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MODEL SELECTION AND AGGREGATION FOR WEAKLY DEPENDENT

TIME SERIES FORECASTING

PIERRE ALQUIER(1) AND OLIVIER WINTENBERGER(2)

Abstract. Observing a stationary time series, we propose in this pape new procedures in two
steps for the prediction of the next value of the time series. Following machine learning theory
paradigm, the first step consists in determining randomized estimators, or ”experts”, in (possi-
bly numerous) different predictive models. In the second step estimators are obtained by model
selection or randomization associated with exponential weights of these experts. We prove Or-
acle inequalities for both estimators and provide some applications for linear, artificial Neural
Networks and additive non-parametric predictors.

1. Introduction

When observing a time series, one crucial issue is to predict first future value with the observed
past values. Since the seminal works of Akaike, see for example [1], different model selection pro-
cedures have been studied for inferring how many observed past values are needed for predicting
the next value. Efficiency of different penalized empirical risk minimizers such that AIC, BIC,
Mallows, APE’s predictors have been proved when the observations satisfy a linear auto-regressive
model, see for instance Ing [17]. The main issue in this context is to determine the order of an
efficient predictive linear autoregressive model and then to estimate its coefficients. There the
model fitted by the observations is assumed to belong into the same class than the predictive
models.

In the same time, model selection procedure have been hugely improved using learning theory
in the independent and identically distributed (iid for short) case, see Vapnik [27] and Massart
[20] among others. Results such that Oracle inequalities have been settled in very extended con-
text. Even if the true model does not belong into one of the models proposed by the experts
recent procedures ensure that the risk is as small as possible. However, few works have been done
for dependent observations, principally in two direction: penalized lest square and randomization
techniques. Baraud et al. [5] proved Oracle inequalities with respect to the quadratic loss and
under β-mixing condition. Their penalized empirical risk minimizers select an efficient predictive
model when the number of useful past values is known. Recently, the theory of individual se-
quences leads also to Oracle inequalities for risk of prediction. Randomization with exponential
weights of experts advices predicts the observations as if it was a deterministic sequence. We refer
the reader to Lugosi and Cesa-Bianchi [19] for more details. Good predictors are then obtained
given the expert devices. But the form of the expert devices given the observations is not given
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and then the form of the predictors is not tractable.

In this paper, we give Oracle inequalities for the L
1-risk of prediction of some stationary time

series. We introduce two new procedures that find an efficient predictive model associated with
an efficient number of past values. To prove this we use the PAC-Bayesian approach introduced
by McAllester [21]. This general theoretical framework has proved to efficiently give Oracle in-
equalities in many iid frameworks, see Catoni [7, 8, 9], Audibert [4] and Alquier [2]. There exist
procedures and Oracle inequalities in the dependent cases, see Baraud et al. [5] and Modha
and Masry [23]. In Modha and Masry [23], their procedure use the α-mixing coefficients of the
observations. To our knowledge, there is no efficient estimation of this coefficients and their pro-
cedure is not implementable in practice. In Baraud et al. [5], the Oracle inequality holds only if
the β-mixing coefficients and the prediction procedure satisfy together intricate conditions. Here
again, as β-mixing coefficients are not estimable there is no way to check those conditions. In this
paper, the prediction procedures are for the first time completely free of the dependence proper-
ties of the observations. It represents an important progress for learning theory applications with
dependent observations.

Let us assume that we observe (X1, . . . ,Xn) from a stationary time series X = (Xt)t∈Z dis-
tributed as π0 on XZ where X is an Hilbert space equipped with its usual norm ‖ · ‖. For each θ

in the set of parameter Θ we associate a p(θ)-autoregressive function fθ from X p(θ) to X that rep-
resents a predictive model. Then each θ ∈ Θ is associated with a predictor fθ(Xn−1, ...,Xn−p(θ)).
The risk of prediction is the absolute loss R(θ) defined as:

R(θ) = π0

[∥∥fθ(Xp(θ), ...,X1) − Xp(θ)+1

∥∥] ,

where here and all along the paper π[h] =
∫

hdπ for any measure π and any integrable function h.
The choice of this risk instead of the classic quadratic loss is due to its Lipschitzian property, very
well suited with the dependence context here. The main objective of this paper is to determine

two different procedures that give estimators θ̂n with associated risk R(θ̂n) satisfying an Oracle

inequality - in other words, R(θ̂n) is not far from infΘ R.

As we have to deal with different models and different delays in the same time, it is convenient
to split the set Θ in subsets of the form:

Θ =

⌊n
2 ⌋⋃

p=1

Θp with Θp =

mp⋃

ℓ=1

Θp,ℓ,

where mp > 0 has to be fixed carefully. The set Θp consists in different predictive models that
need the same number of past values. To fix the idea, let us give the simple example additive non
parametric predictive models when X = R, see Subsection 4.3 for more details. Let us define

X̂n+1 =

p̂∑

i=0

f̂i(Xn−i).
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Then we fix θ̂n = ((f̂i)0≤i≤p̂). We split

Θ =

⌊n
2 ⌋⋃

p=1

Θp =

⌊n
2 ⌋⋃

p=1

{(fi)0≤i≤p ∈ Ap}

where C is a compact subset of R and Ap is a compact subset of Fp+1 for F the set of integrable
functions from R to R. Under suitable conditions on F , there exists an ordered functional basis
(ϕi)i≥1. Then the index ℓ corresponds to the number of the firsts functionals in the basis that

we consider. Then fi =
∑ℓ

j=1 ai,jϕj for each i and Θp,ℓ = {(ai,j)0≤i≤p,1≤j≤ℓ}.

The common first step of our two prediction procedures consists on proposing a randomized

estimator θ̃p,ℓ for each subset Θp,ℓ. Then we propose two different estimators θ̂ and θ̃ of a
parameter θ associated with an efficient predictive model. The first procedure is a model selection
that provides (p̂, ℓ̂). It leads to the natural choice θ̂ = θ̃bp,bℓ. Our model selection criterion for each

indices (p, ℓ) is close to the following penalized empirical risk criterion

rn(θ̂p,ℓ) +

√
Kndp,ℓ

n − p
ln(dp,ℓn),

where rn(θ) is the empirical risk, dp,ℓ is a measure of the complexity of Θp,ℓ, highly related to its
dimension, and Kn > 0 is independent of p, ℓ. The second procedure is a second randomization
step on the indexes (p, ℓ) that gives (p̃, ℓ̃) and then leads to the corresponding estimator θ̃ = θ̃p̃,ℓ̃.

The exponential weights associated to each indices (p, ℓ) have the same form than the ones used
for randomizing expert devices in the theory of individual sequence. They deeply depends on a
parameter Kn > 0.

The value of Kn has to be fixed arbitrarily and it has lot of consequences on the sharpness of
the Oracle inequalities we obtained. For bounded observations, the best is to fix it larger than
some constant depending on the (non-estimable) dependence properties of the observations. If we
fail, remark that a less good Oracle inequality still holds, see the results in Section 3. For possibly
unbounded observations, we can fix it proportional to ln(n) independently on the observations.
Such choice leads to an additional logarithmic term in the rate of convergence. But remark that
even for Kn fixed as a constant we over-penalized the expected risk there is always additional
logarithmic terms in the rates of the Oracle inequalities, see below. So we can fix as a rule of
thumb Kn = C ln(n) for some known C and our procedure is free of the dependence properties
of the observations, see Subsection 3.3 for more details.

Let us resume the main results of this paper for Kn fixed to ln(n). For bounded observations, we
prove a Probably Approximately Correct Oracle inequality: for n large enough, with probability
at least 1 − ε

R(θ̂n) ≤ min
p,ℓ

{

inf
Θp,ℓ

R(θ) + C

√
dp,ℓ

n − p
ln(dp,ℓ/ε) ln2(n)

}

,
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where C is a constant. For possibly unbounded observations, we obtain Oracle inequalities in
expectation. More precisely, we obtain that for n sufficiently large

π0[R(θ̂n)] ≤ min
p,ℓ

{
inf
Θp,ℓ

R(θ) + C

√
dp,ℓ

n − p
ln(dp,ℓ) ln2(n)

}
,

where C is constant. This result can be compared with those of Baraud, Comte and Viennet [5]
and Modha and Masry [23]. They achieve respectively Oracles inequalities of the form

π0[(R
′(θ̂p,n)] ≤ (1 +

1

C
)2 min

ℓ

{
inf
Θp,ℓ

R′(θ) + C3 dp,ℓ

n − p

}
for each p,

π0[R
′(θ̂n)] ≤ (1 +

1

C
)min

p,ℓ

{
inf
Θp,ℓ

R′(θ) + C

(
Kndp,ℓ

n − p

)c

ln(dp,ℓ)

}

where R′ is the excess quadratic risk, 0 < c < 1 is a constant depending on the dependence struc-
ture of the observations and C is fixed by the statistician. Our Oracle inequalities are sharper
than the ones of [23]. Baraud et al. [5] achieve the opitmal rates and we fail, but with a loss in
the constant. Moreover, as already noticed, those authors are not fully adaptive in p.

To obtain such Oracle inequalities, sharp exponential inequalities are used in the dependent
setting. For this, weakly dependence properties on the observations are assumed. This dependent
setting might be more general than the mixing one, see the monograph of Dedecker et al. [10].
Here we use in the bounded cases the θ∞-coefficients (also called γ-mixing coefficients) introduced
in Rio [24] to derive a sharp Hoeffding inequality in the dependent framework. These coefficients
generalize the uniform mixing ones. In the unbounded cases we use generic models called chains
with infinite memory introduced by Doukhan and Wintenberger [14] that includes many classical
econometric models such that ARMA, GARCH and LARCH. Here we work under restrictions
of additive forms that unfortunately exclude unbounded volatility models, see Subsection 2.4 for
more details. Our dependent framework is not comparable with the β- or α-mixing one as it deals
with some dynamical systems that are not mixing, see Andrews [3] and Dedecker and Prieur [11]
or details on these counter-examples.

The paper is organized as follows. First some notation, the framework and the predictors
are introduced in Section 2.Then the Oracles inequalities and some comments follow in Section
3. The main results of this Section are applied for Linear predictors, artificial Neural Networks
predictors and Non-parametric Auto-Regressive predictors in Section 4. Finally the proofs are
collected in Section 5.

2. Preliminaries

Let X = (Xt)t∈Z be a stationary process taking values in a measurable Hilbert space (X ,B)
(with norm ‖.‖ and scalar product 〈., .〉). Assume that X is distributed as π0.

2.1. The predictive models. For any p ∈ {1, ..., n − 1} and any ℓ ∈ {1, ...,mp} with mp > 0,
any parameter θ of the set Θp,ℓ, compact subset of R

q for some q < ∞, is identified with a function
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fθ : X p → X . Let us assume that there exists a sequence (aj(θ))j∈{1,...,p} satisfying the relation

(2.1)

p∑

j=1

aj(θ) ≤ L.

such that for any (x1, ..., xp), (y1, ..., yp) ∈ X p we have:

(2.2)
∣∣∣fθ(x1, ..., xp) − fθ(y1, ..., yp)

∣∣∣ ≤
p∑

j=1

aj(θ) ‖xj − yj‖ .

