078 0.065 0.496 0.412

δ0+E(1)
2

median 0.567 0.592 0.819 0.813

mean 0.580 0.589 0.836 0.813

s.d. 0.047 0.043 0.153 0.150

δ0+E(1/
√

12)
2

median 1.973 2.000 9.525 9.494

mean 1.955 1.997 9.733 9.390

s.d. 0.158 0.162 1.656 1.522
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then, for all n≥maxM cp,ℓ, with probability at least 1− ε,

R(θ̂)≤ inf
10(1+logn)2p1+2c≤n

{
R∗

p +C
p1/4+c/2 log3 n

n1/4

}
+C

log(1/ε)√
n

.

If (Xt) satisfies the Markov condition of order p0, then c = 0 and for n sufficiently
large

R(θ̂)−R∗
p0

≤C

(
log3n

n1/4
+

log(1/ε)√
n

)
.

Compared to the i.i.d. case, the loss is log3 n and we do not need to know the order
p0 (our procedure is memory-universal). Our loss is smaller than the one of the other
memory-universal procedure given in [23].

5.3. Nonparametric auto-regressive predictors

As in Baraud, Comte and Viennet [5], we assume that (Xt) is a solution of the equation:

Xt = f1(Xt−1) + · · ·+ fp0(Xt−p0) + ξt for all t ∈ Z,

where ξt ∼ N (0, σ2), the fi are functions [−1; 1] 7→ R in Hölder class H(si, Li): fi is
derivable ⌊si⌋ times and

∃Li > 0,∀(x,x′) ∈ [−1,1]2, |f (⌊si⌋)
i (x)− f

(⌊si⌋)
i (x′)| ≤ Li|x− x′|si−⌊si⌋. (5.3)

Consider the Fourier basis (φj(·))j≥1 on [−1,1] composed by φ2k(x) =
√
2cos(2πkx) and

φ2k+1(x) =
√
2 sin(2πkx). Assumption 5.3 implies the existence of γi > 0 such that for

any m≥ 0 it holds

min
(α1,...,αm)∈Rm

{∫ 1

−1

[
fi(t)−

m∑

j=1

αi,jφj(t)

]2
ds

}1/2

≤ γim
−si .

Natural predictors are given by

X̂n+1 =

p∑

i=1

ℓ∑

j=1

θi,jϕj(Xn−i) =: fθ(Xn, . . . ,Xn−p)

for any p ∈ {1, . . . , ⌊n/2⌋} and any ℓ ∈ {1, . . . ,mp = n}. We restrict the procedure on θp,ℓ
in the compact set

Θp,ℓ =

{
θ ∈R

pℓ,

p∑

i=1

ℓ∑

j=1

θ2i,j(2[j/2])
2 ≤ L2

}
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such that any fθ is an L-Lipschitz function. We define also the coefficients θp,ℓ ∈R
pℓ by

the relation

arg min
θ∈Θp,ℓ

π0

[∣∣∣∣∣Xn −
p∑

i=1

ℓ∑

j=1

θi,jϕj(Xn−i)

∣∣∣∣∣

]
.

As a consequence of Theorem 3.1, it holds

Corollary 5.3. Under (CBS), if for any ℓ≥ 1 and any p≥ 1

ℓp

e
+

(
p0∑

i=1

ℓ∑

j=1

(θp0,ℓ)
2
i,j(2⌊j/2⌋)2

)1/2

≤L,

then for all n≥ 8e(1 +L) with probability at least 1− ε

R(θ̂)− µ[|ξ0|]≤C

((
log(n)

n

)s/(2s+1)

+
log(1/ε)√

n

)
,

where s denotes min{s1, . . . , sp0}.

The (i.i.d.) minimax rate of convergence with respect to s1, . . . , sp0 for the ℓ1-risk is
achieved up to a logarithmic loss. In [5], the (i.i.d.) minimax rate of convergence for the
quadratic risk is achieved for the empirical quadratic risk in expectation.

6. Proofs

To present the proofs in a unified version whether we work under (CBS) or (WDP), we
truncate the observations if we are under (CBS):

Xt =H(ξt, ξt−1, ξt−2, . . .) for all t ∈ Z,

where ξt = (ξt ∧C)∨ (−C), under (WDP) we just take Xt =Xt. We denote in the sequel
X = (Xt) and r, R the risks associated with X under (CBS) and with X under (WDP).

To shorten the proofs, we denote Kn = (1 + L) log3/2 n and wp,ℓ = 1/(mp⌊n/2⌋) in the
sequel. The proof of our main theorem lies on estimates on Laplace transforms.

6.1. Preliminary lemmas: Estimates on Laplace transforms

The proofs of these lemmas are given in Section 6.4. The first lemma is an estimate of
the Laplace transforms of the risk of X ; it is a direct corollary of the result in Rio [25].
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Lemma 6.1 (Laplace transform of the risk). For any λ > 0 and θ ∈Θ we have:

π0[exp(λ(R(θ)− rn(θ)))]≤ exp

(
λ2k2n

n(1− p/n)2

)
,

where kn =
√
2C(1 + L)(a(H) + ã(H)) under (CBS) and kn = (1 + L)(‖X0‖∞ +

θ∞,n(1))/
√
2 under (WDP).

