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MODEL SELECTION FOR WEAKLY DEPENDENT TIME SERIES

FORECASTING

PIERRE ALQUIER(1) AND OLIVIER WINTENBERGER(2)

Abstract. Observing a stationary time series, we propose a two-step procedure for the predic-
tion of the next value of the time series. The first step follows machine learning theory paradigm
and consists in determining a set of possible predictors as randomized estimators in (possibly
numerous) different predictive models. The second step follows the model selection paradigm
and consists in choosing one predictor with good properties among all the predictors of the first
steps. We study our procedure for two different types of observations: causal Bernoulli shifts and
bounded weakly dependent processes. In both cases, we give oracle inequalities: the risk of the
chosen predictor is close to the best prediction risk in all predictive models that we consider. We
apply our procedure for predictive models such as linear predictors, neural networks predictors
and non-parametric autoregressive predictors.
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1. Introduction

When observing a time series, one crucial issue is to predict the (non-observed) first future
value using the observed past values. Since the seventies, different model selection procedures
have been studied for inferring how many observed past values are needed for predicting the
next value. Procedures such as AIC ([1]), BIC (Schwarz [26]) and APE (Ing [17]) are used by
practitioners to select a reasonable linear predictor. When the observations satisfy a linear model,
those procedures are proved to be asymptotically efficient (see Ing [17] for more details).

In the same time, the progress of statistical learning theory in the iid setting brought new
perspectives in model selection (see Vapnik [29] and Massart [20] among others). Typical machine-
learning procedures allow to choose a predictor among a family, with the guarantee that this
predictor performs almost as well as the best possible predictor of the family (called the oracle).
Such results are called oracle inequalities; they provide guarantees on the quality of the prediction
without any parametric assumption on the observations.

Few works have been done in the context of dependent observations. The machine learning
theory was used successfully in the time series prediction context by Modha and Masry [22]. How-
ever, their procedure relies on the knowledge of the α-mixing coefficients. To our knowledge, there
is no efficient estimation of this coefficients and their procedure seems difficult to use in practice.
Baraud et al. [5] use the model selection point of view to perform regression and auto-regression
on dependent observations. They prove powerful oracle inequalities when the observations satisfy
an additive auto-regressive model. When the observations are Harris recurrent Markov chains,
Lacour [18] gives also oracle inequalities for a procedure completely free of the dependence prop-
erties. An alternative point of view is provided by the theory of individual sequences prediction
(see Lugosi and Cesa-Bianchi [19] or Stoltz [28]). In these works, no assumption on the observa-
tions - not even a stochastic assumption - is done and oracle inequalities are given.

In this paper, our objectives are the following:

(1) to build various predictors of different form and using different number of past observa-
tions,

(2) to select one of these predictors without any assumptions on the distribution of the obser-

vations,
(3) to prove oracle inequalities under weak assumptions on the observed time series.

In the end of this introduction, let us briefly present our two-step procedure.
Let us observe (X1, . . . ,Xn) from a stationary time series X = (Xt)t∈Z distributed as π0 on XZ

where X is an Hilbert space equipped with its usual norm ‖·‖. Let us fix a (possibly large) family
of predictors {fθ, θ ∈ Θ}: for any θ and any t, fθ applied to the past values (Xt−1,Xt−2, . . . ,X1)
is a possible prediction of Xt. We discretize the family of predictors by the number p of past
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values they use for prediction. Thus we assume that

Θ =

⌊n
2 ⌋⋃

p=1

Θp

where the Θp are disjoint in order that for any θ ∈ Θ, there is only one p such that θ ∈ Θp. Now,
for any θ ∈ Θp, fθ is a function X p → X and at any time t, fθ(Xt−1, ...,Xt−p) is a prediction of

Xt according to θ and denoted X̂θ
t . As the predictor fθ may take different forms (linear, neural

networks,. . . ), we write

Θp =

mp⋃

ℓ=1

Θp,ℓ

for a given mp ∈ {1, . . . , n}. Finally, the risk R(θ) of the prediction is defined by

R(θ) = π0 [‖fθ(Xt−1, ...,Xt−p)−Xt‖] = π0

[∥∥∥X̂θ
t −Xt

∥∥∥
]
,

where here and all along the paper π[h] =
∫
hdπ for any measure π and any integrable function

h. Note that R(θ) does not depend on t as X is stationary.
The mathematical counterparts of the points (1), (2) and (3) of our objectives are the following.

The point (1) corresponds to build, on the basis of the observations, an estimator θ̂p,ℓ in each
model Θp,ℓ, for 1 ≤ p ≤ ⌊n/2⌋ and 1 ≤ ℓ ≤ mp. The point (2) consists in defining a procedure

to choose a θ̂ among all the possible θ̂p,ℓ. Finally, for point (3), we prove that R(θ̂) is close to
infθ∈ΘR(θ). To attain our objectives we use the PAC-Bayesian paradigm (introduced by Shawe-
Taylor and Williamson [27] and McAllester [21]). Using this approach, Catoni [7, 8, 9], Audibert
[4], Alquier [2], Tsybakov and Dalalyan [10] solve points (1), (2) and (3) simultaneously for various
regression and classification problems in the iid setting. In this paper we build a procedure that
gives a predictor θ̂ satisfying, under general conditions on X and with probability at least 1− ε,

R(θ̂) ≤ inf
dp,ℓ≤n

{
min
θ∈Θp,ℓ

R(θ) + cst.

√
dp,ℓ
n

log5/2(n)

}
+ cst.

log 1
ε√
n

where cst > 0 is an explicit constant and dp,ℓ an estimate of the complexity of Θp,ℓ.
To obtain such oracle inequalities, we use sharp estimates (close to the ones in the iid case) on

the Laplace transform of partial sums in dependent settings. For bounded observations we use the
θ∞-coefficients (see [11]), introduced in Rio [24] as the γ-mixing coefficients. These coefficients
generalize the uniform mixing ones. For unbounded observations we use the causal Bernoulli
shifts representation. It includes all classical linear ARMA models and also the more general
chains with infinite memory introduced by Doukhan and Wintenberger [14]. These bounded
and unbounded dependent frameworks are not comparable with the β or α-mixing ones as they
include some dynamical systems that are not mixing, see Andrews [3] and Dedecker and Prieur
[12] for details. Finally, it is important to note that our prediction procedure is the same for the
two dependence frameworks. It does not depend on any unknown dependence coefficients; we
believe that similar oracle inequalities for our predictor can be proved in other weakly dependent
settings.

The paper is organized as follows: First, the prediction procedure is detailed in Section 2;
Second, the assumptions on the observed time series and the corresponding oracle inequalities
are given in Section 3. In Section 4 are given some examples of time series for which these oracle
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inequalities hold. Our procedure applied on some possible prediction models are given in Section
5. Linear predictors (with simulations), neural networks predictors and non-parametric predictors
are considered. Finally the complete proofs are collected in Section 6.

2. The prediction procedure

We observe (X1, . . . ,Xn) from a stationary time process X = (Xt)t∈Z distributed as π0 on XZ

where X is an Hilbert space equipped with its usual norm ‖ · ‖. We fix a family of predictors
{fθ, θ ∈ Θ} with

Θ =

⌊n
2 ⌋⋃

p=1

Θp =

⌊n
2 ⌋⋃

p=1

(mp⋃

ℓ=1

Θp,ℓ

)

such that mp ≥ n and p(θ) is the only p such that θ ∈ Θp. For any θ ∈ Θ, we denote X̂θ
t =

fθ(Xt−1, ...,Xt−p) and R(θ) = π0

[∥∥∥X̂θ
t −Xt

∥∥∥
]
.

2.1. The Lipschitz predictors. Let M denotes the set of all possible pairs (p, ℓ):

M =

⌊n
2 ⌋⋃

p=1

{p} × {1, ...,mp}.

Let T be a σ-algebra on Θ and Tp,ℓ be its restriction to Θp,ℓ for any (p, ℓ) ∈M . For any (p, ℓ) ∈M ,
we assume that Θp,ℓ is a compact subset of Rq for some q < ∞ (q depends on (p, ℓ)) and that
there exists (aj(θ))j∈{1,...,p} satisfying, for any (x1, ..., xp), (y1, ..., yp) ∈ X p, the relation

(2.1) ‖fθ(x1, ..., xp)− fθ(y1, ..., yp)‖ ≤
p∑

j=1

aj(θ) ‖xj − yj‖ .

Moreover, we assume that

(2.2) L := sup
(p,ℓ)∈M

sup
θ∈Θp,ℓ

p∑

j=1

aj(θ) satisfies L ≤ log(n)− 1

in order to bound the volatility of the predictors uniformly on M .

2.2. The complexity of Θp,ℓ. To control the complexity of each Θp,ℓ we assume that, for all
(p, ℓ) ∈ M , there exist a probability measure πp,ℓ on the measurable space (Θp,ℓ,Tp,ℓ) and a
constant 1 ≤ dp,ℓ <∞ satisfying

(2.3) sup
γ>e

{− log
∫
Θp,ℓ

[
exp

(
−γ
(
R(θ)−R

(
θp,ℓ
)))]

dπp,ℓ(θ)

log(γ)

}
≤ dp,ℓ.