Moreover, we assume that the Θp are disjoint sets for all p ∈ {1, ..., ⌊n/2⌋} so that any θ ∈ Θ
belongs to one and only one Θp. We write p(θ) the corresponding value of p. Let us define the
set of indexes:

M =

⌊n
2 ⌋⋃

p=0

{p} × {1, ...,mp}.

Finally, T denotes a σ-algebra on Θ, and for any (p, ℓ) ∈ M , Tp,ℓ denote the restriction of T on
Θp,ℓ.

2.2. The risk. For a chosen θ ∈ Θ from the observations, we check the ability of X̂θ
N =

fθ(XN−1, ...,XN−p(θ)) to predict XN for any N ∈ Z. The error of prediction R(θ) is the expec-

tation of the absolute loss of XN by X̂θ
N which do not depend on N by stationarity conditional

on the value of θ:

R(θ) = π0

[∥∥∥X1 − X̂θ
1

∥∥∥
]
.

The objective is to determine θ̂n such that its risk is close to R(θ) where θ ∈ arg minθ∈Θ R(θ).
We define also the values θp,ℓ for any (p, ℓ) ∈ M by θp,ℓ ∈ arg minθ∈Θp,ℓ

R(θ).

The risk R(θ) cannot be computed as the distribution π0 is unknown. So we introduce its
empirical counterpart rn(θ) as,

rn(θ) =
1

n − p (θ)

n∑

t=p(θ)+1

∥∥∥Xt − X̂θ
t

∥∥∥ .

2.3. The estimators. For any model (p, ℓ) ∈ M let us choose a probability measure πp,ℓ on the
measurable space (Θp,ℓ,Tp,ℓ) - an usual choice for πp,ℓ is the Lebesgue measure on Θp,ℓ that is

often a compact subset of Rd for some d > 0, but note that the choice of the various parameters
involved in this subsection is discussed later in the paper and illustrated by a simple example.
Let us also choose some prior weights on the models: wp,ℓ ≥ 0 such that

∑
(p,ℓ)∈M wp,ℓ ≤ 1. This

choice will be discussed later.

For any measure π and any measurable function h such that π[exp(h)] < +∞, we define the
Gibbs measure π{h} through the equation:

(2.3)
dπ{h}

dπ
(θ) =

exp(h(θ))

π[exp(h)]
.
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Let us put

G =

{
8, 16, ..., 2

—
ln(n2)
ln 2

�}
.

Now let us choose some Kn ≥ 1, see Remark 3.3.3 for a discussion of this choice. For any
(p, ℓ) ∈ M and λ > 0 we define:

R̂ (p, ℓ, λ) = − 1

λ
ln

∫

Θp,ℓ

exp (−λrn(θ)) dπp,ℓ(θ) +
1

λ
ln

|G|
wp,ℓ

+
λK2

n

n
(
1 − p

n

)2 .

Now, we propose, for any model (p, ℓ) ∈ M and parameter λ ∈ G the following estimation
procedure: draw

θ̃λ
p,ℓ ∼ πp,ℓ{−λrn}.

Then, we propose two procedures to select a model (p, ℓ) ∈ M and a parameter λ ∈ G.
The first procedure is a model selection procedure, we choose

(p̂, ℓ̂, λ̂) = arg min
(p, ℓ) ∈ M

λ ∈ G

R̂ (p, ℓ, λ)

and we have the estimator

θ̂ = θ̃λ̂
p̂,ℓ̂

.

The second procedure proceeds by randomization on all the models. For any λ ∈ G, we define
the weights

wλ
p,ℓ =

exp
(
−R̂ (p, ℓ, λ)

)

∑
(p′,ℓ′)∈M exp

(
−R̂ (p′, ℓ′, λ)

) ,

and we draw (p̃λ, ℓ̃λ) randomly according to the weights (wλ
p,ℓ)(p,ℓ) and finally choose

λ̃ = arg min
λ∈G

R̂
(
p̃λ, ℓ̃λ, λ

)

and we have the estimator

θ̃ = θ̃λ̃
p̃λ̃,ℓ̃λ̃

.

2.4. Assumptions on the observations. In order to achieve our main results, we need to
give some assumptions on the observations. We give below two very different settings of works.
One is based on a specific (but wide) unbounded model so-called chain with infinite memory (or
complete connection). The other one referred on the bounded case associated under a condition
of weakly dependence type. See section 4 for some examples.

2.4.1. Chains with infinite memory. We study chains with Infinite memory introduced in [14]
and we refer to it as Assumption (CIM). Let ξt for t ∈ Z be independent and identically dis-
tributed variables distributed as µ on a Banach space X ′ called the innovations. We assume that
the innovations norm admits a Laplace transform, more formally that for all c ∈ R, we have
µ[exp(c‖ξ0‖)] < ∞. We write this Laplace transform Ψ(c) := µ[exp(c‖ξ0‖)]. We will say that
(CIM) is satisfied if X = (Xt)t∈Z is the solution of the equation

(2.4) Xt = F (Xt−1,Xt−2, . . . ; ξt) almost everywhere,
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for some function F : X (N\{0}) ×X ′ → X . Assume also that there exits some u satisfying, for all
x = (xk)k∈N\{0}, x′ = (x′

k)k∈N\{0} ∈ XN\{0} such that there exists N > 0 as xk = x′
k = 0 for all

k > N , the condition

∥∥F (x; y) − F (x′; y′)
∥∥ ≤

∞∑

j=1

aj(F )‖xj − x′
j‖ + u‖y − y′‖,(2.5)

with

∞∑

j=1

aj(F ) := a(F ) < 1,(2.6)

Using directly Theorem 3.1 of [14] we derive the following propostion:

Proposition 2.1. There exists a unique stationary causal solution X of equation (2.4) satisfying
π[‖X0‖r] < ∞ for any 1 ≤ r < ∞.

2.4.2. Bounded weakly dependent processes. We refer to this case, described below as Assumption
(WDP). In all this subsection we assume that X is bounded, i.e. ‖X‖∞ < ∞. In our context
the appropriate weakly dependence notion is relying on the coefficients θ∞,n(1) introduced by
Dedecker et al. [10]. This is a version of the γ-mixing of Rio [25] adapted to stationary time
series. If Z is a bounded random variable on (Ω,A,P), for any σ-algebra S of A we put:

θ∞(S, Z) = sup
f∈Λ1

∥∥∥∥
∣∣∣E
(
f(Z)

∣∣S
)
− E

(
f(Z)

)∣∣∣
∥∥∥∥
∞

,

where Λ1 is the set of real 1-Lipschitz functions and E is the expectation with respect to the
distribution of X. In our context it is convenient to define the σ-algebra Sp = σ(Xt, t ≤ p) for
any p ∈ Z and

θ∞,k(r) = sup

{
θ∞
(
Sp, (Xj1 , . . . ,Xjℓ

)
)
, p + r ≤ j1 < · · · < jℓ, 1 ≤ ℓ ≤ k

}
,

Assumption (WDP) refers to the cases where θ∞,n(1) is well defined for the process X = (Xt)t∈Z.
Let us give examples of time series satisfying (WDP).

Bounded chains with infinite memory are θ∞ weakly-dependent. Suppose that X is the solution
of equation (2.4) associated with an innovation which is bounded, i.e. ‖ξ0‖∞ < ∞, then we have
the following result,

Lemma 2.2. Under condition (2.6) there exists a unique causal stationary process X solution of
the equation (2.4). This solution is bounded by u‖ξ0‖∞/(1 − a) and

θ∞,n(1) ≤ 2
u‖ξ0‖∞
1 − a(F )

n∑

r=1

inf
0<p<r




a(F )r/p +

∞∑

j=p

aj(F )




 .

The proof of Lemma 2.2 is given in the section dedicated to proofs, actually, in Subsection 5.5.
Uniform ϕ-mixing sequences are also θ∞ weakly-dependent. Let us recall the definition of the

ϕ-mixing coefficients introduced in [16];

ϕ(r) = sup
(A,B)∈S0×Fr

|π(B/A) − π(B)|

where Fr = σ(Yt, t ≥ r). The class of ϕ-mixing processes is large, it includes in particular uniform
ergodic Markov Chains, see [13].
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Proposition 2.3. If (Xt)t∈Z is a stationary bounded (by C > 0) process then

θ∞,n(1) ≤ 2C

n∑

r=1

ϕ(r).

The proof of the Proposition 2.3 is given in Subsection 5.5.

3. Main results

We first give a result that holds with a probability that may be as close as one as possible, then
we give a result in expectation. Then some remarks on these two oracle inequalities are given. In
all the sequel, we work under the assumption that, for every (p, ℓ) ∈ M there exists a constant
1 ≤ dp,ℓ < ∞ such that

(3.1) sup
γ>e

{
− ln πp,ℓ

[
exp

(
−γ
(
R − R

(
θp,ℓ

)))]

ln(γ)

}

= dp,ℓ.

Even if this definition of the ”dimension” of each sets Θp,ℓ is non standard and comes artificially
in this form from the PAC-Bayesian approach, it is linked with the standard notions of dimensions
like the Vapnik or entropy one. More precisely we have the following result.

Proposition 3.1. Let dim ∈ N
∗, x > 0, and Bx be the closed ℓ1-ball in R

dim of radius x > 0
and centered at 0. If we assume that Θp,ℓ = Bcp,ℓ

for cp,ℓ > 0, that πp,ℓ is the Lebesgue measure
on Θp,ℓ and that θ → R(θ) is a C-Lipschitz function then we have:

(3.2) dp,ℓ ≤ dim ×
(

1 + ln

(

cp,ℓ

(
Ce

dim
∨ 1

cp,ℓ − ‖θp,ℓ‖

)))

.

The proof of this result is given at the end of subsection 5.4.

3.1. Oracle inequality with large probability. The following inequality is a PAC result. It
is very convenient to built confidence intervals of prediction, see [27] for example for more details
on such confident intervals.

Theorem 3.2. Let us assume that relation (3.1) is satisfied. Then for all n such that n ln2 n ≥
(8eKn)2, under (WDP), with π0-probability at least 1 − ε he have:

R(θ̂) and R(θ̃) ≤
(

1 ∨ 2k2
n

k2
n + K2

n

)
inf

dp,ℓ≤nKn

{

R
(
θp,ℓ

)
+ Kn

[
2 + (kn/Kn)2

1 − p/n

√
dp,ℓ

n
ln(dp,ℓn)

+
4 ln 3 ln n

εwp,ℓ√
dp,ℓn ln(dp,ℓn)

]}

where

(3.3) kn =
‖X‖∞ + 2θ∞,n(1)

1 + L
.

The proof of this result is given in the section dedicated to proofs, more precisely in Subsection
5.3 page 17.
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3.2. Oracle inequality in expectation. The following oracle inequality holds in expectation.
it is a weaker result than the previous one of Theorem 3.2 but the setting is more general as it
holds under both (WDP) and (CIM).