Given a measurable space (E,E) we let M1
+(E) denote the set of all probability mea-

sures on (E,E). The Kullback divergence is a pseudo-distance on M1
+(E) defined, for

any (π,π′) ∈ [M1
+(E)]2 by the equation

K(π,π′) =

{
π[log(dπ/dπ′)], if π≪ π′,
+∞, otherwise.

The proof of the following lemma is omitted as it can be found in [7] or [8].

Lemma 6.2 (Legendre transform of the Kullback divergence function). For
any π ∈M1

+(E), for any measurable function h :E → R such that π[exp(h)] < +∞ we
have:

π[exp(h)] = exp
(

sup
ρ∈M1

+(E)

(ρ[h]−K(ρ,π))
)
, (6.1)

with convention ∞−∞=−∞. Moreover, as soon as h is upper-bounded on the support
of π, the supremum with respect to ρ in the right-hand side is reached for the Gibbs
measure π{h} defined in (2.5).

Using Lemmas 6.1 and 6.2, we get an upper-bound for the Laplace transform of the
mean risk of Gibbs estimators in all sub-models.

Lemma 6.3. Under the assumptions of Theorem 3.1, we have for any λ > 0 and (p, ℓ)∈
M :

π0

[
exp

(
sup

ρ∈M1
+(Θp,ℓ)

{λρ[R− rn]−K(ρ,πp,ℓ)} −
λ2k2n

n(1− p/n)2

)]
≤ 1, (6.2)

where kn has the same expression than in Lemma 6.1.

Following the technique used by Catoni [7], we derive from Lemma 6.3 another upper-
bound on the Laplace transform of the mean risk of any aggregation estimators of all
Gibbs estimators.

Lemma 6.4. For any measurable functions ρ̂p,ℓ :Xn →M1
+(Θp,ℓ) for (p, ℓ) ∈M , under

the assumptions of Theorem 3.1, we have:

π0

[ ∑

(p,ℓ)∈M

∑

λ∈Gp,ℓ

ρ̂p,ℓ

[
exp

(
λ(R− rn)− log

dρ̂p,ℓ
dπp,ℓ

− λ2k2n
n(1− p/n)2

+ log(wp,ℓ/n)

)]]
≤ 1
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and

π0

[ ∑

(p,ℓ)∈M

∑

λ∈Gp,ℓ

exp

(
λρ̂p,ℓ[rn −R]−K(ρ̂p,ℓ, πp,ℓ)−

λ2k2n
n(1− p/n)2

+ log(wp,ℓ/n)

)]
≤ 1,

where we remind that kn is defined in Lemma 6.1.

Finally, we use a lemma that quantify the error in the risk due to the truncation under
(CBS).

Lemma 6.5. Under (CBS), for any truncation level C > 0 and any 0≤ λ≤ n/(4(1+L)),
we have

π0

[
exp

(
λ sup

θ∈Θ
|rn(θ)−rn(θ)|−λ2(1+L)Ψ(a(H))

(
a(H)2C

exp(a(H)C)− 1
+λ

4(1+L)

n

))]
≤ 1.

6.2. Proof of Theorem 3.1

Remark that (WDP) is satisfied, so R = R and r = r. We apply the first inequality

of Lemma 6.4 to ρ̂λp,ℓ = πp,ℓ{−λrn}. Remembering that (p̂, ℓ̂, λ̂) = argmin R̂(p, ℓ, λ), we
obtain in particular:

π0ρ̂
λ̂
p̂,ℓ̂

[
exp

(
λ̂(R− rn)− log

(dρ̂λ̂
p̂,ℓ̂

dπp̂,ℓ̂

)
− λ̂2k2n
n(1− p̂/n)2

+ log

(
wp̂,ℓ̂

n

))]
≤ 1. (6.3)

Remark that π0ρ̂
λ̂
p̂,ℓ̂

is a well defined probability measure as ρ̂ are defined conditionally

on the observations. Remark also that θ̂ ∼ ρ̂λ̂
p̂,ℓ̂

by definition, then using the classical

Chernov bound we derive that with probability 1− ε it holds:

R(θ̂)≤ rn(θ̂) +
λ̂k2n

n(1− p̂/n)2
+

1

λ̂
log

(dρ̂λ̂
p̂,ℓ̂

dπp̂,ℓ̂

)
+

1

λ̂
log

(
n

wp̂,ℓ̂

)
+

1

λ̂
log

1

ε
. (6.4)

In order that the term R̂ appears, we notice that (6.4) is equivalent to

R(θ̂) ≤ − 1

λ̂
log

∫

Θ
p̂,ℓ̂

exp(−λ̂rn(θ))πp̂,ℓ̂(dθ) +
λ̂k2n

n(1− p̂/n)2
+

1

λ̂
log

(
n

wp̂,ℓ̂

)
+

1

λ̂
log

1

ε

≤ inf
p,ℓ,λ

R̂(p, ℓ, λ) +
λ̂(k2n −K2

n)

n(1− p̂/n)2
− 1

λ̂
log ε

(remind that Kn = (1+L) log3/2 n). Now, we upper bound the term R̂(p, ℓ, λ), for any p,
ℓ and λ. Using the second inequality of Lemma 6.4, we obtain for any (p, ℓ) ∈M , λ ∈ G
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and ρ ∈M1
+(Θp,ℓ),

∫

Θp,ℓ

rn(θ)ρ(dθ) ≤
∫

Θp,ℓ

R(θ)ρ(dθ) +
λk2n

n(1− p/n)2
+

1

λ
K(ρ,πp,ℓ)

(6.5)

+
1

λ
log

n

wp,ℓ
+

1

λ
log

1

ε
.

