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EXISTENCE OF NON-ALGEBRAIC SINGULARITIES OF

DIFFERENTIAL EQUATION

YOHANN GENZMER, LOÏC TEYSSIER

Laboratoire I.R.M.A.

Université de Strasbourg (France)

Abstract. An algebraizable singularity is a germ of a singular holomorphic
foliation which can be defined in some local chart by a differential equation
with algebraic coefficients. We show that there exist at least countably many
saddle-node singularities of the complex plane that are not algebraizable.

c©2009, Journal of Differential Equations / Éditions scientifiques et
médicales Elsevier SAS.

We consider differential equations in the complex plane

A (x, y) dy = B (x, y) dx(0.1)

near an isolated singularity, which can be conveniently located at (0, 0) by transla-
tion. The coefficients A and B are germs of a holomorphic function with a common
zero at (0, 0) and no common factor. We denote by λ1 and λ2 the eigenvalues of
the linear part of the equation at (0, 0). We will always assume that at least one
of those is non-zero, say λ2 6= 0, and set λ := λ1

λ2
. We recall the following classical

result :

Theorem. (Poincaré and Dulac [4]) If λ /∈ R≤0 then there exist two polynomials
P, Q such that the previous differential equation is orbitally equivalent through a
local analytic change of coordinates to

P (x, y) dy = Q (x, y) dx .

If moreover λ /∈ N∪ 1/N 6=0 then we can choose P (x, y) = x and Q (x, y) = λy ( i.e.
the equation is linearizable).

We recall that two germs of differential equation are orbitally equivalent when
there exists a germ of biholomorphism conjugating their solutions. It thus turns
out that a generic equation is orbitally equivalent to a linear, or at least algebraic,
equation. Up to now an open question regarded whether every differential equation
is algebraic in some local chart. Such an equation will be called algebraizable.
Geometrically, it is equivalent to ask if any germ of a singularity of foliation in the
complex plane can be realized as some singularity of a foliation of CP2. We aim
to prove that it is not so in the case of a saddle-node (λ = 0), as was expected
in [5] for non-linearizable resonant singularities. Notice that these equations are
nonetheless formally algebraizable.

Date: Juin 2009.
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Theorem 1. There exist at least countably many non-equivalent saddle-node equa-
tions

x2dy = (y + h.o.t) dx(0.2)

which are not algebraizable.

Our proof is based on Martinet-Ramis’ theorem about orbital classification of
such equations, stating that the equivalence classes of all equations (0.2) under the
action of local changes of coordinates is in one-to-one correspondence with the space
of germs C {h}. We will give a more precise statement in Section 3. Our argument
boils down to the following : since the space of orbitally equivalent saddle-node
equations is in one-to-one correspondence with a functional space of germs and
since this space is “big” then the trace of all algebraic equations should reasonably
be “meagre”, for instance in the sense of Baire. Many problems arise immediately,
one of those being that C {h} cannot be endowed with a topology which would
make it a Baire space while at the same time preserving the “nice” structure of
the set of algebraic equations. Another problem lies in the fact that C {h} might
not be objectively “big” as it can be the range of a continuous map R → C {h}
and thus set-theoretically equivalent to the field of scalars. Hence both set theory
and topology are not sufficient to guarantee that the heuristics works, and we must
consider “analytic Baire properties”. What makes things work is the fact that
Martinet-Ramis’ invariant of classification is analytic with respect to the equation,
as was already known. The main part of our proof regarding this Baire analyticity
property deals with showing that Dulac’s prenormalization procedure is analytic
too.

What is actually expected is that the typical saddle-node equation is non-algebraizable,
i.e. the set of non-algebraizable equations is a Gδ-dense subset of all saddle-node
equations, not only that the image of those non-algebraizable equations is a Gδ-
dense subset of the space of invariants (which is what we prove here). To do so one
must consider a finer topology on spaces of germs than the ones used presently and
study analyticity and openness of maps from and into these spaces. This requires
a lot of additional technical work and is currently being carried out. The authors
nonetheless believe this stronger result to be true.