Theorem 3.3. Let us assume that relation (3.1) is satisfied. Then for all n such that n ln2 n ≥
(8eKn)2, we have:

π0[R(θ̂)] and π0[R(θ̃)] ≤
(

1 ∨ 2k2
n

k2
n + K2

n

)
inf

dp,ℓ≤nKn

{
R
(
θp,ℓ

)

+ Kn

[
2 + (kn/Kn)2

1 − p/n

√
dp,ℓ

n
ln(dp,ℓn) +

4 ln 12 ln n
wp,ℓ√

dp,ℓn ln(dp,ℓn)

]}
+

3(1 + L)Ψ(c∗) ln(n)√
n

.

where as previously

kn =
‖X‖∞ + 2θ∞,n(1)

1 + L
under (WDP),

and where under (CIM),

(3.4) θ∗∞,n = 1 + 2

n∑

r=1

inf
0<k<r




a(F )r/k +

∞∑

j=k

aj(F )




 , c∗ =
uθ∗∞,n

2(1 − a(F ))
and kn =

ln n

1 + L
.

The proof of this result is given in Subsection 5.3 page 21.

3.3. Comments on the main results.

3.3.1. Comparison with other results. Oracles inequalities in expectation have already been proved
in Modha and Masry [23] and Baraud et al. [5]. Their approach are based on traditional mixing
coefficients and on classical penalized minimizers of the empirical risk estimators. As already said
in the introduction, except the fact that they work with the quadratic loss, their results are very
comparable with ours. Our rates are always smaller than those of Modha and Masry [23], as in
their case it depends on the decrease rates of the mixing coefficients. The results in Baraud et al.
[5] are very competitive with ours. They achieve the optimal rate of convergence, i.e. the optimal
one in the iid case, but they pay it with a multiplicative constant larger than 1 in the oracle
inequality. More important, their approach depends on the (unobservable) mixing properties of
the observations through intricate conditions on the model dimension and on the penalization.
This drawback of their approach is due to the use of the β-mixing coefficients of the time series.
The weak dependence coefficients used here lead to a sharper Hoeffding type inequality than the
β-mixing coefficients, see Rio [24] and its consequence the Theorem 5.6 of this paper. Then it
is for the first time possible to consider here predictors free of the dependence properties of the
observed time series. Remark that as the choice of the dependence framework is orthogonal to the
one of the estimation procedures, it should be interesting to study classical penalized empirical
risk minimizers in the weakly dependence framework used here.

3.3.2. Choice of the weights. When kn ≥ Kn the order of convergence of π0[R(θ̂)] to R(θp,ℓ) is
given by the expression

Kn

kn

[√
dp,ℓ

n
ln (dp,ℓn) +

ln ln n
wp,ℓ√

ndp,ℓ ln (dp,ℓn)

]
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and so, by

Kn

kn

√
dp,ℓ

n
ln (dp,ℓn)

as soon as
ln ln n

wp,ℓ√
ndp,ℓ ln (dp,ℓn)

≤
√

dp,ℓ

n
ln (dp,ℓn) .

Then if the weights are chosen such that satisfying the condition

(3.5) wp,ℓ ≥
e−dp,ℓ ln2(ndp,ℓ)

ln(n)
.

As the sums of these weights have to be less than 1, such choice is possible if
∑

(p,ℓ)∈M

e−dp,ℓ ≤ 1.

If this condition is not satisfied, there may be a loss in the bound on the risk of the estimator
due to the choice of the weights. This loss is classical in learning theory and has nothing to do
with the PAC-bayesian approach used here. In some way it means that we cannot perform an
efficient model selection if we have too many models.

3.3.3. Choice of the parameter Kn. The best choice for the parameter Kn is kn that depends on
the known parameter L and on the non-observable dependence structure of the observations. So,
we will discuss in practice this choice is delicate. In the sequel of this discussion we work under
reasonable weak dependence and complexity conditions, i.e. that θ∞,∞(1) < ∞, θ∗∞,∞ < ∞
if (CIM) and (3.1). For bounded ϕ-mixing processes it is ensure by the summability of the
ϕ-coefficients. If we do not have any reason to assume that the process is bounded, we can fix
Kn = ln n/(1 + L) and wp,ℓ as in Subsection 3.3.2 in order to obtain the oracle inequality:

π0[R(θ̂)] and π0[R(θ̃)] ≤ inf
p,ℓ

{

R
(
θp,ℓ

)
+ C

√
dp,ℓ

n
ln(dp,ℓn) ln(n)

}

for some constant C > 0, as soon as n is sufficiently large. If we assume that the observations
are bounded, we can get a refinement choosing Kn as an upper bound for kn = (‖X‖∞ +
2θ∞,∞(1))/(1 + L). If we are lucky and the relation Kn ≥ kn is satisfied, we obtain under
(WDP) and with probability 1 − ε

R(θ̂) and R(θ̃) ≤ inf
p,ℓ

{
R
(
θp,ℓ

)
+ C

√
dp,ℓ

n
ln

dp,ℓn

ε

}
.

Remark that it is possible that L goes to infinity with n such that for any fixed Kn = K then
K ≥ kn for large n. But then another loss in a power of ln(n) appears as the ”dimension” dp,ℓ

grows with L, see the application on Neural Networks predictors in Subsection 4.2. If we do a
mistake in the upper estimate on kn, namely Kn < kn, then a multiplicative constant c ∈]1, 2[
deteriorates the oracle inequality under both (CIM) or (WDP):

π0[R(θ̂)] and π0[R(θ̃)] ≤ c inf
p,ℓ

{

R
(
θp,ℓ

)
+ C

√
dp,ℓ

n
ln(dp,ℓn)(kn)2

}

.



MODEL SELECTION AND RANDOMIZATION FOR WEAKLY DEPENDENT TIME SERIES FORECASTING 11

Such choice of small Kn no longer ensures the consistency of the estimator. So we recommend
to choose in any cases the parameter Kn = ln n/(1 + L) that is free of dependence properties.
As a consequence, we do an over-penalization and the procedure is very conservative, see the
discussion based on simulations at the end of Subsection 4.1.

4. Applications

In this section we investigate several possible predictors. Note than in all the applications,
we work on unions of compact subsets of parameters Θp,ℓ of R

dim for some dimension dim ∈ N

associated with the prior measure πp,ℓ that is the Lebesgue one. The ”dimension” dp,ℓ is then
closely related to dim thanks to Proposition 3.1.

4.1. Linear predictors. Let us first consider the case of linear auto-regressive predictions. More
precisely, in the case X = R we consider predictive models of the form:

fθ(XN−1, ...,XN−p) = θ0 +

p∑

i=1

θiXN−i,

where θ ∈ Θp ⊂ R
p+1 with by definition, for some cp > 0,

Θp = Θp,1 =

{
θ ∈ R

p, ‖θ‖1 =

p∑

i=0

|θi| ≤ cp

}
.

In this simple case mp = 1 for all p such that the index ℓ can be omitted in the sequel. Using
Proposition 3.1 it follows that

dp,ℓ ≤ (p + 1)

(
1 + ln

(
cp

(
e

p + 1
∨ 1

cp − ‖θp‖

)))
,

where θp = arg minΘp,ℓ
R(θ). Let us fix the weights equals to wp = 2−p−1 for all p ∈ {1, ..., [n/2]}.

Then the relations
∑

(p,ℓ)∈M wp,ℓ ≤ 1 and (3.5) is satisfied for large n and we have the following

Corollary of Theorem 3.2

Corollary 4.1. Let us assume that there exists ξ > 0 such that for any p, ‖θp‖1 ≤ cp − ξ. For n
large enough, let us assume that that (CIM) or (WDP) is satisfied, that Kn ≥ k∗

n, then there
exists a C = C(cp, ξ,Kn, ‖X‖∞) under (WDP) or C = C(cp, ξ,Kn, θ∗∞,n) under (CIM), such
that

π0[R(θ̃)] and π0[R(θ̂)] ≤ inf
1≤p<n/2

{

R
(
θp

)
+ CKn

√
p

n
ln(n)

}

.

It is a simple consequence of Theorem 3.2 in this context so the proof is omitted.
Linear predictors are expected to be efficient when the observations are solutions of a linear

autoregressive model. Let us assume that (XT )t∈Z is a stationary solution of an AR(∞) model

(4.1) Xt = a0 +

∞∑

i=1

aiXt−i + ξt, for all t ∈ Z

where ξt are iid. Here we do not distinguish degenerate cases, i.e. (ai)i>0 may or may not be
a sequence of infinitely many non zero numbers. So AR(p) for p < ∞ or AR(∞) models are
considered in one shot. Assume that

(AR)
∑

i>0 |ai| < 1,
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and that ξ1 are normally distributed as µ. Then it is easy to check that we are in the case
CIM. Moreover, the distributions of Xt+1 conditional on (Xt,Xt−1, . . . ,Xt−p) are gaussian then
symmetric and the median is also the mean in order that

θp = (a0, a1, a2, . . . , ap).

In this classical case, we have a corollary of Theorem 3.2

Corollary 4.2. Let us fix cp = 1 for all p, wp = 2−p−1 and Kn = ln(n)/2. Then there exists a

constant C = C(µ, (ai)i∈N) linear predictors θ̃ and θ̂ satisfy, for sufficiently large n:

π0[R(θ̃)] and π0[R(θ̂)]

≤ µ[|ξ0|] + inf
1≤p<n/2

{

π0



|
∑

i>p

aiXi|



+ 2

√∑ |ai| + µ[|ξ0|]
1 −∑ |ai|

√
p

n

ln2 n

(1 − p/n)

}

+ C
ln n√

n
.

The proof is omitted as it is a simple consequence of Corollary 4.1.
Despite its apparent complexity, the procedure used here can be effectively implemented, using

Monte Carlo methods, see for example Catoni [8] for an effective implementation of PAC-Bayesian
methods. Actually, in this case the performance of the predictions is clearly not optimal on simula-
tions when compared with the estimators in Ing and Wei [18] on the same set of experiments. Our
procedure is clearly too conservative due to the minimax-type approach used here that focusses
on pessimistic bounds based on the worst cases. The improvement of the practical performances
of predictions will be the subject of future works. However, if the reader is interested, the code
for the computation of the estimator is available upon request to the authors.

4.2. Neural networks predictors. In this section we consider the bounded case (WDP) where
‖X‖∞ ≤ 1. The neural networks predictors proposed here are close to those in Modha and Masry
[23]. The procedure approximates a natural good predictor given by mp(Xn−p, . . . ,Xn) where

mp(x) = med(X0|(X−p, . . . ,X−1) = x) for all x ∈ R
p,

the median of the distribution of X0 conditional on p past values (X−p, . . . ,X−1). This non-linear
predictor is the optimal one with respect to the L

1-risk.
We will now present the predictors which are parametric families of functions based on the

abstract neural networks used in Barron [6]. Let us assume that φ : R → R is a Lipschitz
sigmoidal function such that its tail approach the tails of the unit step at least polynomially fast.
More precisely, let us have the assumptions:

(NN): Assume that
(1) φ(u) → 1 as u → ∞ and φ(u) → 0 as u → −∞,
(2) φ(u) − φ(v) ≤ D′

1|u − v| for all u, v ∈ R and for some D′
1 > 0. Set D1 = 1 ∨ D′

1.
(3) |φ(u) − 11u>0| ≤ D′

2/|u|D3 for u ∈ R, u 6= 0 and for some D3 > 0 and D′
2 > 0. Set

D2 = 1 ∨ D′
2.