From (6.5) and using Lemma 6.2 two times, we derive that

− 1

λ
log

∫

Θp,ℓ

exp(−λrn(θ))πp,ℓ(dθ)

= inf
ρ∈M1

+(Θp,ℓ)

{∫

Θp,ℓ

rn(θ)ρ(dθ) +
1

λ
K(ρ,πp,ℓ)

}

≤ inf
ρ∈M1

+(Θp,ℓ)

{∫

Θp,ℓ

R(θ)ρ(dθ) +
2

λ
K(ρ,πp,ℓ)

}
+

λk2n
n(1− p/n)2

+
1

λ
log

n

εwp,ℓ

=− 2

λ
log

∫

Θp,ℓ

exp

(
−λ
2
R(θ)

)
πp,ℓ(dθ) +

λk2n
n(1− p/n)2

+
1

λ
log

n

εwp,ℓ
.

Finally, we obtain:

R̂(p, ℓ, λ)≤− 2

λ
log

∫

Θp,ℓ

exp

(
−λ
2
R(θ)

)
πp,ℓ(dθ) +

λ(k2n +K2
n)

n(1− p/n)2
+

1

λ
log

n

εwp,ℓ
. (6.6)

Under Assumption (2.3), as soon as λ > 2e it holds

− logπp,ℓ

[
exp

(
−λ
2
(R−R(θp,ℓ))

)]
≤ dp,ℓ log

λ

2

and it easily follows that

− logπp,ℓ

[
exp

(
−λ
2
R

)]
≤ dp,ℓ log

λ

2
+
λ

2
R(θp,ℓ).

We plug this result into the inequality (6.6) to obtain:

R̂(p, ℓ, λ)≤R(θp,ℓ) +
1

λ

(
2dp,ℓ log

λ

2
+ log

n

εwp,ℓ

)
+
λ(k2n +K2

n)

n(1− p/n)2
. (6.7)

Collecting the inequalities (6.4) and (6.7), we obtain:

R(θ̂) ≤ inf
p,ℓ,λ∈Gp,ℓ

{
R(θp,ℓ) +

1

λ

(
2dp,ℓ log

λ

2
+ log

n

εwp,ℓ

)
+
λ(k2n +K2

n)

n(1− p/n)2

}

(6.8)

+
λ̂(k2n −K2

n)

n(1− p̂/n)2
− 1

λ̂
log ε.
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As for λ ∈ Gp,ℓ, we have, by definition of Gp,ℓ that

λ ∈
[
č

√
dp,ℓn log(dp,ℓn)

Kn
, . . . , ĉ

√
dp,ℓn log(dp,ℓn)

Kn

]
∩ [2e,n]

then it holds

R(θ̂) ≤ inf
dp,ℓ≤n

{
R(θp,ℓ) +

Kn

č
√
dp,ℓn log(dp,ℓn)

(
2dp,ℓ log

n

2
+ log

n

εwp,ℓ

)

(6.9)

+ 4ĉ(k2n +K2
n)

√
dp,ℓ
n

log(ndp,ℓ)

Kn

}
+4(k2n −K2

n)+ +
(1 +L) log(1/ε)

č
√
n

.

For the sake of simplicity, we use rough estimates (1 ≤ dp,ℓ, 1 ≤ 1/ε, mp ≤ n, . . . ) to
obtain

R(θ̂) ≤ inf
dp,ℓ≤n

{
R(θp,ℓ) + (1 +L)

(
6

č
+ 8ĉ(1 + ‖X0‖∞ + θ∞,n(1))

2

)√
dp,ℓ
n

log5/2(n)

}

+ 4(k2n −K2
n)+ +

7(1+L) log(n/ε)

č
√
n

.

This ends the proof as

k2n −K2
n = (1 +L)

(
(‖X0‖∞ + θ∞,n(1))

2

2
− log3(n)

)
.

6.3. Proof of Theorem 3.2

As we work under (CBS), we have to deal with the error of approximation of r and R
by R. To quantify it, we use Lemma 6.5. First, remark that as R= π0[r] it holds

exp
(
λ sup

θ∈Θ
|R(θ)−R(θ)| − λφ(C,λ)

)
≤ 1,

where

φ(C,λ) = 2(1+L)Ψ(a(H))

(
a(H)2C

exp(a(H)C)− 1
+ λ

4(1 +L)

n

)
.

An immediate consequence is that

π0

[
exp
(
λ sup

θ∈Θ
|(rn −R)(θ)− (rn −R)(θ)| − 2λφ(C,λ)

)]
≤ 1.