Here θp,ℓ = argminΘp,ℓ
R for any (p, ℓ) ∈M . The parameter dp,ℓ is linked with classical dimensions

as the Vapnik dimension and entropy measures. In this paper we only investigate the cases where
πp,ℓ is the Lebesgue measure on Θp,ℓ. We have the following result:
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Proposition 2.1. Let q ∈ N
∗, x > 0 and Bq

x be the closed ℓ1-ball in R
q of radius x > 0 and

centered at 0. If Θp,ℓ = Bq
cp,ℓ for cp,ℓ > 0 and θ → R(θ) is a C-Lipschitz function then we have:

(2.4) dp,ℓ ≤ q ×
(
1 + log

(
cp,ℓ

(
Ce

q
∨ 1

cp,ℓ − ‖θp,ℓ‖

)))
.

The proof of this result is given at the end of Subsection 6.4. Predictive models whom com-
plexity dp,ℓ is estimated are given in Section 5.

2.3. The empirical risk. As the risk R(θ) cannot be computed, we use its empirical counterpart
rn(θ):

rn(θ) =
1

n− p (θ)

n∑

t=p(θ)+1

∥∥∥Xt − X̂θ
t

∥∥∥ .

2.4. The randomized estimators. For any (p, ℓ) ∈M , our randomized estimators θ̃λp,ℓ is drawn
randomly through a Gibbs measure

θ̃λp,ℓ ∼ πp,ℓ{−λrn}.
We recall that for any measure π and any measurable function h such that π[exp(h)] < +∞, the
Gibbs measure denoted π{h} is defined by the relation:

(2.5)
dπ{h}
dπ

(θ) =
exp(h(θ))

π[exp(h)]
.

Here the parameter λ is called the temperature (this terminology comes from the statistical
thermodynamics). For n ≥ 8e(1 + L), λ takes values in a finite grid Gp,ℓ defined as

Gp,ℓ =

{
g1

√
dp,ℓn log(dp,ℓn)

(1 + L) log3/2(n)
, . . . , gn0

√
dp,ℓn log(dp,ℓn)

(1 + L) log3/2(n)

}
∩
[
2e,

n

4(1 + L)

]
.

where č ≤ g1 < ... < gn0 ≤ ĉ with 2 ≤ n0 ≤ n and 0 < č < 2/(1+L) < 2e(1+L) < ĉ <∞. Remark
that when λ grows, πp,ℓ{−λrn} tends to concentrate around the minimizer of the empirical risk
rn(.).

2.5. The model selection. Classically one choose the minimizer of the penalized empirical risk
argminp,ℓ[rn(θ̃

λ
p,ℓ) + pen(p, ℓ, λ)], for some well chosen penalization pen(p, ℓ, λ), see Massart [20].

Here we consider θ̂ = θ̃λ̂
p̂,ℓ̂

where

(p̂, ℓ̂, λ̂) = arg min
(p, ℓ) ∈ M
λ ∈ Gp,ℓ

R̂ (p, ℓ, λ) .

The model criterion R̂ (p, ℓ, λ) is given by the PAC-Bayesian approach:

R̂ (p, ℓ, λ) = − 1

λ
log

∫

Θp,ℓ

exp (−λrn(θ)) dπp,ℓ(θ) +
1

λ
log
(
n
⌊n
2

⌋
mp

)
+
λ(1 + L)2 log3(n)

n(1− p/n)2
.

3. Main results

In order to prove that R(θ̂) is close to infθ∈ΘR(θ) with hogh probability, we restrict our study

to two different contexts. Note that θ̂ is defined independently of these contexts and that a
practitioner may compute our predictor on any observed time series.
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3.1. Bounded weakly dependent processes (WDP). In this caseX is bounded, i.e. ‖X‖∞ :=
supt ‖Xt‖ <∞. We use the θ∞,n(1)-coefficients in Dedecker et al. [11], a version of the γ-mixing
of Rio [25]) adapted to stationary time series. If Z is a bounded variable in X q (q ≥ 1) defined
on (Ω,A,P), for any σ-algebra S of A we have:

θ∞(S, Z) = sup
f∈Λ1

∥∥∥∥
∣∣∣E
(
f(Z)

∣∣S
)
− E

(
f(Z)

)∣∣∣
∥∥∥∥
∞
,

where Λ1 is the set of real 1-Lipschitz functions on X q equipped with the norm ‖z‖ =
∑q

i=1 ‖zi‖.
Let us define the σ-algebra Sp = σ(Xt, t ≤ p) for any p ∈ Z and the coefficients

θ∞,k(1) = sup

{
θ∞
(
Sp, (Xj1 , . . . ,Xjℓ)

)
, p+ 1 ≤ j1 < · · · < jℓ, 1 ≤ ℓ ≤ k

}
.

Moreover assume that there is a constant C > 0 such that for any n, θ∞,n(1) < C (the short
memory condition). Causal Bernoulli shifts with bounded innovations, uniform ϕ-mixing se-
quences and dynamical systems are classical θ∞ weakly-dependent examples, see Section 4 for
more details. In this context we prove the following oracle inequality

Theorem 3.1. Under (WDP) and condition (2.3), there are explicit constants

(cst1, cst2) = cst(č, ĉ, L, C, ‖X0‖∞)

such that for all n ≥ 8e(1 + L) with probability at least 1− ε

R(θ̂) ≤ inf
dp,ℓ≤n

{
min
θ∈Θp,ℓ

R(θ) + cst1.

√
dp,ℓ
n

log5/2(n)

}
+ cst2.

log 1
ε√
n

+ 4(1 + L)

(
(‖X0‖∞ + C)2

2
− log3(n)

)

+

.

The proof of this result is given in Subsection 6.2 page 15.

3.2. Causal Bernoulli shifts (CBS). Let X ′ be some Banach space equipped with a norm also

denoted ‖ · ‖. Let H : X ′N 7→ X be a Lipschitzian function, i.e. such that there exists (aj(H))j∈N
satisfying, for any v = (vj)j∈N, v′ = (v′j)j∈N ∈ X ′N, the relations:

∥∥H(v)−H(v′)
∥∥ ≤

∞∑

j=0

aj(H)‖vj − v′j‖,(3.1)

with
∞∑

j=0

jaj(H) < +∞.(3.2)

We denote
∑∞

j=0 aj(H) := a(H),
∑∞

j=0 jaj(H) = ã(H). The causal Bernoulli shifts are defined
by the relation

Xt = H(ξt, ξt−1, ξt−2, . . .) ∀t ∈ Z

where ξt for t ∈ Z are iid variables called the innovations and distributed as µ. We assume that
the innovation’s norm admits a finite Laplace transform µ[exp(c∗‖ξ0‖)] := Ψ(c∗) < +∞ (the
Cramer condition) for c∗ ≥ a(H). Classical examples of such processes are causal linear ARMA
models and chains with infinite memory with low-tail innovations, see Section 4 for more details.
In this context we prove the following oracle inequality
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Theorem 3.2. Under (CBS) and condition (2.3), there are explicit constants

(cst′1, cst
′
2) = cst′(č, ĉ, L, a(H), ã(H),Ψ(1))

such that for all n ≥ 8e(1 + L) with probability at least 1− ε

R(θ̂) ≤ inf
dp,ℓ≤n

{
min
θ∈Θp,ℓ

R(θ) + cst′1.

√
dp,ℓ
n

log5/2(n)

}
+ cst′2.

log 1
ε√
n

+

√
dp̂,ℓ̂
n

log(dp̂,ℓ̂n)4(1 + L)ĉ

(
4a(H)Ψ(a(H)) + 2 log2(n)

(
1 +

ã(H)

a(H)

)2
− log3(n)

)

+

.

The proof of this result is given in Subsection 6.3 page 17.

3.3. Comments on the results. The constants are roughly (but explicitly) estimated in the
proofs, see Subsections 6.2 and 6.3. For example, we obtain

cst1 ≤ (1 + L)

(
6

č
+ 8ĉ

(
1 + ‖X0‖∞ + C

)2)
and cst2 ≤

7(1 + L)

č
.

For n sufficiently large, the last terms in the oracle inequalities vanish. Then it exists a constant
C > 0 such that under (WDP) or (CBS) for all n ≥ 8e(1 + L) with probability at least 1− ε:

R(θ̂) ≤ inf
dp,ℓ≤n

{
min
θ∈Θp,ℓ

R(θ) + C

√
dp,ℓ
n

log5/2(n)

}
+ C

log 1
ε√
n
.

Similar oracles inequalities have already proved by Modha and Masry [22] and Baraud et al. [5].
These inequalities are given in expectation while ours are true with high probability. Remark
that integrating our oracle inequalities with respect to ε leads to a result in expectation: there
exists a constant C > 0 independent of n such that in both (WDP) and (CBS) cases

π0

[
R(θ̂)

]
≤ inf

dp,ℓ≤n

{
min
θ∈Θp,ℓ

R(θ) + C

√
dp,ℓ
n

log5/2(n)

}
.

The converse is not true: results in expectation do not lead to results that hold with high
probability.

It is difficult to compare our oracle inequalities with the ones in [22] and [5]: contrary with
our paper, they deal with the quadratic risk and (β− or α−) mixing time series. However, let us

remark that we obtain the same additional term
√
dp,ℓ/n (called the rate) than in the iid case,

up to a multiplicative log5/2(n) term (called the loss). Baraud et al. [5] obtain the same rate
than in the iid case associated with the quadratic risk, while Modha and Masry [22] suffer a loss
(n/dp,ℓ)

c for some c > 0.