(SN): Assume that there exists a complex-valued function m̃p on R
p such that for x ∈ R

p,
we have

mp(x) − mp(0) =

∫

Rp

(eiwx − 1)m̃p(w)dw

and that ∫

Rp

‖w‖1|m̃p(w)|dw ≤ C ′
p < ∞
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for some C ′
p > 0. Set Cp = 1 ∨ C ′

p.

Then the predictors express as parametric families of functions. More precisely, they are neural
networks with dimension, or ”hidden units”, ℓ and memory, or ”time delay” or ”lags”, p. Let
ai ∈ R

p, bi ∈ R and ci ∈ R for 1 ≤ i ≤ ℓ. Setting θ = (ai, bi, ci, c0) for some c0 ∈ R, we remark
that the dimension of one predictive model is ℓ(p + 2) + 1. The predictors are defined as

fθ = clip

(

c0 +

ℓ∑

i=1

ciφ(ai · x + bi)

)

, for all x ∈ R
p,

where clip(y) = y ∧ 1 ∨ (−1). Now we restrict the parameters to be in the following ball. Define

τℓ = 2(2D3+1)/D3D
1/D3

2 ℓ(D3+1)/(2D3)

where D1,D2 and D3 are as in Assumption (NN). Define also a compact subset

Bp,ℓ = {θ;

ℓ∑

i=1

|ci| ≤ Cp +
1

3
; max
1≤i≤ℓ

‖ai‖1 ≤ τℓ +
1

3ℓ
; max
1≤i≤ℓ

|bi| ≤ τℓ +
1

3ℓ
}

where ‖ · ‖1 denotes the ℓ1-norm. Remark that here the constants are added in each direction to
have a secure zone of width 1 in the ℓ1-norm around the classical parameter set:

B′
p,ℓ = {θ;

ℓ∑

i=1

|ci| ≤ Cp; max
1≤i≤ℓ

‖ai‖ ≤ τℓ; max
1≤i≤ℓ

|bi| ≤ τℓ}

With the help of this secure zone, we have an Oracle inequality where the infinimum is taken
on the classical sets Bp,ℓ for whom the optimal θp,ℓ has got the good approximation properties,

see [6]. Moreover as cp,ℓ − ‖θp,ℓ is bounded by 1 it implies that for large values of p, ℓ it holds
dp,ℓ ≤ (ℓ(p + 2) + 1)(1 + ln(Cp ∨ ℓτℓ + 1)) applying Proposition 3.1. Finally, let us fix the largest

possible value for ℓ as mp = [
√

n/p]. It is enough for having a good approximation thanks to
Theorem 3 of [6]. Then we have the following result for neural networks predictors construct on
Bp,ℓ(ξ):

Corollary 4.3. Let us assume (WDP) with ‖X‖∞ ≤ 1, θ∞,∞(1) < ∞, (NN) and (SN) with
Cp ≤ C ′pc for some C ′, c > 0 and all p ≥ 1. Then if we take wp = 1/n and Kn is fixed to some
K, for all ǫ > 0 there exists a constant C = C(C ′, c,D1,D2,D3,K, ε) such that for n sufficiently
large, with probability at least 1 − ε,

R(θ̃) and R(θ̂) ≤ inf
1≤p≤√

n/ ln(n)

{
π0 [|X0 − med(X0|X−1, . . . ,X−p)|] + C

p1/4 ln3/4 n

n1/4

}
.

The proof of this corollary is given in Subsection 5.6. Following the approach of Modha and
Masry [23], our estimator is said to be a memory universal predictor with rate ln3/4(n)/n1/4.

The rate here is better than the one obtained for the L
2-risk in [23], (ln(n)/n)

c
2 where 0 < c < 1

depends on the mixing properties of the process. Remark that the choice of wp is not optimal
as it does not satisfy the relation (3.5). This implies a loss, due to that we do not manage to
estimate

∑
exp(−dp,ℓ) here. However, this loss due to the weights is less than the one due to the

fact that here L, the Lipschitz constant of the predictors, goes to ∞ with n. It implies the loss
of a square root of the Logarithm through the ”dimension” dp,ℓ, see the proof for more details.
Finally, remark that the result is not easily implementable as artificial networks predictors depend
on the constants Cp which are not observable.
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4.3. Non-parametric auto-regressive predictors. In this section, we propose the following
setting coming from economic modelization and studied in [5]. Let us assume that the process
(Xt)t∈Z is a solution of the equation:

Xt = f1(Xt−1) + · · · + fp0(Xt−p0) + ξt, , for all t ∈ Z

where ξt ∼ N (0, σ2) =: µ, fi are functions R → R supported by a compact set and p0 is some
unknown finite integer. Remark that, up to scale changing of X, functions fi are supported by
[−1, 1]. In order to be in a particular case of (CIM), we assume that for any i ∈ {1, ..., p0},
(4.2) ∃ai ∈ [0; 1[,∀(x, x′) ∈ [−1; 1]2, |fi(x) − fi(x

′)| ≤ ai|x − x′|
with a1 + ... + ap0 < 1.

Actually, we assume more regularity on every fi: they belong to the Hölder class H(si, Li) for
si ≥ 1. This means that fi is derivable ⌊si⌋ times and that

(4.3) ∃Li > 0,∀(x, x′) ∈ [−1; 1]2, |f (⌊si⌋)
i (x) − f

(⌊si⌋)
i (x′)| ≤ Li|x − x′|si−⌊si⌋.

Remark that if (4.3) is satisfied with the relation

(4.4)

p0∑

i=1

∣∣∣f (1)
i (0)

∣∣∣+ . . . +
∣∣∣f (⌊si⌋)

i (0)
∣∣∣+ Li < 1

then (4.2) follows. Is it well known, see for example Tsybakov [26], that if (ϕj(.))j≥1 is the Fourier

basis on [−1, 1], namely φ2k(x) =
√

2 cos(2πkx) and φ2k+1(x) =
√

2 sin(2πkx), Assumption 4.3
implies that fi belongs to a Sobolev class with regularity si and so that there is a constant
γi = γ(Li, si) such that for any m ∈ N \ {0},

min
(α1,...,αm)∈Rm






∫ 1

−1

[
fi(t) −

m∑

j=1

αi,jϕj(t)
]2

ds






1
2

≤ γim
−si .

Then natural predictors arise as of the form

X̂n+1 =

p∑

i=1

ℓ∑

j=1

θi,jϕj(Xn−i) =: fθ(Xn, . . . ,Xn−p)

for any p ∈ {1, ..., ⌊n/2⌋}, any ℓ ∈ {1, ...,mp = n} and any θp,ℓ ∈ R satisfying the relation

Θp,ℓ =




θ ∈ R
pℓ,

p∑

i=1

ℓ∑

j=1

θ2
i,j(2[j/2])

2 ≤ L2




 .

This ensures that any fθ is an L-Lipschitz function. Finally, let us define for any ℓ ∈ {1, ..., n},
i ∈ {1, . . . , ⌊n/2⌋} the coefficients θp,ℓ ∈ R

pℓ that satisfy the relation

arg min
θ∈Θp,ℓ

π0





∣∣∣∣∣∣
Xn −

p∑

i=1

ℓ∑

j=1

θi,jϕj(Xn−i)

∣∣∣∣∣∣





and we obtain as a consequence of Theorem 3.2:
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Corollary 4.4. Let wp,ℓ = n−2, Kn = ln(n)/(1 + L) and s = inf{s1, ..., sp0}. Let us assume that
Equations (4.3) and (4.4) are satisfied and that there exists c > 0 such that for any ℓ ∈ {1, ..., n}
we have

L −




p0∑

i=1

ℓ∑

j=1

(θp0,ℓ)
2
i,j(2[j/2])

2





1
2

≥ c.

Then there is a constant
C = C(p0, a, L1, s1, ..., Lp0 , sp0 , c)

such that
π0[R(θ̂)] and π0[R(θ̃)] ≤ µ(|ξ0|) + Cn− s

2s+1 ln2(n).

The minimax rate of convergence with respect to s1, ..., sp0 is achieved up to a loss in ln2(n).
Remark that the choice of the weights wp,ℓ is not optimal as it does not satisfied condition (3.5).
But it has no effect in the rate in the Oracle inequality as the loss coming from the weights is
smaller than the one coming from the over-penalization. Reark also that the result in [5] achieves
the minimax rate of convergence with no extra logarithmic factor. This minimax rate is achieved
for the excess L

2-risk, not of prediction, but empirically on the distribution of the observed values.
We argue that our risk is more natural in the time series forecasting context. However, note that
in [5] it is assumed that p0 < pmax for some known pmax satisfying some relation with the β-mixing
coefficients of the observed process. It is restrictive as that model selection procedure depends
on pmax and on β-mixing coefficients that are not observable.

5. Proofs

To present the proofs in a unified version wether we work under (CIM) or (WDP), we
truncate the observations if we are under (CIM). This method entirely stands in view of the
result of Lemma 2.2. More precisely, we truncate the innovations ξt and replace them with
ξt = (ξt ∧ C) ∨ (−C). Now we denote X = (X t)t∈Z the solution of the equation

Xt = F (X t−1,X t−2,X t−3, . . . ; ξt), a.e. for all t ∈ Z.

This solution exists and satisfies weak dependence conditions, see Lemma 2.2 for more details.To
treat both cases in the same way, we denote in the sequel X := X and ‖X‖∞ = C under (WDP).
Moreover, we will use the notation r, R the risks associated with X.

We will now present some useful Lemmas. Their proofs are postponed at the end of the Section.

5.1. Useful Lemmas. The first Lemma gives a bound on the deviations of the risk of X. The
result derives simply from the Rio’s ”Hoeffding’s type” inequality stated in [24].

Lemma 5.1. For any λ > 0 and θ ∈ Θ we have:

π0[exp(λ(R(θ) − rn(θ)))] ≤ exp

(
λ2k2

n

n(1 − p(θ)/n)2

)
,

where kn depends on the nature of the observations, more precisely is given by the relations





(CIM) kn =
uC
(
1 + 2

∑n
r=1 inf0<k<r

{
a(F )r/k +

∑∞
j=k aj(F )

})

(1 + L)(1 − a(F ))
,

(WDP) kn =
‖X‖∞ + 2θ∞,n(1)

1 + L
.
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The proof of this Lemma is given in Section 5.4.
We now give a result particularly useful for the so-called ”PAC-Bayesian” randomization tech-

nique proposed by Catoni [7, 8]. Given a measurable space (E, E) we let M1
+(E) denote the set

of all probability measures on (E, E). The Kullback divergence is a pseudo-distance on M1
+(E)

defined, for any (π, π′) ∈ [M1
+(E)]2 by the equation

K(π, π′) =






π[ln(dπ/dπ′)] if π ≪ π′,

+∞ otherwise.