As R − rn = rn − R + (rn − R) − (rn − R), for any measurable function ρp,ℓ :Xn →
M1

+(Θp,ℓ) the Cauchy–Schwarz inequality gives

π0ρ[exp(λ/2(R− rn))]
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≤
√
π0ρ[exp(λ(R− rn))]π0ρ

[
exp
(
λ sup

θ∈Θ
|(rn −R)(θ)− (rn −R)(θ)|

)]
.

Using this remark and the same reasoning than in the proof of Theorem 3.1 that gives
(6.3) from Lemma 6.4, we get the inequality

π0ρ̂
λ̂
p̂,ℓ̂

[
exp

(
λ̂

2
(R− rn)− 0,5 log

(dρ̂λ̂
p̂,ℓ̂

dπp̂,ℓ̂

)
− 0,5

λ̂2k2n
n(1− p̂/n)2

+ 0,5 log

(
wp̂,ℓ̂

n

)
− λφ(C,λ)

)]
≤ 1.

As in the proof of Theorem 3.1, we derive an equivalent of (6.4), that is, with probability
1− ε it holds:

R(θ̂)≤ rn(θ̂) +
λ̂k2n

n(1− p̂/n)2
+

1

λ̂
log

(dρ̂λ̂
p̂,ℓ̂

dπp̂,ℓ̂

)
+

1

λ̂
log

(
n

wp̂,ℓ̂

)
+ 2φ(C, λ̂) +

2

λ̂
log

1

ε
.

With similar arguments, we derive an equivalent of (6.5):

∫

Θp,ℓ

rn(θ)ρ(dθ) ≤
∫

Θp,ℓ

R(θ)ρ(dθ) +
λk2n

n(1− p/n)2
+

1

λ
K(ρ,πp,ℓ) +

1

λ
log

n

wp,ℓ

+2φ(C,λ) +
2

λ
log

1

ε

and also

R(θ̂) ≤ inf
p,ℓ,λ

{
R(θp,ℓ) +

1

λ

(
2dp,ℓ log

λ

2
+ log

n

εwp,ℓ

)
+
λ(k2n +K2

n)

n(1− p/n)2
+ 2φ(C,λ)

}

(6.10)

+
λ̂(k2n −K2

n)

n(1− p/n)2
+ 2φ(C, λ̂)− 2

λ̂
log ε.

We still have

− 2

λ̂
log ε≤ 2(1+L)

č
√
n

log
1

ε

so we now have to upper bound 2φ(C, λ̂). As λ̂≤ n/(4(1 +L)) by definition of the Gp,ℓ,
fixing C = a(H)−1 logn we obtain:

φ(C, λ̂)≤ 4a(H)(1 +L)Ψ(a(H))[2λ̂(1 +L) + a(H) log(n)]

n
.

As λ̂≤ ĉdp̂,ℓ̂ log(dp̂,ℓ̂n)/(1 +L) by definition of Gp,ℓ, we obtain

λ̂(k2n −K2
n)

n(1− p/n)2
+ 2φ(C, λ̂) ≤ 8a(H)2(1 +L)Ψ(a(H)) log(n)

n
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+

√
dp̂,ℓ̂
n

log(dp̂,ℓ̂n)4(1 +L)

× ĉ(4a(H)Ψ(a(H)) + 2 log2(n)(1 + ã(H)/a(H))
2 − log3(n))+.

We now plug this result into (6.10) to end the proof.

6.4. Proofs of Lemmas 6.1, 6.3, 6.4, 6.5 and of Proposition 2.1

Proof of Lemma 6.1. The proof of this lemma is based on the following result of Rio
[25] on X .

Theorem 6.6. Let Y = (Yt)t∈Z be a bounded stationary time series bounded distributed
as π0 on X Z. Let h be a 1-Lipschitz function of Xn →R, that is, such that:

∀(x1, y1, . . . , xn, yn) ∈ X 2n, |h(x1, . . . , xn)− h(y1, . . . , yn)| ≤
n∑

i=1

‖xi − yi‖. (6.11)

Then for any t≥ 0 we have:

π0[exp(t(π0[h(X1, . . . ,Xn)]− h(X1, . . . ,Xn)))]≤ exp(t2n(‖X0‖∞ + θ∞,n(1))
2
/2).

Proof. This version of Theorem 1 of [25] comes rewriting the inequality (3) in [25] as,
for any 1-Lipschitz function g:

Γ(g) = ‖E(g(Xℓ+1, . . . ,Xn)|Fℓ)−E(g(Xℓ+1, . . . ,Xn))‖∞ ≤ θ∞,n−ℓ(1).

The result is proved as sup1≤r≤n θ∞,r(1)≤ θ∞,n(1). �

We now apply the result of Theorem 6.6 on Y = X to obtain the result of Lemma
6.1. Let us fix λ > 0, (p, ℓ) ∈M , θ ∈Θp,ℓ and t= (1 +L)λ/[n− p(θ)] and the function h
defined by:

h(x1, . . . , xn) =
1

1 +L

n∑

i=p(θ)+1

‖xi − fθ(xi−1, . . . , xi−p(θ))‖.