4. Examples of time series satisfying (WDP) or (CBS)

We present several examples of time series satisfying (WDP) or (CBS).
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4.1. Causal Bernoulli shifts. Causal Bernoulli shifts are stationary time series that admit the
representation

(4.1) Xt = H(ξt, ξt−1, ξt−2, . . .) ∀t ∈ Z

where the ξt are iid variables called innovations. Almost all known stationary and ergodic pro-
cesses have this form. However we work here under the restrictive assumption (4.3). Remark that
under this Lipschitz condition the existence of the stationary time series (Xt) follows from (4.1)
and it satisfies the Cramer condition as soon as the innovations do. Some examples of causal
Bernoulli shifts are presented below.

4.1.1. Linear models. Let (Xt) be a real time series admitting the MA(∞) representation

Xt =
∞∑

j=0

ajξt−j with
∞∑

j=0

jaj < +∞.

Then it satisfies (CBS) if the iid innovations ξt satisfy the Cramer condition. As an example
there is any causal AR(∞) modelXt = φ0+

∑∞
j=1 φjXt−j+ξt with φ(z) = 1−∑∞

j=1 φjz
j that have

no root for |z| ≤ 1 (such that causal ARMA(p,q) models). Indeed, it is a real analytic function
on the unit disc, 1/φ(z) is a well defined real analytic function with the expression

∑∞
j=1ψjz

j

on the unit disc with the coefficients ψj that decrease exponentially fast ((3.2) is automatically
satisfied).

4.1.2. Chains with infinite memory. Chains with infinite memory is a class of time series (Xt)
introduced by Doukhan and Wintenberger [14] as the solution of the equation

(4.2) Xt = F (Xt−1,Xt−2, . . . ; ξt) almost everywhere,

for some function F : X (N\{0}) ×X ′ → X . Assume also that there exits some u satisfying, for all
x = (xk)k∈N\{0}, x

′ = (x′k)k∈N\{0} ∈ XN\{0} such that there exists N > 0 as xk = x′k = 0 for all
k > N , the condition

∥∥F (x; y) − F (x′; y′)
∥∥ ≤

∞∑

j=1

aj(F )‖xj − x′j‖+ u‖y − y′‖,(4.3)

with

∞∑

j=1

aj(F ) := a(F ) < 1,(4.4)

Many non linear econometrics time series are chains with infinite memory. The following Propo-
sition gives sufficient assumptions such that chains with infinite memory satisfy (CBS):

Proposition 4.1. Under (4.3) and (4.4) there exists a unique solution (Xt) of equation (4.2)
satisfying (CBS) if ξ0 satisfies the Cramer condition.

The proof of Proposition 4.1 is given in Subsection 6.5.

4.2. Weakly dependent processes.
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4.2.1. Bounded causal Bernoulli shifts. Bounded causal Bernoulli shifts are examples of time
series satisfying (WDP):

Proposition 4.2. Under condition (4.3) and (3.2), any solution of the equation (4.1) is bounded
by 2a(H)‖ξ0‖∞ and is weakly dependent (WDP) with C = 2‖ξ0‖∞ã(H).

The proof of this already known result is given in Subsection 6.5 for completeness. Below are
presented two examples of time series satisfying (WDP) that are not bounded causal Bernoulli
shifts.

4.2.2. Uniform ϕ-mixing processes. Let us remind the definition of the ϕ-mixing coefficients in-
troduced in Ibragimov [16];

ϕ(r) = sup
(A,B)∈S0×Fr

|π(B/A) − π(B)|

where Fr = σ(Yt, t ≥ r). The class of ϕ-mixing processes gives examples of time series that
satisfied (WDP):

Proposition 4.3. If (Xt) is a stationary bounded process then it satisfies (WDP) with

θ∞,n(1) ≤ 2‖X0‖∞
n∑

r=1

ϕ(r).

The proof of this already known result is given in Subsection 6.5 for completeness. Remark
that (Xt) satisfies the short memory condition as soon as (ϕ(r)) is summable. All uniform ergodic
Markov chains are examples of ϕ-mixing processes with short memory, see Doukhan [13].

4.2.3. Dynamical systems on [0, 1]. The AR(1) process Xt = 2−1(Xt−1 + ξt) with ξt Bernoulli
distributed is not mixing, see [3] for more details. Through a reversion of the time, it can be
viewed as a dynamical system Xt = T (Xt+1) where T (x) = 2x if 0 ≤ x < 1/2, T (x) = 2x − 1
if 1/2 ≤ x ≤ 1. Dedecker and Prieur [12] extended this counter-example to processes (Xt) such
that Xt = T (Xt+1) where T is an expanding map on [0, 1], see Section 4.4 of [12] for a proper
definition. Then (Xt) satisfies (WDP) with C = Kσ/(1 − σ) where K > 0, 0 ≤ σ < 1, see
Section 7.2 of [12].

5. Examples of predictors

We give some examples of Lipschitz predictors where we can estimate the complexity of the
Θp,ℓ and then apply our main results. In this section C > 0 is a constant independent of ε and
n that may be different from one inequality to another.

5.1. Linear predictors. Let X = R and we consider predictors of the form:

fθ(Xt−1, ...,Xt−p) = θ0 +

p∑

i=1

θiXt−i,

where θ ∈ Θp ⊂ R
p+1 with by definition, for some B > 0,

Θp = Θp,1 =

{
θ ∈ R

p+1, ‖θ‖1 =
p∑

i=0

|θi| ≤ B

}
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(mp = 1 for all p and we omit the index ℓ). Using Proposition 2.1 it follows that

dp ≤ (p+ 1) log

(
eB

(
e

p+ 1
∨ 1

B − ‖θp‖

))
,

where θp = argminΘp R(θ). As a consequence of Theorems 3.1 and 3.2 we obtain:

Corollary 5.1. If ‖θp‖1 ≤ B − e/(p + 1) for all p ≥ 0, then, under (WDP) or (CBS), for all

n ≥ 8e(1 + L) with probability at least 1− ε:

R(θ̂) ≤ inf
p+1≤n/2

{
min
θ∈Θp

R(θ) + C

√
p

n
log5/2(n)

}
+ C

log 1
ε√
n
.

As an application, consider the innovations ξt iid satisfying the Cramer condition and med(ξ0) =
0. If (Xt) is a causal AR(p0) process (0 ≤ p0 <∞) of the form

Xt = a0 +

p0∑

j=1

ajXt−j + ξj for all t ∈ Z.

If B ≥ ∑p
j=0 |aj| + e/(p + 1) for all 0 ≤ p ≤ p0, the error of the best linear predictor is µ[|εj |].

Corollary 5.1 then implies that for any 0 < ε < 1 and any n ≥ 2(p0 + 1), it holds:

R(θ̂)− µ[|ε0|] ≤ C

(√
p0
n

log5/2(n) +
log 1

ε√
n

)
with probability at least 1− ε.

For ε > 0 fixed independently of n, the rate of convergence of the excess risk is estimated by√
p0/n log

5/2(n). Note that θ̂ achieves this rate even if p0 is unknown. One says that our proce-
dure is adaptive in p0 and, using the terminology of [22], memory-universal.

Consider now that (Xt) comes from an AR(∞) model of the form

(5.1) Xt = a0 +

∞∑

i=1

aiXt−i + ξt, for all t ∈ Z.

If B ≥ ∑p
j=0 |aj | + e/(p + 1) for all p ≥ 0, we have θp = (a0, ..., ap). Then we roughly bound

R(θp) = π0[|
∑

i>p aiX−i + ξ0|] ≤ µ[|ξ0|] + π0[|X−i|]
∑

i>p |ai| and with probability at least 1− ε:

R(θ̂)− µ[|ξ0|] ≤ inf
p+1≤n/2


π0[|X0|]

∑

i>p

|ai|+ C

√
p

n
log5/2(n)


+ C

log 1
ε√
n
.

In this non-parametric setting, to obtain a rate of convergence for the excess risk we have to
specify the decay rate of the |ai|. For example, if

∃γ > 0,∃β > 0,∀p :
∑

i>p

|ai| ≤
γ

pβ

then the convergence rate is (log5(n)/n)
β

2β+1 (consider the optimal p = n1/(2β+1) log5/(2β+1)(n)).

Simulations. We implement our linear prediction procedure using the R software [23]. We
compare the results to the one obtained using the standard ARIMA procedure of R with the AIC
criterion for model selection. Our theoretical penalization terms, driven by ¡¡the worst-case type¿¿
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bounds, are necessarily pessimistic: our procedure systematically over-penalizes large models.
Thus, for having an efficient procedure in practice, adjustments have been done. However we aim
with these simulations to show that

(1) our linear prediction procedure is easily implementable;
(2) its performances are reasonable when the implemented penalization term is smaller than

the theoretical one.

We only consider observations from simulations of AR(p0) models of the form

Xt =

p0∑

i=1

aiXt−i + ξt

where the ξt are iid, either N (0, σ2)-distributed, either (δ0 + E(λ))/2 distributed, where δ0 is the
Dirac mass on 0 and E(λ) the exponential distribution with parameter λ > 0. In both cases the
Cramer condition is satisfied and med(ξ0) = 0. In the first case, mean and median are equal
whereas this is no longer true in the second case. Thus the minimizers of the ℓ1− and quadratic
risk differ in the second case.