Lemma 5.2 (Legendre transform of the Kullback divergence function). For any π ∈ M1
+(E),

for any measurable function h : E → R such that π[exp(h)] < +∞ we have:

(5.1) π[exp(h)] = exp

(
sup

ρ∈M1
+(E)

(
ρ[h] −K(ρ, π)

))
,

with convention ∞−∞ = −∞. Moreover, as soon as h is upper-bounded on the support of π, the
supremum with respect to ρ in the right-hand side is reached for the Gibbs measure π{h} defined
in (2.3).

The proof of this Lemma is omitted here as it can be found in [7] or [8].
With the help of Lemma 5.2, we then can prove a general PAC-Bayesian bound from Lemma

5.1. It consists in an upper-bound for the mean risk of Gibbs estimators in all sub-models.

Lemma 5.3. Under the assumptions of Theorem 3.2 we have for any λ > 0 and (p, ℓ) ∈ M :

(5.2) π0

[
exp

(
sup

ρ∈M1
+(Θp,ℓ)

{
λρ[R − rn] −K (ρ, πp,ℓ)

}
− λ2k2

n

n(1 − p/n)2

)]
≤ 1,

where kn has the same expression than in Lemma 5.1.

The proof of this Lemma is given in Section 5.4.
From this result, we derive another PAC-Bayesian bound on the mean risk of any aggregation

estimators of all Gibbs estimators. The techniques were developed by Catoni [8, 7] in the iid
or exchangeable setting for classification on the basis of the seminal paper of McAllester [21]
and extended by Audibert [4] to regression with quadratic loss and Alquier [2] to a general loss
function. The scheme use here follows [7].

Lemma 5.4. For any measurable function ρp,ℓ : X n → M1
+(Θp,ℓ) for (p, ℓ) ∈ M and for any

measurable family of weights ŵλ
p,ℓ : X n → [0, 1] with

∑

(p,ℓ)∈M

ŵλ
p,ℓ ≤ 1,

under the assumptions of Theorem 3.2 we have:

π0




sup
λ ∈ G

P

(p,ℓ)∈M
ŵλ

p,ℓ = 1

ρp,ℓ ∈ M
1
+(Θp,ℓ)





∑

(p,ℓ)∈M

ŵλ
p,ℓρp,ℓ

[

exp

(

λ(R − rn) − ln
dρp,ℓ

dπp,ℓ
− λ2k2

n

n(1 − p/n)2
+ ln

wp,ℓ

|G|ŵλ
p,ℓ

)]






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∨π0

[
sup
λ ∈ G

(p, ℓ) ∈ M

ρp,ℓ ∈ M
1
+(Θp,ℓ)

{
exp

(
λρp,ℓ[R − rn] −K(ρp,ℓ, πp,ℓ) −

λ2k2
n

n(1 − p/n)2
+ ln

wp,ℓ

|G|

)}]
≤ 1,

where kn has the same expression than in Lemma 5.1.

The proof of this Lemma is given in Section 5.4.
Finally, we present a Lemma that gives a usefull inequality under (CIM). We recall that Ψ

denotes here the Laplace transform of the norm of ‖ξ0‖, that is assumed to be finite.

Lemma 5.5. Let us define the following random variable:

g(C) = sup
θ∈Θ

|rn(θ) − rn(θ)|.

We have under (CIM) the following inequality, for any c > 0:

π0[g(C)] ≤ 1 + L

1 − a(F )
uΨ(c)C exp(−cC).

The proof of this Lemma is given in Section 5.4.

5.2. Proof of Theorem 3.2. We are now able to give the proof of our main theorem. Let us
apply Lemma 5.4. As it holds for any probability measure ρp,ℓ it holds for ρ̂p,ℓ = πp,ℓ{−λrn}
associated to any Λ = G. We use the inequality ∀x ∈ R, exp(x) ≥ 1R∗

+
(x) and the associated

Markov inequality:
π0ρ̂p,ℓ(A + ln(ε) > 0) ≤ π0ρ̂p,ℓ[exp(A)]ε ≤ ε

where A = λ(R − rn) − ln
dρp,ℓ

dπp,ℓ
− λ2k2

n

n(1−p/n)2
+ ln

wp,ℓ

|G|ŵλ
p,ℓ

for any λ ∈ G. Here we used the fact that

ρ̂p,ℓ is a probability conditional on (X1, . . . ,Xn) in order that π0ρ̂p,ℓ is a well defined probability
measure. Moreover, we have used elementary convex inequality to get rid off with the sum of the
weights ŵλ

p,ℓ as they are fixed. With probability 1− ε on the drawing of the data with respect to

π0 and on the drawing of all the estimators θ̃λ
p,ℓ with respect to ρ̂λ

p,ℓ and on the drawing of p and

ℓ according to ŵλ
p,ℓ, we have, for any (p, ℓ) ∈ M :

(5.3) R
(
θ̃λ
p,ℓ

)
≤ rn

(
θ̃λ
p,ℓ

)
+

λk2
n

n(1 − p/n)2
+

1

λ
ln

[
dρp,ℓ

dπp,ℓ

(
θ̃λ
p,ℓ

)]
+

1

λ
ln

|G|ŵλ
p,ℓ

wp,ℓ
+

1

λ
ln

1

ε
.

Using the same technique but with the second part of the result of Lemma 5.4 we obtain for any
(p, ℓ) ∈ M , λ ∈ G and ρ ∈ M1

+(Θp,ℓ),

(5.4)

∫

Θp,ℓ

rn (θ) ρ(dθ) ≤
∫

Θp,ℓ

R (θ) ρ(dθ) +
λk2

n

n(1 − p/n)2
+

1

λ
K (ρ, πp,ℓ) +

1

λ
ln

|G|
wp,ℓ

+
1

λ
ln

1

ε
.

Note that (5.3) is equivalent to

R
(
θ̃λ
p,ℓ

)
≤ − 1

λ
ln

∫

Θp,ℓ

exp (−λrn(θ)) πp,ℓ(dθ) +
λk2

n

n(1 − p/n)2
+

1

λ
ln

|G|ŵλ
p,ℓ

wp,ℓ
+

1

λ
ln

1

ε

+ rn

(
θ̃λ
p,ℓ

)
− rn

(
θ̃λ
p,ℓ

)
(5.5)

≤ R̂ (p, ℓ, λ) +
1

λ
ln

ŵλ
p,ℓ

ε
+

λ
(
k2

n − K2
n

)

n(1 − p/n)2
+
∣∣∣rn

(
θ̃λ
p,ℓ

)
− rn

(
θ̃λ
p,ℓ

)∣∣∣
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so we obtain

(5.6) R
(
θ̃λ
p,ℓ

)
≤ R̂ (p, ℓ, λ) +

1

λ
ln

ŵλ
p,ℓ

ε
+

λ(k2
n − K2

n)

n(1 − p/n)2
+ g(C)11(CIM).

First let us study the estimator θ̂. For any λ > 0, let us choose ŵλ
p,ℓ = 1 when (p, ℓ) minimizes

R̂ (p, ℓ, λ) and 0 otherwise. Remembering that (p̂, ℓ̂, λ̂) = arg min R̂ (p, ℓ, λ), we obtain:

(5.7) R
(
θ̂
)
≤ inf

p,ℓ,λ
R̂ (p, ℓ, λ) +

λ̂(k2
n − K2

n)

n(1 − p̂/n)2
− 1

λ̂
ln ε + g(C)11(CIM).

Now, we are going to upper bound the term R̂ (p, ℓ, λ). From inequality (5.4) we derive that

− 1

λ
ln

∫

Θp,ℓ

exp (−λrn(θ))πp,ℓ(dθ) = inf
ρ∈M1

+(Θp,ℓ)

{∫

Θp,ℓ

rn (θ)ρ(dθ) +
1

λ
K (ρ, πp,ℓ)

}

≤ inf
ρ∈M1

+(Θp,ℓ)

{∫

Θp,ℓ

rn (θ) ρ(dθ) +
1

λ
K (ρ, πp,ℓ)

}
+ g(C)11(CIM)

≤ inf
ρ∈M1

+(Θp,ℓ)

{∫

Θp,ℓ

R (θ) ρ(dθ) +
2

λ
K (ρ, πp,ℓ)

}
+

λk2
n

n(1 − p/n)2
+

1

λ
ln

|G|
εwp,ℓ

+ g(C)11(CIM)

= − 2

λ
ln

∫

Θp,ℓ

exp

(
−λ

2
R(θ)

)
πp,ℓ(dθ) +

λk2
n

n(1 − p/n)2
+

1

λ
ln

|G|
εwp,ℓ

+ g(C)11(CIM).

So we obtain:

(5.8) R̂ (p, ℓ, λ) ≤ − 2

λ
ln

∫

Θp,ℓ

exp

(
−λ

2
R(θ)

)
πp,ℓ(dθ)+

λ(k2
n + K2

n)

n(1 − p/n)2
+

1

λ
ln

|G|
εwp,ℓ

+g(C)11(CIM).

Now, let us remark that, as soon as λ > 2e, we have that

− ln πp,ℓ

[
exp

(
−λ

2

(
R − R(θp,ℓ)

))]
≤ dp,ℓ ln

λ

2

as we work under Assumption (3.1) and it easily follows that

− ln πp,ℓ

[
exp

(
−λ

2
R

)]
≤ − lnπp,ℓ

[
exp

(
−λ

2
R

)]
+

λ

2
π0[g(C)]11(CIM)

= − ln πp,ℓ

[
exp

(
−λ

2

(
R − R(θp,ℓ)

))]
+

λ

2
R(θp,ℓ) +

λ

2
π0[g(C)]11(CIM)

≤ dp,ℓ ln
λ

2
+

λ

2
R(θp,ℓ) +

λ

2
π0[g(C)]11(CIM).