We easily check that h satisfies condition (6.11):

|h(x1, . . . , xn)− h(y1, . . . , yn)|

≤ 1

1 +L

n∑

i=p(θ)+1

|‖xi − fθ(xi−1, . . . , xi−p(θ))‖ − ‖yi − fθ(yi−1, . . . , yi−p(θ))‖|
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≤ 1

1 +L

n∑

i=p(θ)+1

‖xi − yi − fθ(xi−1, . . . , xi−p(θ)) + fθ(yi−1, . . . , yi−p(θ))‖

≤ 1

1 +L

n∑

i=p(θ)+1

‖xi − yi‖

+
1

1+L

n∑

i=p(θ)+1

‖fθ(xi−1, . . . , xi−p(θ))− fθ(yi−1, . . . , yi−p(θ))‖

≤ 1

1 +L

n∑

i=p(θ)+1

‖xi − yi‖+
1

1+L

n∑

i=p(θ)+1

p(θ)∑

j=1

aj(θ)‖xi−j − yi−j‖

≤ 1

1 +L

n∑

i=p(θ)+1

‖xi − yi‖+
L

1 +L

n∑

i=1

‖xi − yi‖

≤
n∑

i=1

‖xi − yi‖.

The direct application of Theorem 6.6 ends the proof under (WDP). Under (CBS), kn
follows from the estimates of ‖X0‖∞ and θ∞,n(1) obtained in Proposition 4.1. �

Proof of Lemma 6.3. Integrate the inequality in Lemma 6.1 with respect πp,ℓ on Θp,ℓ

(then p(θ) = p) for any (p, ℓ) ∈M in order to obtain:

πp,ℓ[π0[exp(λ(R− rn))]]≤ exp

(
λ2k2n

n(1− p/n)2

)
.

Fubini’s theorem implies that

π0

[
πp,ℓ

[
exp

(
λ(R− rn)−

λ2k2n
n(1− p/n)2

)]]
≤ 1.

Applying Lemma 6.2 for π = πp,ℓ and h= λ(R− rn)−λ2k2n/(n(1− p/n)2) on M1
+(Θp,ℓ)

leads to the inequality:

π0

[
exp

(
sup

ρ∈M1
+(Θp,ℓ)

{λρ[R− rn]−K(ρ,πp,ℓ)} −
λ2k2n

n(1− p/n)2

)]
≤ 1.

This ends the proof. �

Proof of Lemma 6.4. First, let us choose λ ∈Λ. Let hλp,ℓ denotes, for any (p, ℓ) ∈M :

hλp,ℓ = sup
ρp,ℓ∈M1

+(Θp,ℓ)

{λρp,ℓ[R− rn]−K(ρp,ℓ, πp,ℓ)} −
λ2k2n

n(1− p/n)2
.
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From Lemma 6.3 applied on the different M1
+(Θp,ℓ) we have, for any (p, ℓ) ∈M :

π0

[ ∑

(p,ℓ)∈M

wp,ℓ exp(h
λ
p,ℓ)

]
≤ 1.

Now we apply Inequality (6.1) in Lemma 6.2 for π =
∑

(p,ℓ)∈M wp,ℓδ(p,ℓ) and h =∑
(p,ℓ)∈M hλp,ℓ1Θp,ℓ

and we obtain

π0

[
exp

(
sup

∑
(p,ℓ)∈M

w′

p,ℓ
=1

{ ∑

(p,ℓ)∈M

w′
p,ℓhpℓ −

∑

(p,ℓ)∈M

w′
p,ℓ log(w

′
p,ℓ/wp,ℓ)

})]
≤ 1

and, by Jensen’s inequality, and replacing hλp,ℓ by its definition,

π0

[
sup

∑
(p,ℓ)∈M

w′

p,ℓ
=1

{ ∑

(p,ℓ)∈M

w′
p,ℓ sup

ρp,ℓ∈M1
+(Θp,ℓ)

exp

(
λρp,ℓ

[
λ(R− rn)− log

dρp,ℓ
dπp,ℓ

]

(6.12)

− λ2k2n
n(1− p/n)2

+ log
wp,ℓ

w′
p,ℓ

)}]
≤ 1.

By Jensen again, we obtain a bound for the first term in the sum bounded in Lemma
6.4:

π0

[
sup

∑
(p,ℓ)∈M

w′

p,ℓ
=1

{ ∑

(p,ℓ)∈M

w′
p,ℓ sup

ρp,ℓ∈M1
+(Θp,ℓ)

ρp,ℓ

[
exp

(
λ(R− rn)− log

dρp,ℓ
dπp,ℓ

− λ2k2n
n(1− p/n)2

+ log
wp,ℓ

w′
p,ℓ

)]}]
≤ 1.

Finally, we sum this inequality over all λ ∈ G to bound the first expectation.
The second expectation is bounded by choosing specific weights w′

p,ℓ in the supremum
in inequality (6.12) such that w′

p,ℓ = 1 for (p, ℓ) = argmaxM{hp,ℓ}:

π0

[
sup

(p,ℓ)∈M

ρp,ℓ∈M1
+(Θp,ℓ)

{
exp

(
λρp,ℓ[R− rn]−K(ρp,ℓ, πp,ℓ)−

λ2k2n
n(1− p/n)2

+ logwp,ℓ

)}]
≤ 1.