We use p0 = 3, a1 = 0.2, a2 = 0.3, a3 = 0.2, σ2 ∈ {1, 3}, λ ∈ {1, 1/
√
12}, and n = 500,

Θ =

8⋃

p=1

Θp =

8⋃

p=1

{θ ∈ R
p : ‖θ‖1 ≤ 1}

and

λ ∈ G = {2, 4, 8, ..., 1024}.
In view of our procedure, we compute the simplified penalized criterion

(λ̂, p̂) = arg min
1 ≤ p ≤ 8
λ ∈ G

− 1

λ
log

∫

Θp,ℓ

exp (−λrn(θ)) dπp,ℓ(θ) + λ
K2

n
.

The theoretical value K = 2(log n)3/2 ≈ 9 systematically over-penalizes the large models and
always selects the simplest one (p = 1). Thus, we fix in practice K = 0, 1. To compute the
criteria, the integrand term is approximated using an acceptation-reject algorithm with gaussian
proposal and 10000 iterations. To compare one simulation of θ̂ ∼ πp̂{−λ̂rn} with θ̂AIC obtained by
the classical R procedure we simulate independently (X ′

1, . . . ,X
′
500) distributed as (X1, . . . ,X500)

and we compare

err1(θ̂) =
1

n− 8

500∑

i=9

∣∣∣∣∣∣
X ′

i −
p̂∑

p=1

(θ̂)pX
′
i−p

∣∣∣∣∣∣

with err1(θ̂AIC). As the classical R procedure is based on least square estimators, we also compare
the quadratic prevision error

err2(θ̂) =
1

n− 8

500∑

i=9


X ′

i −
p̂∑

p=1

(θ̂)pX
′
i−p




2

with err2(θ̂AIC). The results of 20 experiments are reported in Table 1.
The results are coherent with the theory: in the gaussian cases, the optimal values of θ for the

ℓ1 and the quadratic risks of prediction are the same. Both procedures estimate efficiently the



12 P. ALQUIER AND O. WINTENBERGER

Table 1. For each experiment, we report the median, mean and standard devia-
tion of the erri(.) quantities on the 20 experiments realized. The best results, for
both err1(.) and err2(.), are highlighted for each serie.

ξt err1(θ̂) err1(θ̂AIC) err2(θ̂) err2(θ̂AIC)

N (0, 1) median 0.790 0.792 0.975 0.975
mean 0.797 0.798 0.985 0.988
s.d. 0.023 0.024 0.054 0.054

N (0, 3) median 2.433 2.432 0.918 0.916
mean 2.409 2.412 0.911 0.912
s.d. 0.078 0.065 0.496 0.412

δ0+E(1)
2 median 0.567 0.592 0.819 0.813

mean 0.580 0.589 0.836 0.813
s.d. 0.047 0.043 0.153 0.150

δ0+E(1/
√
12)

2 median 1.973 2.000 9.525 9.494
mean 1.955 1.997 9.733 9.390
s.d. 0.158 0.162 1.656 1.522

same θ and their prediction risks are the same. In the other cases, the optimal values of θ for the
ℓ1 and the quadratic risks of prediction are not the same. We observe err1(θ̂) < err1(θ̂AIC) and

err2(θ̂) > err2(θ̂AIC). The choice between the two procedures only depends on the prediction risk
considered.

5.2. Neural networks predictors. Similarly than in [22], we present a procedure that approx-
imates the best possible predictor using the best possible number of past values p for the one-step
prediction. Given p, the best possible predictor for the L

1-risk is med(X0|X−1, . . . ,X−p). We
denote R∗

p the corresponding risk. For X = R we use the abstract neural networks predictors
defined in Barron [6] by the relation

fθ = c0 +

ℓ∑

i=1

ci φ(ai · x+ bi), for all x ∈ R
p,

for ai ∈ R
p and ci, bi ∈ R for all 1 ≤ i ≤ ℓ, the sigmoidal function φ(x) = (1 + exp(−x))−1

for all x ∈ R and θ = (c0, a1,1, . . . , a1,p, b1, c1, . . . , aℓ,1, . . . , aℓ,p, bℓ, cℓ) in Bq
cp,ℓ for some cp,ℓ > 0,

q = ℓ(p+ 2) + 1 and ℓ ≤ n. For any p ≥ 1 we denote

rp(x) = med(X0|(X−1, . . . ,X−p) = x) for all x ∈ R
p.

and we assume that there exists a complex-valued function r̃p on R
p satisfying

∀x ∈ R
p rp(x)− rp(0) =

∫

Rp

(eiwx − 1)r̃p(w)dw and

∫

Rp

‖w‖1|r̃p(w)|dw ≤ C ′pc

for some C ′, c > 0. Then

Corollary 5.2. Under (WDP) if for any (p, ℓ) ∈M

(5.2)
q

e
+ 2

√
ℓ‖X‖∞(C ′pc + ℓ log ℓ) ≤ cp,ℓ
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then, for all n ≥ maxM cp,ℓ, with probability at least 1− ε,

R(θ̂) ≤ inf
10(1+log n)2p1+2c≤n

{
R∗

p + C
p1/4+c/2 log3 n

n1/4

}
+ C

log 1
ε√
n
.

If (Xt) satisfies the Markov condition of order p0, then c = 0 and for n sufficiently large

R(θ̂)−R∗
p0 ≤ C

(
log3 n

n1/4
+

log 1
ε√
n

)
.

Compared to the iid case, the loss is log3 n and we do not need to know the order p0 (our procedure
is memory-universal). It is smaller than the loss of the memory-universal procedure given in [22].

5.3. Non-parametric auto-regressive predictors. As in Baraud, Comte and Viennet [5], we
assume that (Xt) is a solution of the equation:

Xt = f1(Xt−1) + · · ·+ fp0(Xt−p0) + ξt, , for all t ∈ Z

where ξt ∼ N (0, σ2), the fi are functions [−1; 1] 7→ R in Hölder class H(si, Li): fi is derivable
⌊si⌋ times and

(5.3) ∃Li > 0,∀(x, x′) ∈ [−1, 1]2, |f (⌊si⌋)i (x)− f
(⌊si⌋)
i (x′)| ≤ Li|x− x′|si−⌊si⌋.

Consider the Fourier basis (φj(.))j≥1 on [−1, 1] composed by φ2k(x) =
√
2 cos(2πkx) and φ2k+1(x) =√

2 sin(2πkx). Assumption 5.3 implies the existence of γi > 0 such that for any m ≥ 0 it holds

min
(α1,...,αm)∈Rm





∫ 1

−1

[
fi(t)−

m∑

j=1

αi,jφj(t)
]2
ds





1
2

≤ γim
−si .

Then natural predictors have the form

X̂n+1 =

p∑

i=1

ℓ∑

j=1

θi,jϕj(Xn−i) =: fθ(Xn, . . . ,Xn−p)

for any p ∈ {1, ..., ⌊n/2⌋} and any ℓ ∈ {1, ...,mp = n}. We restrict the procedure on θp,ℓ in the
compact set

Θp,ℓ =



θ ∈ R

pℓ,

p∑

i=1

ℓ∑

j=1

θ2i,j(2[j/2])
2 ≤ L2





such that any fθ is an L-Lipschitz function. Define also the coefficients θp,ℓ ∈ R
pℓ by the relation

arg min
θ∈Θp,ℓ

π0



∣∣∣∣∣∣
Xn −

p∑

i=1

ℓ∑

j=1

θi,jϕj(Xn−i)

∣∣∣∣∣∣


 .

We obtain as a consequence of Theorem 3.1:

Corollary 5.3. Under (CBS), if for any ℓ ≥ 1 and any p ≥ 1

ℓp

e
+




p0∑

i=1

ℓ∑

j=1

(θp0,ℓ)
2
i,j(2⌊j/2⌋)2




1
2

≤ L,
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then for all n ≥ 8e(1 + L) with probability at least 1− ε

R(θ̂)− µ[|ξ0|] ≤ C

((
log(n)

n

) s
2s+1

+
log 1

ε√
n

)

where s denotes min{s1, ..., sp0}.

The (iid) minimax rate of convergence with respect to s1, ..., sp0 is for the L
1-risk achieved

up to a logarithmic loss. In [5], the (iid) minimax rate of convergence for the quadratic risk is
achieved for the empirical quadratic risk.

Aknowledgments

We would like to thank the anonymous referees for the various corrections and improvements
they suggested.

6. Proofs

To present the proofs in a unified version whether we work under (CBS) or (WDP), we
truncate the observations if we are under (CBS):

Xt = H(ξt, ξt−1, ξt−2, . . .), for all t ∈ Z,

where ξt = (ξt ∧ C) ∨ (−C), under (WDP) we just take Xt = Xt. We denote in the sequel
X = (X t) and r, R the risks associated with X under (CBS) and with X under (WDP). For

shorten the proofs, we denote Kn = (1 + L) log3/2 n and wp,ℓ = 1/(mp⌊n/2⌋) in the sequel. The
proof of our main Theorem lies on estimates on Laplace transforms.

6.1. Preliminary lemmas: estimates on Laplace transforms. The proofs of these lemmas
are given in Section 6.4. The first Lemma is an estimate of the Laplace transforms of the risk of
X; it is a direct corollary of the result in Rio [24].