1. A topology on C {z1, z2, . . . , zn}
In the sequel we use bold-typed letters to indicate multi-variables z := (z1, . . . , zn) ∈

Cn or multi-indices J := (j1, . . . , jn) ∈ Nn. We use the standard notations J! :=
∏

ℓ (jℓ!), |J| :=
∑

ℓ jℓ and zJ :=
∏

ℓ z
jℓ
ℓ .

1.1. Norm on C {z}.
Let us endow the topological space C {z} with the norm

||f || :=
∑

J

|aJ|
J!

where f (z) =
∑

J
aJz

J. Since the series f is convergent ||f || is well defined and is
a norm on the space C {z}. Notice that the space (C {z} , ||.||) is not complete since

the sequence
(
∑

|J|≤n

√
J!zJ

)

n∈N
has the Cauchy property but is not convergent

in the space of convergent series. It is not even a Baire space. The evaluation
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f 7→ f (0) is continuous as well as the evaluation at 0 of any derivative. Hence, the
family of projectors JN which associates to f is N -jet is continuous.

1.2. Analytical functions from Cp to C {z}.

Definition 2. Let Ω be a domain of Cp for p ∈ N 6=0.

(1) A map F : Ω → C {z} is said to be strongly analytic if the map (x, z) 7→
F (x) (z) is analytic with respect to the n+ p complex variables x1, · · · , xp

and z1, · · · , zn on a neighbourhood of Ω× {0}.
(2) The map F is said to be analytic if for any point x in Ω, there exists a

linear map L : Cp → C {z} such that

F (x+ h) = F (x) + L (h) + o (h) .

(3) A map G : C {w} 7→ C {z} is said to be strongly analytic if the image of
any analytic family of C {w} with a lower bounded radius of convergence
is an analytic family of C {z} with a lower bounded radius of convergence.

Proposition 3. If F is strongly analytic then it is analytic.

Notice that there exist analytic maps which are not strongly analytic: the ob-
struction comes simply from the non-existence of local uniform lower bound for the
radius of convergence of series on any open ball of C {z} for ||.||. The following
example, due to J. Duval, illustrates that fact.

Example 4. Consider the family of compact sets for ε > 0

Kε := D\ {0 < Im (z) < ε}
which is the union of two simply connected, compact and connected sets K+

ε and
K−

ε such that, say, K±
ε intersects ±iR>0. According to Runge’s approximation

theorem there exists a sequence of polynomials (P ε
n)n∈N which is a uniform approx-

imation of the function defined by x ∈ K+
ε 7→ 1

x
and x ∈ K−

ε 7→ 1. There exists a

slowly converging sequence εn > 0 such that supx∈D |P εn
n (x)| ≤ √

n. We now form
the sequence Pn := P εn

n and consider the map:

F : x ∈ C 7→
∑

j∈N

Pj (x)
j
zj .

The reader can easily prove that F (x) ∈ C {z} for all x ∈ C and that its radius of
convergence is |x| if Im (x) > 0 and equals 1 otherwise. As a consequence F cannot
be strongly analytic, as (x, z) 7→ F (x, z) is analytic on no neighbourhood of (0, 0),
whereas x 7→ F (x) is analytic, for

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

F (x+ h)− F (x)− h
∑

j∈N

jP ′
j (x)Pj (x)

j−1
zj

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

≤ C |h|2
∑

j∈N

√
j
j

j!

if we require that x belong to a smaller disc rD, 0 < r < 1, thanks to Cauchy’s
formula as will be detailed further down.

Proof. In the proof we assume that n = p = 1 : the general case can be treated in
much the same way. Since analyticity is a local property, we can also perform the
proof in a neighbourhood of 0 ∈ C. Let us write F (x) (z) =

∑

j≥0 fj (x) z
j. Since

F (x) (z) is analytic as a map of two variables, the series F (x) are convergent on a
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common open disc centered at x = 0 with radius 2ρ. The Cauchy formula ensures
that for any j

fj (x) =
(−1)

j

2iπ

ˆ

γ

F (x) (ξ)

ξj+1
dξ

for any loop γ in the disc of convergence. Substituting γ := {|ξ| = ρ} yields

ρj+1 |fj (x)| ≤ ||F (x)||∞,D(0,ρ) ,

Since F (x) (z) is bounded on D (0, β)×D (0, ρ) for some β, there exists a positive
number C such that for any j

|fj (x)| ≤
C

ρj
.