Again a summation over all λ ∈ G leads to the result. This ends the proof. �

Proof of Lemma 6.5. From the proof of the Lemma 6.1, we already know that |rn(θ)−
rn(θ)| ≤ (1 +L)/(n− p)

∑n
i=1 ‖Xi −X i‖. This bound holds uniformly on Θ. As p≤ n/2

it remains to estimate π0[exp(λ2(1+L)/n
∑n

i=1 ‖Xi−Xi‖]). From the assumption (4.3),
the stationarity of X and as the ξis are i.i.d. we have:

π0

[
exp

(
λ2(1 +L)/n

n∑

i=1

‖Xi −X i‖
)]
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≤ π0

[
exp

(
λ2(1 +L)/n

n∑

i=1

∞∑

j=0

aj(H)‖ξi−j − ξi−j‖
)]

≤ π0

[
exp

(
λ2(1 +L)/n

∞∑

j=0

n∑

i=1∨(n−j)

an−i+j(H)‖ξn−j − ξn−j‖
)]

≤
∞∏

j=0

π0

[
exp

(
λ2(1 +L)/n

n∑

i=1∨(n−j)

an−i+j(H)‖ξ0‖1‖ξ0‖>C

)]
.

Denoting cj = λ2(1 +L)
∑n

i=1∨(n−j) an−i+j(H)/n, we develop for all j ≥ 0

π0[exp(cj‖ξ0‖1‖ξ0‖>C)] = 1+ cjπ0[‖ξ0‖1‖ξ0‖>C ] +
∑

k≥2

ckjπ0[‖ξ0‖k1‖ξ0‖>C ]

k!
.

As Ψ(a(H)) = π0[exp(a(H)‖ξ0‖)] =
∑

k≥0 a(H)kπ0[‖ξ0‖k]/k! is a convergent series of se-

quence of positive numbers, one gets

π0[‖ξ0‖k1‖ξ0‖>C ]≤ π0[‖ξ0‖k]≤
k!Ψ(a(H))

a(H)
k

∀k ≥ 2.

As λ < n/(4(1 +L)) then 2cj ≤ a(H) for all j ≥ 0 and then we derive that for all j ≥ 0:

π0[exp(cj‖ξ0‖1‖ξ0‖>C)] ≤ 1+ cjπ0[‖ξ0‖1‖ξ0‖>C ] + Ψ(a(H))
∑

k≥2

(cj/a(H))k

≤ 1+ cjπ0[‖ξ0‖1‖ξ0‖>C ] +
Ψ(a(H))c2j

a(H)(a(H)− cj)

≤ 1+ cjπ0[‖ξ0‖1‖ξ0‖>C ] + c2j
2Ψ(a(H))

a(H)2
.

As φ(x) = (exp(x)−1)/x is an increasing function for x > 0, then 1‖ξ0‖>C ≤ φ(a(H)‖ξ0‖)/
φ(a(H)C) and the Markov formula gives for all j ≥ 0

π0[exp(cj‖ξ0‖1‖ξ0‖>C)]≤ 1 + cj
Ψ(a(H))a(H)C

exp(a(H)C)− 1
+ c2j

2Ψ(a(H))

a(H)2
.

Collecting those bounds, we obtain

π0

[
exp
(
λ sup

θ∈Θ
|rn(θ)− rn(θ)|

)]
≤

∞∏

j=0

(
1 + cj

Ψ(a(H))a(H)C

exp(a(H)C)− 1
+ c2j

2Ψ(a(H))

a(H)2

)
.
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Using that log(1 + x)≤ x for all x> 0, we finally obtain:

log
(
π0

[
exp
(
λ sup

θ∈Θ
|rn(θ)− rn(θ)|

)])
≤

∞∑

j=0

cj
Ψ(a(H))a(H)C

exp(a(H)C)− 1
+

∞∑

j=0

c2j
2Ψ(a(H))

a(H)2
.

The desired result follows from the estimates
∑∞

j=0 cj ≤ λa(H)2(1 + L) and
∑∞

j=0 c
2
j ≤

λ2a(H)24(1+L)2/n. �

Now give the proof of the useful Proposition 2.1.

Proof of Proposition 2.1. Let us introduce a parameter ζ > 0 then we have

− 1

γ
logπp,ℓ[exp(−γ(R−R(θp,ℓ)))]− ζ = − 1

γ
logπp,ℓ[exp(−γ(R−R(θp,ℓ)− ζ))]

≤ − 1

γ
logπp,ℓ(R(θ)−R(θp,ℓ)≤ ζ).

Then we directly derive from the definition of dp,ℓ that

dp,ℓ ≤ sup
γ>e

infζ>0{ζγ − logπp,ℓ(R(θ)−R(θp,ℓ)≤ ζ)}
logγ

.

So

ζγ − q log
ζ

Ccp,ℓ
≤ q ∧ γC(cp,ℓ − ‖θp,ℓ‖) + q log

(
Ccp,ℓγ

q
∨ cp,ℓ

cp,ℓ − ‖θp,ℓ‖

)
.