Lemma 6.1 (Laplace transform of the risk). For any λ > 0 and θ ∈ Θ we have:

π0[exp(λ(R(θ)− rn(θ)))] ≤ exp

(
λ2k2n

n(1− p/n)2

)
,

where kn =
√
2C(1 + L)(a(H) + ã(H)) under (CBS) and kn = (1 + L)(‖X0‖∞ + θ∞,n(1))/

√
2

under (WDP).

Given a measurable space (E, E) we let M1
+(E) denote the set of all probability measures

on (E, E). The Kullback divergence is a pseudo-distance on M1
+(E) defined, for any (π, π′) ∈

[M1
+(E)]2 by the equation

K(π, π′) =





π[log(dπ/dπ′)] if π ≪ π′,

+∞ otherwise.

The proof of the following Lemma is omitted as it can be found in [7] or [8].
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Lemma 6.2 (Legendre transform of the Kullback divergence function). For any π ∈ M1
+(E),

for any measurable function h : E → R such that π[exp(h)] < +∞ we have:

(6.1) π[exp(h)] = exp

(
sup

ρ∈M1
+(E)

(
ρ[h] −K(ρ, π)

))
,

with convention ∞−∞ = −∞. Moreover, as soon as h is upper-bounded on the support of π, the
supremum with respect to ρ in the right-hand side is reached for the Gibbs measure π{h} defined

in (2.5).

Using Lemmas 6.1 and 6.2 we get an upper-bound for the Laplace transform of the mean risk
of Gibbs estimators in all sub-models:

Lemma 6.3. Under the assumptions of Theorem 3.1 we have for any λ > 0 and (p, ℓ) ∈M :

(6.2) π0

[
exp

(
sup

ρ∈M1
+(Θp,ℓ)

{
λρ[R − rn]−K (ρ, πp,ℓ)

}
− λ2k2n
n(1− p/n)2

)]
≤ 1,

where kn has the same expression than in Lemma 6.1.

Following the technique used by Catoni [7], we derive from Lemma 6.3 another upper-bound
on the Laplace transform of the mean risk of any aggregation estimators of all Gibbs estimators:

Lemma 6.4. For any measurable functions ρ̂p,ℓ : X n → M1
+(Θp,ℓ) for (p, ℓ) ∈ M , under the

assumptions of Theorem 3.1 we have:

π0


 ∑

(p,ℓ)∈M

∑

λ∈Gp,ℓ

ρ̂p,ℓ

[
exp

(
λ(R − rn)− log

dρ̂p,ℓ
dπp,ℓ

− λ2k2n
n(1− p/n)2

+ log(wp,ℓ/n)

)]
 ≤ 1

and π0

[
∑

(p,ℓ)∈M

∑

λ∈Gp,ℓ

exp

(
λρ̂p,ℓ[rn −R]−K(ρ̂p,ℓ, πp,ℓ)−

λ2k2n
n(1− p/n)2

+ log(wp,ℓ/n)

)]
≤ 1,

where we remind that kn is defined in Lemma 6.1.

Finally, we use a Lemma that quantify the error in the risk due to the truncation under (CBS):

Lemma 6.5. Under (CBS), for any truncation level C > 0 and any 0 ≤ λ ≤ n/(4(1 + L)), we
have

π0

[
exp(λ sup

θ∈Θ
|rn(θ)− rn(θ)| − λ2(1 + L)Ψ(a(H))

(
a(H)2C

exp(a(H)C)− 1
+ λ

4(1 + L)

n

)]
≤ 1.

6.2. Proof of Theorem 3.1. Remark that (WDP) is satisfied, so R = R and r = r. We

apply the first inequality of Lemma 6.4 to ρ̂λp,ℓ = πp,ℓ{−λrn}. Remembering that (p̂, ℓ̂, λ̂) =

argmin R̂ (p, ℓ, λ), we obtain in particular:

(6.3) π0ρ̂
λ̂
p̂,ℓ̂


exp


λ̂(R− rn)− log



dρ̂λ̂

p̂,ℓ̂

dπp̂,ℓ̂


− λ̂2k2n

n(1− p̂/n)2
+ log

(
wp̂,ℓ̂

n

)


 ≤ 1.
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Remark that π0 ρ̂
λ̂
p̂,ℓ̂

is a well defined probability measure as ρ̂ are defined conditionally on the

observations. Remark also that θ̂ ∼ ρ̂λ̂
p̂,ℓ̂

by definition, then using the classical Chernov bound we

derive that with probability 1− ε it holds:

(6.4) R(θ̂) ≤ rn(θ̂) +
λ̂k2n

n(1− p̂/n)2
+

1

λ̂
log



dρ̂λ̂

p̂,ℓ̂

dπp̂,ℓ̂


+

1

λ̂
log

(
n

wp̂,ℓ̂

)
+

1

λ̂
log

1

ε
.

In order that the term R̂ appears, we notice that (6.4) is equivalent to

R(θ̂) ≤ − 1

λ̂
log

∫

Θ
p̂,ℓ̂

exp
(
−λ̂rn(θ)

)
πp̂,ℓ̂(dθ) +

λ̂k2n
n(1− p̂/n)2

+
1

λ̂
log

(
n

wp̂,ℓ̂

)
+

1

λ̂
log

1

ε

≤ inf
p,ℓ,λ

R̂ (p, ℓ, λ) +
λ̂(k2n −K2

n)

n(1− p̂/n)2
− 1

λ̂
log ε

(remind that Kn = (1+L) log3/2 n). Now, we upper bound the term R̂ (p, ℓ, λ), for any p, ℓ and λ.
Using the second inequality of Lemma 6.4 we obtain for any (p, ℓ) ∈M , λ ∈ G and ρ ∈ M1

+(Θp,ℓ),

(6.5)

∫

Θp,ℓ

rn (θ) ρ(dθ) ≤
∫

Θp,ℓ

R (θ) ρ(dθ) +
λk2n

n(1− p/n)2
+

1

λ
K (ρ, πp,ℓ) +

1

λ
log

n

wp,ℓ
+

1

λ
log

1

ε
.

From (6.5) and using Lemma 6.2 two times we derive that

− 1

λ
log

∫

Θp,ℓ

exp (−λrn(θ))πp,ℓ(dθ) = inf
ρ∈M1

+(Θp,ℓ)

{∫

Θp,ℓ

rn (θ) ρ(dθ) +
1

λ
K (ρ, πp,ℓ)

}

≤ inf
ρ∈M1

+(Θp,ℓ)

{∫

Θp,ℓ

R (θ) ρ(dθ) +
2

λ
K (ρ, πp,ℓ)

}
+

λk2n
n(1− p/n)2

+
1

λ
log

n

εwp,ℓ

= − 2

λ
log

∫

Θp,ℓ

exp

(
−λ
2
R(θ)

)
πp,ℓ(dθ) +

λk2n
n(1− p/n)2

+
1

λ
log

n

εwp,ℓ
.

Finally we obtain:

(6.6) R̂ (p, ℓ, λ) ≤ − 2

λ
log

∫

Θp,ℓ

exp

(
−λ
2
R(θ)

)
πp,ℓ(dθ) +

λ(k2n +K2
n)

n(1− p/n)2
+

1

λ
log

n

εwp,ℓ
.

Under Assumption (2.3), as soon as λ > 2e it holds

− log πp,ℓ

[
exp

(
−λ
2

(
R−R(θp,ℓ)

))]
≤ dp,ℓ log

λ

2

and it easily follows that

− log πp,ℓ

[
exp

(
−λ
2
R

)]
≤ dp,ℓ log

λ

2
+
λ

2
R(θp,ℓ).

We plug this result into the inequality (6.6) to obtain:

(6.7) R̂ (p, ℓ, λ) ≤ R
(
θp,ℓ
)
+

1

λ

(
2dp,ℓ log

λ

2
+ log

n

εwp,ℓ

)
+
λ(k2n +K2

n)

n(1− p/n)2
.

Collecting the inequalities (6.4) and (6.7), we obtain:
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(6.8) R(θ̂) ≤ inf
p,ℓ,λ∈Gp,ℓ

{
R
(
θp,ℓ
)
+

1

λ

(
2dp,ℓ log

λ

2
+ log

n

εwp,ℓ

)
+
λ(k2n +K2

n)

n(1− p/n)2

}

+
λ̂(k2n −K2

n)

n(1− p̂/n)2
− 1

λ̂
log ε.

As for λ ∈ Gp,ℓ, we have, by definition of Gp,ℓ that

λ ∈
[
č

√
dp,ℓn log(dp,ℓn)

Kn
, . . . , ĉ

√
dp,ℓn log(dp,ℓn)

Kn

]
∩ [2e, n]

then it holds

(6.9) R(θ̂) ≤ inf
dp,ℓ≤n

{
R
(
θp,ℓ
)
+

Kn

č
√
dp,ℓn log(dp,ℓn)

(
2dp,ℓ log

n

2
+ log

n

εwp,ℓ

)

+ 4ĉ(k2n +K2
n)

√
dp,ℓ
n

log(ndp,ℓ)

Kn

}
+ 4(k2n −K2

n)+ +
(1 + L) log 1

ε

č
√
n

.

For the sake of simplicity, we use rough estimates (1 ≤ dp,ℓ, 1 ≤ 1/ε, mp ≤ n, . . . ) to obtain

R(θ̂) ≤ inf
dp,ℓ≤n

{
R
(
θp,ℓ
)
+ (1 + L)

(
6

č
+ 8ĉ

(
1 + ‖X0‖∞ + θ∞,n(1)

)2)
√
dp,ℓ
n

log5/2(n)

}

+ 4(k2n −K2
n)+ +

7(1 + L) log n
ε

č
√
n

.