We plug this result into the inequality (5.8) to obtain:

(5.9)

R̂ (p, ℓ, λ) ≤ R
(
θp,ℓ

)
+

1

λ

(
dp,ℓ ln2 λ

2
+ ln

|G|
εwp,ℓ

)
+

λ(k2
n + K2

n)

n(1 − p/n)2
+ (g(C) + π0[g(C)])11(CIM).
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Now we can conclude to the result of Theorem 3.2. We work under (WDP) so that (g(C) +
π0[g(C)])11(CIM) = 0 and that R = R. It remains to collect the informations of the inequalities
(5.7) and (5.9). We obtain:

(5.10) R(θ̂) ≤ inf
p,ℓ,λ

{
R̂(p, ℓ, λ)

}
+

λ̂(k2
n − K2

n)

n(1 − p̂/n)
− 1

λ̂
ln ε

≤ inf
p,ℓ,λ

{
R
(
θp,ℓ

)
+

1

λ

(
dp,ℓ ln2 λ

2
+ ln

|G|
εwp,ℓ

)
+

λ(k2
n + K2

n)

n(1 − p/n)2

}

+
λ̂(k2

n − K2
n)

n(1 − p̂/n)2
− 1

λ̂
ln ε

So it remains to get rid of the two last terms. First of all, let us control (1/λ̂) ln(1/ε). Remember

that λ̂ is a the minimizer of

R̂(p̂, ℓ̂, λ) = − 1

λ
ln

∫

Θ
p̂,ℓ̂

exp (−λrn(θ)) dπp̂,ℓ̂(θ) +
1

λ
ln

|G|
wp̂,ℓ̂

+
λK2

n

n
(
1 − p̂

n

)2

= G(λ) +
1

λ
ln |G| + λK2

n

n
(
1 − p̂

n

)2

where G is a decreasing function as

G′(λ) =
1

λ2
ln

∫

Θ
p̂,ℓ̂

exp (−λrn(θ)) dπp̂,ℓ̂(θ) − 1

λ

∫

Θ
p̂,ℓ̂

rn(θ)dπp̂,ℓ̂{−λrn}(θ) − 1

λ

2

ln
1

wp,ℓ

and we can check that each of these three term is negative. So this means that λ̂ > λ̌ where λ̌ is
the minimizer of

1

λ
ln |G| + λK2

n

n
(
1 − p̂

n

)2 ;

it appears that λ̌ is known in explicit form and so we obtain

1

λ̂
ln

1

ε
≤ 1

λ̌
ln

1

ε
=

Kn(
1 − p̂

n

)√
n ln |G|

ln
1

ε
≤ 2Kn√

n
ln

1

ε
.

So, Inequality 5.10 becomes

(5.11) R(θ̂) ≤ inf
p,ℓ,λ

{
R
(
θp,ℓ

)
+

1

λ

(
dp,ℓ ln2 λ

2
+ ln

|G|
εwp,ℓ

)
+

λ(k2
n + K2

n)

n(1 − p/n)2

}

+
λ̂(k2

n − K2
n)

n(1 − p̂/n)2
+

2Kn√
n

ln
1

ε
.

Let us now consider two cases: kn ≤ Kn and kn > Kn. If kn ≤ Kn, Inequality 5.11 becomes

(5.12) R(θ̂) ≤ inf
p,ℓ,λ

{
R
(
θp,ℓ

)
+

1

λ

(
dp,ℓ ln2 λ

2
+ ln

|G|
εwp,ℓ

)
+

λ(k2
n + K2

n)

n(1 − p/n)2

}
+

2Kn√
n

ln
1

ε
.
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and let us replace the infimum with respect to λ by the specific value

λ∗(p, ℓ) =
1 − p/n

Kn

√
dp,ℓn ln(dp,ℓn)

that well balances the second and the third term of the sum in (5.9). Now if n2 ≥ λ∗(p, ℓ) ≥ 4e
then we can find a λ′ ∈ G such that λ′ > 2e and λ′ ≤ λ∗(p, ℓ) ≤ 2λ′. This holds if, for example,
p ≤ n/2, n ln2 n ≥ (8eKn)2 and dp,ℓ ≤ nKn. This leads to the following inequality

(5.13)

R(θ̂) ≤ inf
dp,ℓ≤nKn




R
(
θp,ℓ

)
+

k2
n/Kn + 2Kn

1 − p/n

√
dp,ℓ

n
ln(dp,ℓn) +

Kn ln |G|
εwp,ℓ

(1 − p/n)
√

dp,ℓn ln(dp,ℓn)






+
2Kn√

n
ln

1

ε
.

Now, let us consider the case where kn > Kn (this is the difficult case). We have

λ̂(k2
n − K2

n)

n(1 − p̂/n)2
=

k2
n − K2

n

k2
n + K2

n

λ̂
(
k2

n + K2
n

)

n(1 − p̂/n)2

≤ k2
n − K2

n

k2
n + K2

n



− 1

λ
ln

∫

Θ
p̂,ℓ̂

exp (−λrn(θ)) dπp̂,ℓ̂(θ) +
1

λ
ln

|G|
wp̂,ℓ̂

+
λ(k2

n + K2
n)

n
(
1 − p̂

n

)2





=
k2

n − K2
n

k2
n + K2

n

inf
p,ℓ,λ

R̂(p, ℓ, λ)

by definition of (p̂, ℓ̂, λ̂) and so, using Inequality 5.10, we obtain

(5.14) R(θ̂) ≤
(

1 +
k2

n − K2
n

k2
n + K2

n

)
inf
p,ℓ,λ

{
R
(
θp,ℓ

)
+

1

λ

(
dp,ℓ ln2 λ

2
+ ln

|G|
εwp,ℓ

)
+

λ(k2
n + K2

n)

n(1 − p/n)2

}

+
2Kn√

n
ln

1

ε
.

The same particular value of λ leads to

(5.15) R(θ̂) ≤
(

k2
n + K2

n

k2
n + K2

n

+
k2

n − K2
n

k2
n + K2

n

)
inf

dp,ℓ≤nKn

{

R
(
θp,ℓ

)
+

k2
n/Kn + 2Kn

1 − p/n

√
dp,ℓ

n
ln(dp,ℓn)

+
Kn ln |G|

εwp,ℓ

(1 − p/n)
√

dp,ℓn ln(dp,ℓn)

}

+
2Kn√

n
ln

1

ε
.

If we combine 5.13 and 5.15 on both cases, and if we remark that |G| ≤ log2(n
2) ≤ 3 ln(n), we

obtain

R(θ̂) ≤
(

1 ∨ 2k2
n

k2
n + K2

n

)
inf

dp,ℓ≤nKn

{

R
(
θp,ℓ

)
+ Kn

[
2 + (kn/Kn)2

1 − p/n

√
dp,ℓ

n
ln(dp,ℓn)
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+
4 ln 3 ln n

εwp,ℓ√
dp,ℓn ln(dp,ℓn)

]}

that ends the proof.

5.3. Proof of Theorem 3.3. Here we deal with both cases (WDP) and (CIM) at the same
time. We also use the results given in the Proof of the Theorem 3.2. More precisely, it as
been shown that for any (p, ℓ) such that dp,ℓ ≤ nKn the following inequality can not hold with
probability larger than ε:

R(θ̂) and R(θ̃) ≥
(

1 ∨ 2k2
n

k2
n + K2

n

){
R
(
θp,ℓ

)
+ Kn

[
2 + (kn/Kn)2

1 − p/n

√
dp,ℓ

n
ln(dp,ℓn)

+
4 ln 3 ln n

εwp,ℓ√
dp,ℓn ln(dp,ℓn)

]}
+ (g(C) + π0[g(C)])11(CIM)

and so for

R(θ̂) and R(θ̃) ≥
(

1 ∨ 2k2
n

k2
n + K2

n

){

R
(
θp,ℓ

)
+ Kn

[
2 + (kn/Kn)2

1 − p/n

√
dp,ℓ

n
ln(dp,ℓn)

+
4 ln 3 lnn

εwp,ℓ√
dp,ℓn ln(dp,ℓn)

]}

+ (g(C) + 2π0[g(C)])11(CIM) = an(p, ℓ) + bn(p, ℓ) log
1

ε
.

Let us now deal with θ̂ (the proof for θ̃ is similar). For any (p, ℓ) with dp,ℓ ≤ nKn,

π0

[
e

R(θ̂)−an(p,ℓ)
2bn(p,ℓ) ≥ ε−

1
2

]
≤ ε,

this leads to

π0

[
e

R(θ̂)−an(p,ℓ)
2bn(p,ℓ)

]
=

∫ ∞

0
π0

[
e

R(θ̂)−an(p,ℓ)
2bn(p,ℓ) ≥ t

]
dt ≤

∫ ∞

0

(
1 ∧ 1

t2

)
dt = 2

and so

π0

[
R(θ̂) − an(p, ℓ)

]
≤ 2bn(p, ℓ) ln 2.

Replacing an(p, ℓ) and bn(p, ℓ) by their definitions we obtain

π0

[
R(θ̂)

]
≤
(

1 ∨ 2k2
n

k2
n + K2

n

){
R
(
θp,ℓ

)
+ Kn

[
2 + (kn/Kn)2

1 − p/n

√
dp,ℓ

n
ln(dp,ℓn)

+
4 ln 12 ln n

wp,ℓ√
dp,ℓn ln(dp,ℓn)

]}
+ 3π0[g(C)]11(CIM)

Under (WDP) we then get the desired result. Under (CIM), we use the result of Lemma 5.5
to choose C in order to well balance kn(C) given in Lemma 5.1 and g(C). We fix it equal to

C∗ =
ln n

2c∗
and c∗ =

u
(
1 + 2

∑n
r=1 inf0<k<r

{
a(F )r/k +

∑∞
j=k aj(F )

})

2(1 − a(F ))
.
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Remark that this choice is independent of p, ℓ. This ends the proof for θ̂ and the same results
hold also for θ̃.

5.4. Proofs of Lemmas 5.1, 5.3, 5.4, 5.5 and of Proposition 3.1.

Proof of Lemma 5.1. The proof of this Lemma is based on the application of a useful inequality
from Rio [24] on X. Let us first recall this result:

Theorem 5.6. Let Y = (Yt)t∈Z be a stationary time series bounded by C distributed as π0 on
XZ. Let h be a 1-Lipschitz function of X n → R, i.e. such that:

(5.16) ∀(x1, y1, ..., xn, yn) ∈ X 2n,
∣∣∣h(x1, ..., xn) − h(y1, ..., yn)

∣∣∣ ≤
n∑

i=1

‖xi − yi‖ .

Then for every t ∈ R we have:

π0 [exp(t(π0[h(X1, ...,Xn)] − h(X1, ...,Xn)))] ≤ exp

(
t2

8
n(C + 2, θ∞,n(1)

)2
)

.

Proof of Theorem 5.6. We achieve this version of Theorem 1 of [24] remarking that we can rewrite
the inequality (3) in [24] as, for any 1-Lipschitz function g:

Γ(g) = ‖E(g(Xℓ+1, · · · ,Xn)|Fℓ) − E(g(Xℓ+1, · · · ,Xn))‖∞ ≤ θ∞,n−ℓ(1).

It leads to the result of Lemma 5.6 when bounding
∑n

r=1(C + θ∞,r(1))
2 with n(C + θ∞,n(1))2 as

sup1≤r≤n θ∞,r(1) ≤ θ∞,n(1). �

We now apply the result of Theorem 5.6 on Y = X to obtain the result of Lemma 5.1. Let us
fix λ > 0, (p, ℓ) ∈ M , θ ∈ Θp,ℓ and t = (1 + L)λ/ [n − p (θ)] and the function h defined by:

h(x1, ..., xn) =
1

1 + L

n∑

i=p(θ)+1

∥∥xi − fθ(xi−1, ..., xi−p(θ))
∥∥ .