Now if q ≤ γC(cp,ℓ − ‖θp,ℓ‖) then we get the estimate q(1 + log(Ccp,ℓγ/q))/ logγ which
decreases with γ. We then get the desired bound when the supremum is established
for γ = e ∨ q/(C(cp,ℓ − ‖θp,ℓ‖)). If q ≥ γC(cp,ℓ − ‖θp,ℓ‖), then we get the estimate
(γC(cp,ℓ − ‖θp,ℓ‖) + q log(cp,ℓ/(cp,ℓ − ‖θp,ℓ‖)))/ logγ which increases with γ. We have
to consider γ as large as possible, that is, when q = γC(cp,ℓ − ‖θp,ℓ‖) and we are going
back to the case treated above. �

6.5. Proofs of the results given in Section 4

After proving Proposition 4.1, we give Lemma 6.7 that introduces a coupling argument
used to estimate the coefficients θ∞,n(1) in Propositions 4.2 and 4.3.

Proof of Proposition 4.1. The Theorem 3.1 of Doukhan and Wintenberger [15] gives
the existence of a unique stationary solution and the existence of an H such that Xt =
H(ξt, ξt−1, ξt−2,
. . .). We prove that conditions (3.1) and (3.2) are automatically satisfied. Let (xi) and (yi)
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be two sequences such that there exists j ∈N with xi = yi for all i 6= j. Then H(x) = u∞0
where u∞0 = limk→∞ uk0 for (uk−i)i∈N defined recursively by

uk−i = F (uk−i−1, u
k
−i−2, . . . , u

k
1−k, u

k
−k,0, . . . ;xi) ∀0≤ i≤ k.

Similarly, we denote H(y) = v∞0 such that ‖H(x)−H(y)‖= ‖u∞0 − v∞0 ‖. For j = 0, using
(4.3) ‖uk0 − vk0‖ ≤ u‖xj − yj‖ for all k. For j ≥ 1, as xi = yi for i > j, for k sufficiently

large it holds (with the convention
∑−k

ℓ=1 = 0 for k ≥ 0):

‖uk0 − vk0‖ ≤
j∑

ℓ1=1

aℓ1(F )

j−ℓ1∑

ℓ2=1

aℓ2(F ) · · ·
j−ℓ1−···−ℓj−1∑

ℓj=1

aℓj (F )‖uk−j − vk−j‖.

By definition ‖uk−j − vk−j‖ ≤ u‖xj − yj‖ and we obtain ‖uk0 − vk0‖ ≤ ua(F )j−1‖xj − yj‖
for sufficiently large k. As the estimate does not depends on k, we derive that (3.1) holds
with aj(H) = ua(F )j−1 and that (3.2) follows from the condition (4.4). �

Now we state a useful coupling lemma; (X∗
t ) is said to be a coupling version of (Xt)

if it is similarly distributed and such that (X∗
t )t>0 is independent of S0 = σ(Xt, t≤ 0).

From a version of the Kantorovitch–Rubinstein duality, see Dedecker and Prieur [13] for
more details, we obtain an estimate of θ∞,n(1).

Lemma 6.7. For any version (X∗
t ), we have

θ∞,n(1)≤
n∑

i=1

‖E(‖Xi −X∗
i ‖/S0)‖∞.

For the sake of completeness, we give the proof of this already known result.

Proof of Lemma 6.7. As we equipped Xn with the norm ‖(x1, . . . , xn)‖=
∑n

i=1 ‖xi‖,
we immediately get the inequality

θ∞,n(1)≤ ‖E(‖(X1, . . . ,Xn)− (X∗
1 , . . . ,X

∗
n)‖|S0)‖∞ ≤

u∑

i=1

‖E(‖Xi −X∗
i ‖|S0)‖∞.

�

The proof of Propositions 4.2 and 4.3 are simple applications of this lemma.

Proof of Proposition 4.2. Let us consider the coupling version of the causal Bernoulli
shift (Xt) given by

X∗
t =H(ξt, ξt−1, . . . , ξ1, ξ

∗
0 , ξ

∗
−1, . . .) ∀t ∈ Z,
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where (ξ∗t ) is similarly distributed than (ξt) and the two processes are independent. Then
from Lemma 6.7 and condition (3.1), we obtain:

θ∞,n(1)≤
n∑

i=1

∥∥∥∥∥

∞∑

j=i

aj(H)E(‖ξi−j − ξ∗i−j‖/S0)

∥∥∥∥∥
∞

≤
∞∑

j=i

jaj(H)‖E(‖ξi−j − ξ∗i−j‖/S0)‖∞

and the desired result follows. �

Proof of Proposition 4.3. Here we will consider the maximal coupling scheme of
Goldstein [16]: there exists a version (X∗

t ) such that

‖P(Xt 6=X∗
t for some t≥ r/S0)‖∞ = sup

(A,B)∈S0×Fr

|P(A/B)−P (B)|= ϕ(r).

As ‖Y −Z‖ ≤ 2‖X0‖∞1Y 6=Z for any variables Y,Z bounded by ‖X0‖∞, we have:

‖E(‖Xi −X∗
i ‖/S0)‖∞ ≤ 2‖X0‖∞‖E(1Xi 6=X∗

i
/S0)‖∞ ≤ 2‖X0‖∞‖P(Xi 6=X∗

i /S0)‖∞.