This ends the proof as

k2n −K2
n = (1 + L)

(
(‖X0‖∞ + θ∞,n(1))

2

2
− log3(n)

)
.

6.3. Proof of Theorem 3.2. As we work under (CBS), we have to deal with the error of
approximation of r and R by R. To quantify it, we use Lemma 6.5. First remark that as
R = π0[r] it holds

exp

(
λ sup

θ∈Θ
|R(θ)−R(θ)| − λφ(C, λ)

)
≤ 1,

where

φ(C, λ) = 2(1 + L)Ψ(a(H))

(
a(H)2C

exp(a(H)C)− 1
+ λ

4(1 + L)

n

)

An immediate consequence is that

π0

[
exp

(
λ sup

θ∈Θ
|(rn −R)(θ)− (rn −R)(θ)| − 2λφ(C, λ)

)]
≤ 1.

As R − rn = rn − R + (rn − R) − (rn − R), for any measurable function ρp,ℓ : X n → M1
+(Θp,ℓ)

the Cauchy-Schwartz inequality gives

π0ρ[exp(λ/2(R − rn))] ≤
√
π0ρ[exp(λ(R − rn))]π0ρ

[
exp

(
λ sup

θ∈Θ
|(rn −R)(θ)− (rn −R)(θ)|

)]
.



18 P. ALQUIER AND O. WINTENBERGER

Using this remark and the same reasoning than in the proof of Theorem 3.1 that gives (6.3) from
Lemma 6.4, we get the inequality

π0ρ̂
λ̂
p̂,ℓ̂


exp


 λ̂

2
(R− rn)− 0, 5 log



dρ̂λ̂

p̂,ℓ̂

dπp̂,ℓ̂


− 0, 5

λ̂2k2n
n(1 − p̂/n)2

+ 0, 5 log

(
wp̂,ℓ̂

n

)

−λφ(C, λ))] ≤ 1.

As in the proof of Theorem 3.1, we derive an equivalent of (6.4), i.e. with probability 1 − ε it
holds:

R(θ̂) ≤ rn(θ̂) +
λ̂k2n

n(1− p̂/n)2
+

1

λ̂
log



dρ̂λ̂

p̂,ℓ̂

dπp̂,ℓ̂


+

1

λ̂
log

(
n

wp̂,ℓ̂

)
+ 2φ(C, λ̂) +

2

λ̂
log

1

ε
.

With similar arguments we derive an equivalent of (6.5):

∫

Θp,ℓ

rn (θ) ρ(dθ) ≤
∫

Θp,ℓ

R (θ) ρ(dθ) +
λk2n

n(1− p/n)2
+

1

λ
K (ρ, πp,ℓ) +

1

λ
log

n

wp,ℓ

+ 2φ(C, λ) +
2

λ
log

1

ε

and also

(6.10) R(θ̂) ≤ inf
p,ℓ,λ

{
R
(
θp,ℓ
)
+

1

λ

(
2dp,ℓ log

λ

2
+ log

n

εwp,ℓ

)
+
λ(k2n +K2

n)

n(1− p/n)2
+ 2φ(C, λ)

}

+
λ̂(k2n −K2

n)

n(1− p/n)2
+ 2φ(C, λ̂)− 2

λ̂
log ε.

We still have

− 2

λ̂
log ε ≤ 2(1 + L)

č
√
n

log
1

ε

so we now have to upper bound 2φ(C, λ̂). As λ̂ ≤ n/(4(1 + L)) by definition of the Gp,ℓ, fixing
C = a(H)−1 log n we obtain:

φ(C, λ̂) ≤ 4a(H)(1 + L)Ψ(a(H))[2λ̂(1 + L) + a(H) log(n)]

n
.

As λ̂ ≤ ĉdp̂,ℓ̂ log(dp̂,ℓ̂n)/(1 + L) by definition of Gp,ℓ, we obtain

λ̂(k2n −K2
n)

n(1− p/n)2
+ 2φ(C, λ̂) ≤ 8a(H)2(1 + L)Ψ(a(H)) log(n)

n

+

√
dp̂,ℓ̂
n

log(dp̂,ℓ̂n)4(1 + L)ĉ
(
4a(H)Ψ(a(H)) + 2 log2(n)(1 + ã(H)/a(H))2 − log3(n)

)
+
.

We now plug this result into (6.10) to end the proof.
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6.4. Proofs of Lemmas 6.1, 6.3, 6.4, 6.5 and of Proposition 2.1.

Proof of Lemma 6.1. The proof of this Lemma is based on the following result of Rio [24] on X :

Theorem 6.6. Let Y = (Yt)t∈Z be a bounded stationary time series bounded distributed as π0 on

XZ. Let h be a 1-Lipschitz function of X n → R, i.e. such that:

(6.11) ∀(x1, y1, ..., xn, yn) ∈ X 2n, |h(x1, ..., xn)− h(y1, ..., yn)| ≤
n∑

i=1

‖xi − yi‖ .

Then for any t ≥ 0 we have:

π0 [exp(t(π0[h(X1, ...,Xn)]− h(X1, ...,Xn)))] ≤ exp(t2n(‖X0‖∞ + θ∞,n(1))
2/2).

Proof of Theorem 6.6. This version of Theorem 1 of [24] comes rewriting the inequality (3) in
[24] as, for any 1-Lipschitz function g:

Γ(g) = ‖E(g(Xℓ+1, · · · ,Xn)|Fℓ)− E(g(Xℓ+1, · · · ,Xn))‖∞ ≤ θ∞,n−ℓ(1).

The result is proved as sup1≤r≤n θ∞,r(1) ≤ θ∞,n(1). �

We now apply the result of Theorem 6.6 on Y = X to obtain the result of Lemma 6.1. Let us
fix λ > 0, (p, ℓ) ∈M , θ ∈ Θp,ℓ and t = (1 + L)λ/ [n− p (θ)] and the function h defined by:

h(x1, ..., xn) =
1

1 + L

n∑

i=p(θ)+1

∥∥xi − fθ(xi−1, ..., xi−p(θ))
∥∥ .

We easily check that h satisfies condition (6.11):
∣∣∣h(x1, ..., xn)− h(y1, ..., yn)

∣∣∣

≤ 1

1 + L

n∑

i=p(θ)+1

∣∣∣∣∣
∥∥xi − fθ(xi−1, ..., xi−p(θ))

∥∥−
∥∥yi − fθ(yi−1, ..., yi−p(θ))

∥∥
∣∣∣∣∣

≤ 1

1 + L

n∑

i=p(θ)+1

∥∥xi − yi − fθ(xi−1, ..., xi−p(θ)) + fθ(yi−1, ..., yi−p(θ))
∥∥

≤ 1

1 + L

n∑

i=p(θ)+1

‖xi − yi‖+
1

1 + L

n∑

i=p(θ)+1

∥∥fθ(xi−1, ..., xi−p(θ))− fθ(yi−1, ..., yi−p(θ))
∥∥

≤ 1

1 + L

n∑

i=p(θ)+1

‖xi − yi‖+
1

1 + L

n∑

i=p(θ)+1

p(θ)∑

j=1

aj(θ) ‖xi−j − yi−j‖

≤ 1

1 + L

n∑

i=p(θ)+1

‖xi − yi‖+
L

1 + L

n∑

i=1

‖xi − yi‖

≤
n∑

i=1

‖xi − yi‖ .

The direct application of Theorem 6.6 ends the proof under (WDP). Under (CBS) kn follows
from the estimates of ‖X0‖∞ and θ∞,n(1) obtained in Proposition 4.1. �
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Proof of Lemma 6.3. Integrate the inequality in Lemma 6.1 with respect πp,ℓ on Θp,ℓ (then p(θ) =
p) for any (p, ℓ) ∈M in order to obtain:

πp,ℓ[π0[exp(λ(R − rn))]] ≤ exp

(
λ2k2n

n(1− p/n)2

)
.

Fubini’s Theorem implies that

π0

[
πp,ℓ

[
exp

(
λ
(
R− rn

)
− λ2k2n
n(1− p/n)2

)]]
≤ 1.

Applying Lemma 6.2 for π = πp,ℓ and h = λ(R− rn)−λ2k2n/(n(1− p/n)2) on M1
+(Θp,ℓ) leads to

the inequality:

π0

[
exp

(
sup

ρ∈M1
+(Θp,ℓ)

{
λρ[R− rn]−K(ρ, πp,ℓ)

}
− λ2k2n
n(1− p/n)2

)]
≤ 1.

This ends the proof. �

Proof of Lemma 6.4. First, let us choose λ ∈ Λ. Let hλp,ℓ denotes, for any (p, ℓ) ∈M :

hλp,ℓ = sup
ρp,ℓ∈M1

+(Θp,ℓ)

{
λρp,ℓ[R− rn]−K (ρp,ℓ, πp,ℓ)

}
− λ2k2n
n(1− p/n)2

.

From Lemma 6.3 applied on the different M1
+(Θp,ℓ) we have, for any (p, ℓ) ∈M :

π0


 ∑

(p,ℓ)∈M
wp,ℓ exp

(
hλp,ℓ

)

 ≤ 1.