We easily check that h satisfies condition 5.16 in order to apply Rio’s inequality. Note that:
∣∣∣h(x1, ..., xn) − h(y1, ..., yn)

∣∣∣

≤ 1

1 + L

n∑

i=p(θ)+1

∣∣∣∣∣
∥∥xi − fθ(xi−1, ..., xi−p(θ))

∥∥−
∥∥yi − fθ(yi−1, ..., yi−p(θ))

∥∥
∣∣∣∣∣

≤ 1

1 + L

n∑

i=p(θ)+1

∥∥xi − yi − fθ(xi−1, ..., xi−p(θ)) + fθ(yi−1, ..., yi−p(θ))
∥∥

≤ 1

1 + L

n∑

i=p(θ)+1

‖xi − yi‖ +
1

1 + L

n∑

i=p(θ)+1

∥∥fθ(xi−1, ..., xi−p(θ)) − fθ(yi−1, ..., yi−p(θ))
∥∥

≤ 1

1 + L

n∑

i=p(θ)+1

‖xi − yi‖ +
L

1 + L

n∑

i=p(θ)+1

p(θ)∑

j=1

aj(θ) ‖xi−j − yi−j‖

≤ 1

1 + L

n∑

i=p(θ)+1

‖xi − yi‖ +
L

1 + L

n∑

i=1

‖xi − yi‖
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≤
n∑

i=1

‖xi − yi‖ .

The direct application of Theorem 5.6 ends the proof under (WDP). Under (CIM) kn is com-
puted in view of the estimate of θ∞,n(1) obtained in Lemma 2.2. �

Proof of Lemma 5.3. Integrate the inequality in Lemma 5.1 with respect πp,ℓ on Θp,ℓ (then p(θ) =
p) for any (p, ℓ) ∈ M in order to obtain:

πp,ℓ[π0[exp(λ(R − rn))]] ≤ exp

(
λ2k2

n

n(1 − p/n)2

)
.

Fubini’s Theorem implies that

π0

[
πp,ℓ

[
exp

(
λ
(
R − rn

)
− λ2k2

n

n(1 − p/n)2

)]]
≤ 1.

Applying Lemma 5.2 for π = πp,ℓ and h = λ(R− rn)−λ2k2
n/(n(1− p/n)2) on M1

+(Θp,ℓ) leads to
the inequality:

π0

[

exp

(

sup
ρ∈M1

+(Θp,ℓ)

{
λρ[R − rn] −K(ρ, πp,ℓ)

}
− λ2k2

n

n(1 − p/n)2

)]

≤ 1.

This ends the proof. �

Proof of Lemma 5.4. First, let us choose λ ∈ Λ. Let hλ
p,ℓ denotes, for any (p, ℓ) ∈ M :

hλ
p,ℓ = sup

ρp,ℓ∈M1
+(Θp,ℓ)

{
λρp,ℓ[R − rn] −K (ρp,ℓ, πp,ℓ)

}
− λ2k2

n

n(1 − p/n)2
.

From Lemma 5.3 applied on the different M1
+(Θp,ℓ) we have, for any (p, ℓ) ∈ M :

π0




∑

(p,ℓ)∈M

wp,ℓ exp
(
hλ

p,ℓ

)


 ≤ 1.

Now we apply Inequality (5.1) in Lemma 5.2 for π =
∑

(p,ℓ)∈M wp,ℓδ(p,ℓ) and h =
∑

(p,ℓ)∈M hλ
p,ℓ11Θp,ℓ

and we obtain

π0



exp



 supP
(p,ℓ)∈M w′

p,ℓ
=1





∑

(p,ℓ)∈M

w′
p,ℓhpℓ −

∑

(p,ℓ)∈M

w′
p,ℓ ln(w′

p,ℓ/wp,ℓ)












 ≤ 1

and, by Jensen’s inequality, and replacing hλ
p,ℓ by its definition,

(5.17) π0



 supP
(p,ℓ)∈M w′

p,ℓ
=1





∑

(p,ℓ)∈M

w′
p,ℓ sup

ρp,ℓ∈M1
+(Θp,ℓ)

exp

(
λρp,ℓ

[
λ(R − rn) − ln

dρp,ℓ

dπp,ℓ

]

− λ2k2
n

n(1 − p/n)2
+ ln

wp,ℓ

w′
p,ℓ

)}]
≤ 1.

By Jensen again, we obtain a bound for the first term in the sum bounded in Lemma 5.4:
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π0



 supP
(p,ℓ)∈M w′

p,ℓ
=1





∑

(p,ℓ)∈M

w′
p,ℓ sup

ρp,ℓ∈M1
+(Θp,ℓ)

ρp,ℓ

[
exp

(
λ(R − rn) − ln

dρp,ℓ

dπp,ℓ

− λ2k2
n

n(1 − p/n)2
+ ln

wp,ℓ

w′
p,ℓ

)]}]

≤ 1.

Finally, we sum this inequality over all λ ∈ G to bound the first expectation.
The second expectation is bounded by choosing specific weights w′

p,ℓ in the supremum in

inequality (5.17) such that w′
p,ℓ = 1 for (p, ℓ) = arg maxM{hp,ℓ}:

π0

[
sup

(p, ℓ) ∈ M

ρp,ℓ ∈ M
1
+(Θp,ℓ)

{
exp

(
λρp,ℓ[R − rn] −K(ρp,ℓ, πp,ℓ) −

λ2k2
n

n(1 − p/n)2
+ ln wp,ℓ

)}]
≤ 1.

Again a summation over all λ ∈ G leads to the result. This ends the proof. �

Proof of Lemma 5.5. From the proof of the Lemma 5.1, we already know that |rn(θ) − rn(θ)| ≤
(1 + L)

∑n
i=1 ‖Xi − X i‖. This bound holds uniformly on Θ. Now we are reduced to estimate

π0[‖X0 − X0‖]. For this, we use the assumption (2.5) and the stationarity of X and X. More
precisely:

π0[‖X0 − X0‖] ≤ uµ[‖ξ0 − ξ0‖] +
∑

j≥1

aj(F )π0[‖X−j − X−j‖]

≤ uµ[‖ξ0‖11‖ξ0‖>C ] + a(F )π0[‖X−j − X−j‖].
The result follows from the estimate µ[‖ξ0‖11‖ξ0‖>C ] ≤ µ[exp(c‖ξ0‖)]C exp(−cC) for any c >
0. �

Now give the proof of the useful Proposition 3.1.

Proof of Proposition 3.1. Let us introduce a parameter ζ > 0 then we have

− 1

γ
ln πp,ℓ

[
exp

(
−γ
(
R − R(θp,ℓ)

))]
− ζ = −1

γ
ln πp,ℓ

[
exp

(
−γ
(
R − R(θp,ℓ) − ζ

))]

≤ −1

γ
ln πp,ℓ

(
R(θ) − R(θp,ℓ) ≤ ζ

)

Then we directly derive from the definition of dp,ℓ that

dp,ℓ ≤ sup
γ>e

infζ>0{ζγ − lnπp,ℓ

(
R(θ) − R(θp,ℓ) ≤ ζ

)
}

ln γ
.

So

ζγ − dim ln
ζ

Ccp,ℓ
≤ dim ∧ γC(cp,ℓ − ‖θp,ℓ‖) + dim ln

(
Ccp,ℓγ

dim
∨ cp,ℓ

cp,ℓ − ‖θp,ℓ‖

)
.

Now if dim ≤ γC(cp,ℓ − ‖θp,ℓ‖) then we get the estimate dim(1 + ln(Ccp,ℓγ/dim))/ ln γ which
decreases with γ. We then get the desired bound when the supremum is established for γ =
e∨dim/(C(cp,ℓ−‖θp,ℓ‖)). If dim ≥ γC(cp,ℓ−‖θp,ℓ‖) then we get the estimate (γC(cp,ℓ−‖θp,ℓ‖)+

dim ln(cp,ℓ/(cp,ℓ − ‖θp,ℓ‖)))/ ln γ which increases with γ. Then we have to consider the case γ as
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large as possible, that is when dim = γC(cp,ℓ − ‖θp,ℓ‖) but then we are going back to an already
treated case. �

5.5. Proofs of results stated in Subsection 2.4. We first prove the existence of a solution
of the chains with infinite memory (2.4). Then we prove the θ∞-weak dependence properties of
this solution when innovations are bounded and of the bounded ϕ-mixing processes.

Proof of Proposition 2.1. Let us fix some r ≥ 1. Then µ[‖ξ0‖r] < ∞ from the Jensen’s inequality
as ξ0 admits finite moments of exponential orders. Now we want to apply Theorem 3.1 of [14] to
F that satisfies

‖F (0; ξ0)‖r‖r ≤ u‖ξ0‖r < ∞,

denoting ‖ · ‖r for the L
r-norm (µ[·r])1/r. We also have for any x = (xj)j∈N and x′ = (x′

j)j∈N the
following relation

‖F (x; ξ0) − F (x′; ξ0)‖r ≤
∞∑

j=1

aj(F )‖xj − x′
j‖.

Using assumption (2.6) we obtain the existence of a unique causal stationary solution to equation
(2.4) such that π[‖X0‖r] < ∞. Finally this result holds for all 1 ≤ r < ∞ and we have proved
the proposition. �

In the sequel, we prove results of Lemmas 2.2 and 2.3. These two estimates of the θ∞-coefficients
are obtained via a common classical technique that we present shortly below, see [11] for more
details. The so-called coupling techniques consist in constructing a version (X∗

t )t∈Z distributed
as (Xt)t∈Z and such that (X∗

t )t>0 is independent of S0 = σ(Xt, t ≤ 0). If this process (X∗
t )t>0

is well defined, then it gives sharp estimates of the quantity θ∞,n(1) as we have the following
version of the Kantorovitch-Rubinstein duality, see [11] for more details:

Lemma 5.7. For any version (X∗
t )t∈Z we have

(5.18) θ∞,n(1) ≤
n∑

i=1

‖E(‖Xi − X∗
i ‖/S0)‖∞.

For the sake of completeness, we recall the proof of this lemma.

Proof of Lemma 5.7. To compute a bound on the coefficients θ∞(S, Z) for this solution we first
need to introduce coupling arguments coming from Dedecker et al. [12] associated with the τ∞
coefficients defined as

τ∞(S, Z) =

∥∥∥∥ sup
f∈Λ1

∣∣∣E
(
f(Z)

∣∣S
)
− E

(
f(Z)

)∣∣∣
∥∥∥∥
∞

.

First note that this coefficient is in fact the same than θ∞. But we prefer in this section this
formulation as it lets appear the supremum on the class of Lipschitz function, the Weisserstien
metrics. If the space is enough rich, we have, as in [12], the Kantorovitch-Rubinstein equation

(5.19) τ∞(S, Z) = inf
Z∗∈V

‖E(‖Z − Z∗‖/S)‖∞

where V is the set of the random variables Z∗ distributed as Z but independent of S.
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To bound τ∞,n(1) for all n we have to consider a version of the whole process (Xt)t∈Z denoted
(X∗

t )t∈Z such that (X∗
t )t>0 is independent of S0 = σ(Xt, t ≤ 0). As we equip X n with the norm

‖(x1, . . . , xn)‖ =
∑n

i=1 ‖xi‖ we immediately get the inequality

τ∞,n(1) ≤ ‖E(‖(X1, . . . ,Xn) − (X∗
1 , . . . ,X∗

n)‖|S0)‖∞ ≤
u∑

i=1

‖E(‖Xi − X∗
i ‖|S0)‖∞.