As P(Xi 6=X∗
i /S0)≤ P(Xt 6=X∗

t for some t≥ r/S0), we conclude using Lemma 6.7. �

6.6. Proofs of the results given in Section 5

We proof the Corollaries 5.2 and 5.3 of Theorem 3.1 applied in the context of Neural
Networks and projection in the Fourier basis predictors.

Proof of Corollary 5.2. Let us check that all the predictors are L-Lipschitz functions
of the observations. For any x, y ∈R

p, as the function φ is 1-Lipschitz, we have

|fθ(x)− fθ(y)| ≤
∣∣∣∣∣

ℓ∑

k=1

ck(φ(ak · x+ bk)− φ(ak · y+ bk))

∣∣∣∣∣

≤
ℓ∑

k=1

|ck||ak · (x− y)| ≤
ℓ∑

k=1

|ck|‖ak‖1‖x− y‖∞

≤ ‖‖ak‖1‖∞
ℓ∑

k=1

|ck|
p∑

i=1

|xi − yi|.

For θ ∈ Bq
cp,ℓ then L = (cp,ℓ ∨ 1)3 is convenient. Next, using Jensen to estimate L1-risk

by L2-risk, we obtain from the Theorem 1 of Barron [6] the existence of C > 0 such that

π0[|med(X0|X−1, . . . ,X−p)− fθp,ℓ(X−1, . . . ,X−p)|]≤C
pc‖X0‖∞√

ℓ
,
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where θp,ℓ belongs to the compact set

B′
p,ℓ =

{
θ ∈R

ℓ(p+2)+1;

ℓ∑

i=1

|ci| ≤C′cp; max
1≤i≤ℓ

‖ai‖ ≤
√
ℓ log ℓ; max

1≤i≤ℓ
|bi| ≤ ‖X0‖∞

√
ℓ log ℓ

}
.

Remark that under the assumptions of Corollary 5.2, we have cp,ℓ − ‖θp,ℓ‖ ≥ q/e. It
implies by Proposition 2.1 that dp,ℓ ≤ 3q(1 + log(cp,ℓ)) when cp,ℓ ≥ 1. From Theorem 3.1
there exists C > 0 satisfying

R(θ̂)]≤ inf
dp,ℓ≤n

{
R∗

p +C

(
pc√
ℓ
+ log3(n)

√
pℓ

n

)}
+C

log(1/ε)√
n

.

The result follows from considering ℓ=
√
npc−1/2. �

Proof. Proof of Proposition 5.3 Let us apply Theorem 3.2: there exists C > 0 such that

R(θ̂) ≤ inf
p,ℓ:dp,ℓ≤n

{
min

θ∈Θp,ℓ

R(θ) +C

√
dp,ℓ
n

log5/2(n)

}
+C

log(1/ε)√
n

≤ inf
ℓ:dp0,ℓ

≤n

{
min

θ∈Θp0,ℓ

R(θ) +C

√
dp0,ℓ

n
log5/2(n)

}
+C

log(1/ε)√
n

.

Remarking that

R(θp0,ℓ) = inf
θ∈Θ

π0[|Xp+1 − fθp0,ℓ
(Xp, . . . ,X1)|]

≤ π0

[∣∣∣∣∣Xp+1 −
p0∑

i=1

fi(Xp−i)

∣∣∣∣∣

]
+ inf

θ∈Θ
π0

[∣∣∣∣∣

p0∑

i=1

fi(Xp−i)−
p0∑

i=1

n∑

j=1

θi,jϕj(Xp−i)

∣∣∣∣∣

]

≤ µ[|ξ0|] + inf
θ∈Θ

p0∑

i=1

π0

[∣∣∣∣∣fi(X1)−
n∑

j=1

θi,jϕj(X1)

∣∣∣∣∣

]
.

Note also that under our hypothesis X1 has a density upper bounded by 1/
√
2πσ2. It

then holds

R(θp0,ℓ) ≤ µ[|ξ0|] +
1√
2πσ2

inf
θ∈Θ

p0∑

i=1

∫ ∣∣∣∣∣fi(x)−
n∑

j=1

θi,jϕj(x)

∣∣∣∣∣dx

≤ µ[|ξ0|] +
1√
2πσ2

inf
θ∈Θ

p0∑

i=1

(∫ [
fi(x)−

n∑

j=1

θi,jϕj(x)

]2
dx

)1/2

≤ µ[|ξ0|] +
1√
2πσ2

p0∑

i=1

γiℓ
−si ≤ µ[|ξ0|] +

∑p0

i=1 γi√
2πσ2

ℓ−s.
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Then we have

π0[R(θ̂)]≤ µ[|ξ0|] + inf
ℓ

{
ℓ−s

∑p0

i=1 γi√
2πσ2

+C

√
dp0,ℓ

n
log5/2(n)

}
+C

log(1/ε)√
n

. (6.13)

The estimate of dp0,ℓ from Proposition 2.1 is plugged into (6.13) to obtain for some C > 0

π0[R(θ̂)]≤ µ[|ξ0|] + inf
ℓ

{
ℓ−s

∑p0

i=1 γi√
2πσ2

+C

√
p0ℓ

n
log5/2(n)

}
+C

log(1/ε)√
n

.

In particular, fixing ℓ proportional to n1/(2s+1) leads to the result. �
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