Hence on a disc D(0, β′) with β′ < β we have a control of the second derivative of
the components of fj (x)

∣
∣
∣f

(2)
j (x)

∣
∣
∣ ≤ C

′

ρj
.

As a consequence, we have on a yet smaller disc :

∣
∣
∣fj (x+ h)− fj (x)− hf

(1)
j (x)

∣
∣
∣ ≤ C

′′ 1

ρj
|h|2 .

Defining DxF (h) as h
∑

j≥0 f
(1)
j (x), which is a convergent series, yields

||F (x+ h)− F (x)−DxF (h)|| ≤ C
′′

e
1
ρ |h|2 ,

which ensures the analyticity of F . �

2. Analytical Baire property of C {z}
We haven’t been able to find a suitable “nice” and reasonably interesting topol-

ogy on C {z} in order to obtain a Baire space, and surely it is not possible to do so if
we agree on what “interesting topology” might be... We can prove that (C {z} , ||·||)
is not Baire. But we can also prove that this space cannot be covered by countably
many analytic subspaces, which is the purpose of this paragraph.

Definition 5.

(1) An analytic subspace of C {z} is the range of an analytic map F : Ω ⊂
Cp → C {z}.

(2) We say that C {z} is an analytic Baire space if it cannot be the union of a
countable analytic subspaces.

Our main result is the following

Theorem 6. C {z} is an analytic Baire space.

2.1. Annoying facts about C {z}.
We begin with proving the following

Lemma 7. C {z} is in one-to-one correspondence with C.

This result is a consequence of the existence of a “Peano-curve” in C {z} for
some relatively natural topology.
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Proof. The space C {z} is naturally a subset of CN, which can be endowed with the
product topology. The induced topology on C {z} makes this space a connected
and locally connected topological space. Moreover for any (p, r) ∈ N×Q the subset
of C {z} defined by

Ap,r :=






f (h) =

∑

j≥0

ajh
j : |aj| ≤ prj







is compact. The union
⋃

N×Q Ap,r covers the whole C {z}, which means the latter is
σ-compact for the topology under consideration. A theorem of Hahn, Mazurkievicz,
Menger, Moore and Sirpieński [6] states precisely that the continuous images of
[0, 1] are the compact, connected and locally connected spaces. Therefore C {z} is
a continuous image of R, and obviously of C, for the above not-too-pathological
product topology. A weaker consequence is that from a purely set-theoretical point
of view C and C {z} are in one-to-one correspondence. �

Now we show that

Lemma 8. (C {z} , ||·||) is not a Baire space.

Proof. We consider the following example due to R. Schäfke. Consider the sub-
spaces

MN :=
{∑

ajz
j : |aj | ≤ N j

}

, N ∈ N .

Obviously C {z} = ∪NMN . Moreover MN = ∩j

{
|aj | ≤ N j

}
is closed as the asso-

ciation f 7→ f (j) (0) is continuous, and its interior is empty as the example 4 shows
that no neighbourhood of f ∈ C {z} may admit a uniform lower bound for the
radius of convergence. �

As an inductive space C {z} can also be endowed with the inductive topology :
this space becomes complete but not Baire. In particular this topology cannot be
induced by a metric.

2.2. Preliminaries.
In order to prove Theorem 6 we will need to eventually locate the proof within

a Baire space to get a contradiction. Let A be the subspace of C {z} defined by

A :=






f (z) =

∑

j≥0

ajz
j : |aj | is bounded







together with the norm ||·||∞ :

||f ||∞ := sup
j

|aj| .