Now we apply Inequality (6.1) in Lemma 6.2 for π =
∑

(p,ℓ)∈M wp,ℓδ(p,ℓ) and h =
∑

(p,ℓ)∈M hλp,ℓ11Θp,ℓ

and we obtain

π0


exp


 sup∑

(p,ℓ)∈M w′

p,ℓ
=1





∑

(p,ℓ)∈M
w′
p,ℓhpℓ −

∑

(p,ℓ)∈M
w′
p,ℓ log(w

′
p,ℓ/wp,ℓ)








 ≤ 1

and, by Jensen’s inequality, and replacing hλp,ℓ by its definition,

(6.12) π0


 sup
∑

(p,ℓ)∈M w′

p,ℓ
=1





∑

(p,ℓ)∈M
w′
p,ℓ sup

ρp,ℓ∈M1
+(Θp,ℓ)

exp

(
λρp,ℓ

[
λ(R− rn)− log

dρp,ℓ
dπp,ℓ

]

− λ2k2n
n(1− p/n)2

+ log
wp,ℓ

w′
p,ℓ

)}]
≤ 1.

By Jensen again, we obtain a bound for the first term in the sum bounded in Lemma 6.4:

π0


 sup
∑

(p,ℓ)∈M w′

p,ℓ
=1





∑

(p,ℓ)∈M
w′
p,ℓ sup

ρp,ℓ∈M1
+(Θp,ℓ)

ρp,ℓ

[
exp

(
λ(R− rn)− log

dρp,ℓ
dπp,ℓ

− λ2k2n
n(1− p/n)2

+ log
wp,ℓ

w′
p,ℓ

)]}]
≤ 1.



MODEL SELECTION FOR WEAKLY DEPENDENT TIME SERIES FORECASTING 21

Finally, we sum this inequality over all λ ∈ G to bound the first expectation.
The second expectation is bounded by choosing specific weights w′

p,ℓ in the supremum in

inequality (6.12) such that w′
p,ℓ = 1 for (p, ℓ) = argmaxM{hp,ℓ}:

π0

[
sup

(p, ℓ) ∈ M

ρp,ℓ ∈ M1
+(Θp,ℓ)

{
exp

(
λρp,ℓ[R− rn]−K(ρp,ℓ, πp,ℓ)−

λ2k2n
n(1− p/n)2

+ logwp,ℓ

)}]
≤ 1.

Again a summation over all λ ∈ G leads to the result. This ends the proof. �

Proof of Lemma 6.5. From the proof of the Lemma 6.1, we already know that |rn(θ)− rn(θ)| ≤
(1 + L)/(n − p)

∑n
i=1 ‖Xi − Xi‖. This bound holds uniformly on Θ. As p ≤ n/2 it remains to

estimate π0[exp(λ2(1 + L)/n
∑n

i=1 ‖Xi − X i‖]). From the assumption (4.3), the stationarity of
X and as the ξis are iid we have:

π0

[
exp

(
λ2(1 + L)/n

n∑

i=1

‖Xi −Xi‖
])

≤ π0

[
exp

(
λ2(1 + L)/n

n∑

i=1

∞∑

j=0

aj(H)‖ξi−j − ξi−j‖
)]

≤ π0

[
exp

(
λ2(1 + L)/n

∞∑

j=0

n∑

i=1∨(n−j)

an−i+j(H)‖ξn−j − ξn−j‖
)]

≤
∞∏

j=0

π0

[
exp(λ2(1 + L)/n

n∑

i=1∨(n−j)

an−i+j(H)‖ξ0‖11‖ξ0‖>C)
]
.

Denoting cj = λ2(1 + L)
∑n

i=1∨(n−j) an−i+j(H)/n, we develop for all j ≥ 0

π0

[
exp(cj‖ξ0‖11‖ξ0‖>C)

]
= 1 + cjπ0

[
‖ξ0‖11‖ξ0‖>C

]
+
∑

k≥2

ckjπ0

[
‖ξ0‖k11‖ξ0‖>C

]

k!
.

There exists δ > 0 such that the complex function Ψ(z) = π0[exp(z‖ξ0‖)] is holomorphic on the
open disk D(0, a(H) + δ). From the Cauchy estimates we obtain:

π0

[
‖ξ0‖k11‖ξ0‖>C

]
≤ π0

[
‖ξ0‖k

]
≤ Ψ(k)(0) ≤

k!maxc∈D(0,a(H)) Ψ(λ)

a(H)k
≤ k!Ψ(a(H))

a(H)k
∀k ≥ 2

As λ < n/(4(1 + L)) then 2cj ≤ a(H) for all j ≥ 0 and then we derive that for all j ≥ 0:

π0

[
exp(cj‖ξ0‖11‖ξ0‖>C)

]
≤ 1 + cjπ0

[
‖ξ0‖11‖ξ0‖>C

]
+Ψ(a(H))

∑

k≥2

(cj/a(H))k

≤ 1 + cjπ0

[
‖ξ0‖11‖ξ0‖>C

]
+

Ψ(a(H))c2j
a(H)(a(H) − cj)

≤ 1 + cjπ0

[
‖ξ0‖11‖ξ0‖>C

]
+ c2j

2Ψ(a(H))

a(H)2
.

As φ(x) = (exp(x)−1)/x is an increasing function for x > 0, then 11‖ξ0‖>C ≤ φ(a(H)‖ξ0‖)/φ(a(H)C)
and the Markov formula gives for all j ≥ 0

π0

[
exp(cj‖ξ0‖11‖ξ0‖>C)

]
≤ 1 + cj

Ψ(a(H))a(H)C

exp(a(H)C)− 1
+ c2j

2Ψ(a(H))

a(H)2
.
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Collecting those bounds we obtain

π0

[
exp

(
λ sup

θ∈Θ
|rn(θ)− rn(θ)|

)]
≤

∞∏

j=0

(
1 + cj

Ψ(a(H))a(H)C

exp(a(H)C) − 1
+ c2j

2Ψ(a(H))

a(H)2

)
.

Using that log(1 + x) ≤ x for all x > 0, we finally obtain:

log

(
π0

[
exp

(
λ sup

θ∈Θ
|rn(θ)− rn(θ)|

)])
≤

∞∑

j=0

cj
Ψ(a(H))a(H)C

exp(a(H)C)− 1
+

∞∑

j=0

c2j
2Ψ(a(H))

a(H)2
.

The desired result follows from the estimates
∑∞

j=0 cj ≤ λa(H)2(1+L) and
∑∞

j=0 c
2
j ≤ λ2a(H)24(1+

L)2/n. �

Now give the proof of the useful Proposition 2.1.

Proof of Proposition 2.1. Let us introduce a parameter ζ > 0 then we have

− 1

γ
log πp,ℓ

[
exp

(
−γ
(
R−R(θp,ℓ)

))]
− ζ = −1

γ
log πp,ℓ

[
exp

(
−γ
(
R−R(θp,ℓ)− ζ

))]

≤ −1

γ
log πp,ℓ

(
R(θ)−R(θp,ℓ) ≤ ζ

)

Then we directly derive from the definition of dp,ℓ that

dp,ℓ ≤ sup
γ>e

infζ>0{ζγ − log πp,ℓ
(
R(θ)−R(θp,ℓ) ≤ ζ

)
}

log γ
.

So

ζγ − q log
ζ

Ccp,ℓ
≤ q ∧ γC(cp,ℓ − ‖θp,ℓ‖) + q log

(
Ccp,ℓγ

q
∨ cp,ℓ

cp,ℓ − ‖θp,ℓ‖

)
.

Now if q ≤ γC(cp,ℓ −‖θp,ℓ‖) then we get the estimate q(1 + log(Ccp,ℓγ/q))/ log γ which decreases
with γ. We then get the desired bound when the supremum is established for γ = e∨ q/(C(cp,ℓ−
‖θp,ℓ‖)). If q ≥ γC(cp,ℓ − ‖θp,ℓ‖) then we get the estimate (γC(cp,ℓ − ‖θp,ℓ‖) + q log(cp,ℓ/(cp,ℓ −
‖θp,ℓ‖)))/ log γ which increases with γ. We have to consider γ as large as possible, i.e. when

q = γC(cp,ℓ − ‖θp,ℓ‖) and we are going back to the case treated above. �

6.5. Proofs of the results given in Section 4. After proving Proposition 4.1, we give Lemma
6.7 that introduces a coupling argument used to estimate the coefficients θ∞,n(1) in Propositions
4.2 and 4.3.

Proof of Proposition 4.1. The theorem 3.1 of Doukhan and Wintenberger [14] gives the existence
of a unique stationary solution and the existence of an H such that Xt = H(ξt, ξt−1, ξt−2, . . .).
We prove that conditions (3.1) and (3.2) are automatically satisfied. Let (xi) and (yi) be two
sequences such that there exists j ∈ N with xi = yi for all i 6= j. Then H(x) = u∞0 where
u∞0 = limk→∞ uk0 for (uk−i)i∈N defined recursively by

uk−i = F (uk−i−1, u
k
−i−2, . . . , u

k
1−k, u

k
−k, 0, . . . ;xi) ∀0 ≤ i ≤ k.
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Similarly, we denote H(y) = v∞0 such that ‖H(x) −H(y)‖ = ‖u∞0 − v∞0 ‖. For j = 0, using (4.3)
‖uk0 − vk0‖ ≤ u‖xj − yj‖ for all k. For j ≥ 1, as xi = yi for i > j, for k sufficiently large it holds

(with the convention
∑−k

ℓ=1 = 0 for k ≥ 0):

‖uk0 − vk0‖ ≤
j∑

ℓ1=1

aℓ1(F )

j−ℓ1∑

ℓ2=1

aℓ2(F ) · · ·
j−ℓ1−···−ℓj−1∑

ℓj=1

aℓj(F )‖uk−j − vk−j‖.