�

We conclude the proofs of Lemmas 2.2 and 2.3 by choosing carefully the version in order to get
efficient bounds on ‖E(‖Xi − X∗

i ‖|M0)‖∞ for all i. As there exists plenty of different coupling
schemes in the literature, we now have to chose one that gives (X∗

t )t∈Z that give efficient bounds
for each Lemmas. In the Lemma 2.2 we use the forward coupling, see [22] for more details on
this techniques. The maximal coupling of [15] is used for the proof of Lemma 2.3.

Proof of Lemma 2.2. We apply theorem 3.1 of [14] checking the relations (here F (0; 0) is fixed to
0 for convenience)

‖F (0; ξ0)‖r‖∞ ≤ u‖ξ0‖∞ < ∞,

‖F (x; ξ0) − F (x′; ξ0)‖∞ ≤
∞∑

j=1

aj(F )‖xj − x′
j‖,

where ‖ · ‖∞ denotes the L
∞(µ)-norm. As (2.6) holds, we can conclude of the existence of a

unique causal stationary solution to (2.4) such that ‖X0‖∞ < ∞. Moreover, it follows easily from
the construction that ‖X0‖∞ < u‖ξ0‖∞/(1 − a).

Now let us use the coupling Lemma 5.7 on X∗
t that we construct as follows. Let (ξ∗)t∈Z be a

stationary sequence distributed as (ξt)t∈Z, independent of (ξt)t≤0 and such that ξt = ξ∗t for t > 0.
Let (X∗

t )t∈Z be the solution of the equation

X∗
t = F (X∗

t−1,X
∗
t−2, . . . ; ξ

∗
t ), a.e..

Let p 6= 0 be an integer and (X
(p)
t )t∈Z be the solution, bounded by u‖ξ0‖∞/(1−a), of the equation

(5.20) X
(p)
t = F (p)(X

(p)
t−1, . . . ,X

(p)
t−p; ξt),

with F (p)(x1, . . . , xp; ξ) = F (x1, . . . , xp, 0, . . . ; ξ) for all (x1, . . . , xp) ∈ X p. Let (X
(p)
t

∗
)t be the

solution of Equation (5.20) with the innovation (ξ∗)t∈Z. This coupling scheme is the forward

coupling one for the (X
(p)
t )t∈Z for all p. We have

‖E(‖Xr − X∗
r ‖|M0)‖∞

≤ ‖E(‖Xr − X(p)
r ‖|M0)‖∞ + ‖E(‖X(p)

r − X(p)
r

∗‖|M0)‖∞ + ‖E(‖X∗
r − X(p)

r

∗‖|M0)‖∞.

Remark that

‖E(‖X(p)
r − X(p)

r
∗‖|M0)‖∞ ≤ ‖E(‖F (p)(X

(p)
r−1, . . . ,X

(p)
r−p; ξr) − F (p)(X

(p)
r−1

∗
, . . . ,X

(p)
r−p

∗
; ξr)‖|M0)‖∞

≤
p∑

j=1

aj(F )‖E(‖X(p)
r−j − X

(p)
r−j

∗
‖|M0)‖∞.
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Denote ut = supj≥t ‖E(‖X(p)
j −X

(p)
j

∗
‖|M0)‖∞ for all t ∈ Z that is bounded with 2u‖ξ0‖∞/(1−a)

by construction. Moreover for all n > 0, un ≤ a(F )un−p and then un ≤ a(F )[n/p]+1u0. Using

that ũ0 ≤ 2‖X(p)
0 ‖∞ ≤ 2u‖ξ0‖∞/(1 − a) and that [n/p] + 1 ≥ n/p we obtain

‖E(‖X(p)
r − X(p)

r
∗‖|M0)‖∞ ≤ 2

u‖ξ0‖∞
1 − a

a(F )r/p.

For the other terms we use the Lipschitz condition on F

‖E(‖Xr−X(p)
r ‖/M0)‖∞ ≤ u‖ξ0‖∞

1 − a
·
∞∑

j=p

aj(F ) and ‖E(‖X∗
r−X(p)

r
∗‖/M0)‖∞ ≤ u‖ξ0‖∞

1 − a
·
∞∑

j=p

aj(F ).

Finally, merging those two bounds we get

‖E(‖Xr − X∗
r ‖|M0)‖∞ ≤ 2

u‖ξ0‖∞
1 − a

inf
0<p<r




a(F )r/p +

∞∑

j=p

aj(F )




 .

We conclude by using (5.18) in Lemma 5.7. �

Proof of Lemma 2.3. Here we will consider the maximal coupling scheme of [15]. There exists a
version (X∗

t )t∈Z such that

‖P(Xt 6= X∗
t for some t ≥ r|S0)‖∞ = sup

(A,B)∈S0×Fr

|P(A/B) − P (B)| = ϕ(r).

Now let us denote X the state space of (Xt)t∈Z. As ‖Xt‖∞ ≤ C we can always fix X such that
‖x − y‖ ≤ 2C11x 6=y for every x, y in X . Thus we have:

‖E(‖Xi − X∗
i ‖/S0)‖∞ ≤ ‖E(|Xi − X∗

i |/S0)‖∞
≤ 2C‖E(11Xi 6=X∗

i
/S0)‖∞

≤ 2C‖P(Xi 6= X∗
i /S0)‖∞

≤ 2Cϕ(i).

The last inequality follows from the rough bound

P(Xi 6= X∗
i /S0) ≤ P(

⋃

t≥i

Xt 6= X∗
t /S0).

We conclude by using (5.18) in Lemma 5.7. �

5.6. Proofs of results in Section 4. We proof the Corollaries 4.3 and 4.4 of Theorem 3.2
applied in the context of Neural Networks and projection in the Fourier basis predictors.

Proof of Proposition 4.3. Firstly we check that all the predictors are L-Lipschitz functions of the
observations. For any x, y ∈ R

p, as the function called clip is 1-Lipschitz, we have

|fθ(x) − fθ(y)| ≤ |
ℓ∑

k=1

ck(φ(ak · x + bk) − φ(ak · y + bk))|

≤ D1

ℓ∑

k=1

|ck||ak · (x − y)| ≤ D1

ℓ∑

k=1

|ck|‖ak‖1‖x − y‖∞ ≤ D1‖‖ak‖1‖∞
ℓ∑

k=1

|ck|
p∑

i=1

|xi − yi|.
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Then when θ ∈ Bp,ℓ we are sure that L = D1(τℓ + (3ℓ)−1)(Cp + 1/3) is a convenient Lipschitz
constant.

Secondly we use the approximation estimates given in [6]. More precisely, using Jensen to
estimate L1-risk by L2-risk, we know that

π0

[∣∣∣med(X0 |X−1, . . . ,X−p) − fθp,ℓ
(X−1, . . . ,X−p)

∣∣∣
]
≤ 2Cp√

ℓ
.

Then using Theorem 3.2 there exists some constant C > 0 such that for sufficiently large n and
as soon as

(5.21) K ≥ ‖X‖∞ + 2θ∞,∞(1)

1 + L
,

we have

π0[R(θ̂)] and π0[R(θ̃)] ≤ inf
p,ℓ

{

R
(
θp,ℓ

)
+ C

(√
dp,ℓ

n
ln(dp,ℓn) +

ln n√
dp,ℓn ln(dp,ℓn)

)}

.

Then let us remark that (5.21) is always satisfied for sufficiently large n as in fact L goes to ∞
with n through τℓ and ℓ. On the opposite, using the estimate of dp,ℓ and the assumption on Cp

we know that for n large and for some constant C it holds dp,ℓ ≤ Cpℓ ln(n). Combining with the
approximation bound, it holds

π0[R(θ̂)] and π0[R(θ̃)] ≤ inf
p,ℓ

{
π0 [|X0 − med(X0|X−1, . . . ,X−p)|] +

2Cp√
ℓ

+ C

√
pℓ

n
ln3/2(n)

}
.

When fixing ℓ =
√

n/p ln−3/2(n) the result follows. �

Proof of Proposition 4.4. Let us apply Theorem 3.3 and we obtain for some constant C the rela-
tion

π0[R(θ̂)] and π0[R(θ̃)] ≤ inf
p,ℓ

{

R
(
θp,ℓ

)
+ C

√
dp,ℓ

n
ln(dp,ℓn) ln(n)

}

≤ inf
ℓ

{

R
(
θp0,ℓ

)
+ C

√
dp0,ℓ

n
ln(dp0,ℓn) ln(n)

}

.

Now, we have

R
(
θp0,ℓ

)
= inf

θ∈Θ
π0

[∣∣∣Xp+1 − fθp0,ℓ
(Xp, ...,X1)

∣∣∣
]

≤ π0

[∣∣∣∣∣Xp+1 −
p0∑

i=1

fi(Xp−i)

∣∣∣∣∣

)
+ inf

θ∈Θ
Eπ0




∣∣∣∣∣

p0∑

i=1

fi(Xp−i) −
p0∑

i=1

n∑

j=1

θi,jϕj(Xp−i)

∣∣∣∣∣





≤ µ(|ξ0|) + inf
θ∈Θ

p0∑

i=1

π0




∣∣∣∣∣fi(X1) −

n∑

j=1

θi,jϕj(X1)

∣∣∣∣∣



 .

Now, note that the hypothesis on the process implies that X1 has a density upper bounded by
1/
√

2πσ2 and so we obtain
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R
(
θp0,ℓ

)
≤ µ(|ξ0|) +

1√
2πσ2

inf
θ∈Θ

p0∑

i=1

∫ ∣∣∣∣fi(x) −
n∑

j=1

θi,jϕj(x)

∣∣∣∣dx

≤ µ(|ξ0|) +
1√

2πσ2
inf
θ∈Θ

p0∑

i=1




∫ [

fi(x) −
n∑

j=1

θi,jϕj(x)

]2

dx





1
2

≤ µ(|ξ0|) +
1√

2πσ2

p0∑

i=1

γiℓ
−si ≤ µ(|ξ0|) +

∑p0
i=1 γi√
2πσ2

ℓ−s.

So now we have

(5.22) π0[R(θ̂)] and π0[R(θ̃)] ≤ µ(|ξ0|) + inf
ℓ

{

ℓ−s

∑p0
i=1 γi√
2πσ2

+ C

√
dp0,ℓ

n
ln(dp0,ℓn) ln(n)

}

Now, we estimate dp0,ℓ using Propostition 3.1 and we obtain

dp,ℓ = pℓ

(
1 + ln

(
L

(
e

pℓ
∨ 1

a

)))
.

We plug it into Equation (5.22) to obtain for some C > 0 and sufficiently large n

π0[R(θ̂)] and π0[R(θ̃)] ≤ µ(|ξ0|) + inf
ℓ

{
ℓ−s

∑p0
i=1 γi√
2πσ2

+ C

√
p0ℓ

n
ln (p0ℓn) ln(n)

}
.

In particular fixing ℓ proportional to n
1

2s+1 leads to the result. �
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