By definition ‖uk−j−vk−j ≤ u‖xj−yj‖ and we obtain ‖uk0−vk0‖ ≤ ua(F )j−1‖xj−yj‖ for sufficiently

large k. As the estimate does not depends on k, we derive that (3.1) holds with aj(H) = ua(F )j−1

and that (3.2) follows from the condition (4.4). �

Now we state a useful coupling Lemma; (X∗
t ) is said to be a coupling version of (Xt) if it is

similarly distributed and such that (X∗
t )t>0 is independent of S0 = σ(Xt, t ≤ 0). From a version

of the Kantorovitch-Rubinstein duality, see Dedecker and Prieur [12] for more details, we obtain
an estimate of θ∞,n(1):

Lemma 6.7. For any version (X∗
t ) we have

θ∞,n(1) ≤
n∑

i=1

‖E(‖Xi −X∗
i ‖/S0)‖∞.

For the sake of completeness, we give the proof of this already known result.

Proof of Lemma 6.7. As we equipped X n with the norm ‖(x1, . . . , xn)‖ =
∑n

i=1 ‖xi‖ we immedi-
ately get the inequality

τ∞,n(1) ≤ ‖E(‖(X1, . . . ,Xn)− (X∗
1 , . . . ,X

∗
n)‖|S0)‖∞ ≤

u∑

i=1

‖E(‖Xi −X∗
i ‖|S0)‖∞. �

The proof of Propositions 4.2 and 4.3 are simple applications of this Lemma:

Proof of Proposition 4.2. Let us consider the coupling version of the causal Bernoulli shift (Xt)
given by

X∗
t = H(ξt, ξt−1, . . . , ξ1, ξ

∗
0 , ξ

∗
−1, . . .), ∀t ∈ Z

where (ξ∗t ) is similarly distributed than (ξt) and the two processes are independent. Then from
Lemma 6.7 and condition (3.1) we obtain:

θ∞,n(1) ≤
n∑

i=1

∥∥∥
∞∑

j=i

aj(H)E(‖ξi−j − ξ∗i−j‖/S0)
∥∥∥
∞

≤
∞∑

j=i

jaj(H)‖E(‖ξi−j − ξ∗i−j‖/S0)
∥∥∥
∞

and the desired result follows. �

Proof of Proposition 4.3. Here we will consider the maximal coupling scheme of Goldstein [15]:
there exists a version (X∗

t ) such that

‖P(Xt 6= X∗
t for some t ≥ r/S0)‖∞ = sup

(A,B)∈S0×Fr

|P(A/B)− P (B)| = ϕ(r).

As ‖Y − Z‖ ≤ 2‖X0‖∞11Y 6=Z for any variables Y,Z bounded by ‖X0‖∞, we have:

‖E(‖Xi −X∗
i ‖/S0)‖∞ ≤ 2‖X0‖∞‖E(11Xi 6=X∗

i
/S0)‖∞ ≤ 2‖X0‖∞‖P(Xi 6= X∗

i /S0)‖∞.
As P(Xi 6= X∗

i /S0) ≤ P(Xt 6= X∗
t for some t ≥ r/S0), we conclude using Lemma 6.7. �
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6.6. Proofs of the results given in Section 5. We proof the Corollaries 5.2 and 5.3 of Theorem
3.1 applied in the context of Neural Networks and projection in the Fourier basis predictors.

Proof of Corollary 5.2. Let us check that all the predictors are L-Lipschitz functions of the ob-
servations. For any x, y ∈ R

p, as the function φ is 1-Lipschitz, we have

|fθ(x)− fθ(y)| ≤
∣∣∣∣∣

ℓ∑

k=1

ck(φ(ak · x+ bk)− φ(ak · y + bk))

∣∣∣∣∣

≤
ℓ∑

k=1

|ck||ak · (x− y)| ≤
ℓ∑

k=1

|ck|‖ak‖1‖x− y‖∞ ≤ ‖‖ak‖1‖∞
ℓ∑

k=1

|ck|
p∑

i=1

|xi − yi|.

For θ ∈ Bq
cp,ℓ then L = (cp,ℓ∨1)3 is convenient. Next, using Jensen to estimate L1-risk by L2-risk,

we obtain from the theorem 1 of Barron [6] the existence of C > 0 such that

π0

[∣∣∣med(X0 |X−1, . . . ,X−p)− fθp,ℓ(X−1, . . . ,X−p)
∣∣∣
]
≤ C

pc‖X0‖∞√
ℓ

where θp,ℓ belongs to the compact set

B′
p,ℓ =

{
θ ∈ R

ℓ(p+2)+1;

ℓ∑

i=1

|ci| ≤ C ′cp; max
1≤i≤ℓ

‖ai‖ ≤
√
ℓ log ℓ; max

1≤i≤ℓ
|bi| ≤ ‖X0‖∞

√
ℓ log ℓ

}
.

Remark that under the assumptions of Corollary 5.2 we have cp,ℓ − ‖θp,ℓ‖ ≥ q/e. It implies by
Proposition 2.1 that dp,ℓ ≤ 3q(1 + log(cp,ℓ)) when cp,ℓ ≥ 1. From Theorem 3.1 there exists C > 0
satisfying

R(θ̂)] ≤ inf
dp,ℓ≤n

{
R∗

p + C

(
pc√
ℓ
+ log3(n)

√
pℓ

n

)}
+ C

log 1
ε√
n
.

The result follows from considering ℓ =
√
npc−1/2. �

Proof of Proposition 5.3. Let us apply Theorem 3.2: there exists C > 0 such that

R(θ̂) ≤ inf
p,ℓ:dp,ℓ≤n

{
min
θ∈Θp,ℓ

R(θ) + C

√
dp,ℓ
n

log5/2(n)

}
+ C

log 1
ε√
n

≤ inf
ℓ:dp0,ℓ≤n

{
min

θ∈Θp0,ℓ

R(θ) + C

√
dp0,ℓ
n

log5/2(n)

}
+ C

log 1
ε√
n
.

Remarking that

R
(
θp0,ℓ

)
= inf

θ∈Θ
π0

[∣∣∣Xp+1 − fθp0,ℓ
(Xp, ...,X1)

∣∣∣
]

≤ π0

[∣∣∣∣∣Xp+1 −
p0∑

i=1

fi(Xp−i)

∣∣∣∣∣

)
+ inf

θ∈Θ
π0



∣∣∣∣∣

p0∑

i=1

fi(Xp−i)−
p0∑

i=1

n∑

j=1

θi,jϕj(Xp−i)

∣∣∣∣∣




≤ µ[|ξ0|] + inf
θ∈Θ

p0∑

i=1

π0



∣∣∣∣∣fi(X1)−

n∑

j=1

θi,jϕj(X1)

∣∣∣∣∣


 .
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Note also that under our hypothesis X1 has a density upper bounded by 1/
√
2πσ2. It then holds

R
(
θp0,ℓ

)
≤ µ[|ξ0|] +

1√
2πσ2

inf
θ∈Θ

p0∑

i=1

∫ ∣∣∣∣fi(x)−
n∑

j=1

θi,jϕj(x)

∣∣∣∣dx

≤ µ[|ξ0|] +
1√
2πσ2

inf
θ∈Θ

p0∑

i=1



∫ [

fi(x)−
n∑

j=1

θi,jϕj(x)

]2
dx




1
2

≤ µ[|ξ0|] +
1√
2πσ2

p0∑

i=1

γiℓ
−si ≤ µ[|ξ0|] +

∑p0
i=1 γi√
2πσ2

ℓ−s.

Then we have

(6.13) π0[R(θ̂)] ≤ µ[|ξ0|] + inf
ℓ

{
ℓ−s

∑p0
i=1 γi√
2πσ2

+ C

√
dp0,ℓ
n

log5/2(n)

}
+ C

log 1
ε√
n
.

The estimate of dp0,ℓ from Propostition 2.1 is plugged into (6.13) to obtain for some C > 0

π0[R(θ̂)] ≤ µ[|ξ0|] + inf
ℓ

{
ℓ−s

∑p0
i=1 γi√
2πσ2

+ C

√
p0ℓ

n
log5/2(n)

}
+ C

log 1
ε√
n
.

In particular, fixing ℓ proportional to n
1

2s+1 leads to the result. �

References

[1] Akaike, H. Information theory and an extension of the maximum likelihood principle. Second International
Symposium on Information Theory (Tsahkadsor, 1971) (1973), 267–281.

[2] Alquier, P. PAC-bayesian bounds for randomized empirical risk minimizers. Mathematical Methods in Sta-
tistics 17, 4 (2008), 279–304.

[3] Andrews, D. W. K. Nonstrong mixing autoregressive processes. J. Appl. Probab. 21, 4 (1984), 930–934.
[4] Audibert, J.-Y. Aggregated estimators and empirical complexity for least square regression. Annales de
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