(A, ||·||∞) is a complete metric space and is thus a Baire space because it is isometric
to a subspace of CN formed by all bounded sequences equipped with the sup-norm.

Lemma 9. Let S be a closed set in C {z} for the norm ||·||. Then S ∩A is closed
in A for the norm ||·||∞.
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Proof. Let (fn) be a sequence in S ∩ A which tends to f when n tends to infinity
for the norm ||·||∞. Then f belongs to A since it is closed. Moreover, as

||fn − f || ≤ e ||fn − f ||∞ ,

the sequence is convergent in C {z} for the norm ||.||. Since S is closed f must
belong to S too. �

Lemma 10. A family f1, . . . , fn ∈ C {z} is free over C if, and only if, there exists
p ∈ N such that their p-jets are free over C.

Proof. Suppose that for any p ∈ N there exists a non-trivial relation

Λp := (λ1,p, . . . , λn,p) 6= 0

for the family ϕp := (Jp (f1) , . . . , Jp (fn)), that is

Jp





n∑

j=1

λj,pfj



 = 0 .

Up to rescalling Λp one can suppose that it belongs to the unit sphere of Cn and
so consider some adherence value (λ1,∞, . . . , λn,∞) . Because if Jk+1 (f) = 0 then
Jk (f) = 0, by taking the limit p → ∞ while fixing an arbitrary k we obtain that
Λ∞ is a non-trivial relation for ϕk by continuity of f 7→ Jk (f), and thus is a
non-trivial relation for (f1, · · · , fn). �

According to this lemma, if F is of maximal rank at x, i.e. its rank is equal to the
dimension of the source space, there exists N ∈ N such that the function JNF is
of maximal rank. Since the space of polynomials of maximal degree N is of finite
dimension, the function JNR is locally one-to-one around x. So is the application
F . Hence the

Corollary 11. Let F : Ω ⊂ Cn → C {z}.
(1) If DxF is of rank n then F is locally one-to-one near x.
(2) If DxF is of maximal rank p < n then there exists a smooth hypersurface

S of dimension p at x such that F |S is of rank p and has the same image as
F .

Proof. The second part of the corollary is proved using the same result in finite
dimension : indeed, if the range of F were some finite dimensional vector space, one
could choose for S the hypersurface

{
xi1 = · · · = xin−p

= 0
}
where D(xj1 ,...,xjp)

F

is of rank p with {1, · · · , n} = {i1, . . . , in−p} ∪ {j1, . . . , jp} . Now if the range of F
were C {z}, one applies this argument to JNF for all N big enough. �

The key point to Theorem 3 is the following proposition :

Proposition 12. Let F : Ω → C {z} be continuous, analytic and one-to-one on
an open set Ω ⊂ Cn. Let E < C {z} be any subspace of infinite dimension and
suppose that DxF is of rank n for some x ∈ Ω. Then there exist δ in E and ε > 0
such that for any 0 < |t| < ε the germ F (x) + tδ does not belong to F (Ω).

Proof. Suppose the claim is false and fix δ ∈ E\ {0}. There exists a sequence
(un)n∈N ⊂ Cn such that, for n large enough, x+ un ∈ Ω and

F (x+ un) = F (x) +
δ

n
.
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Any accumulation point u of un satisfies F (x+ u) = F (x). Because F is one-to-
one u must vanish, which in turn implies that un converges towards zero. Besides,
the definition of differentiability we use implies

o (un) =

∣
∣
∣
∣

∣
∣
∣
∣
DxF (un)−

δ

n

∣
∣
∣
∣

∣
∣
∣
∣
= ||un||

∣
∣
∣
∣

∣
∣
∣
∣
DxF

(
un

||un||

)

− δ

n ||un||

∣
∣
∣
∣

∣
∣
∣
∣
.

Dividing by ||un|| yields
∣
∣
∣

∣
∣
∣DxF

(
un

||un||

)

− δ
n||un||

∣
∣
∣

∣
∣
∣ = o (1) . Now by compactness of

the unit sphere of Cn we can assume that un

||un||
tends to some u 6= 0 when n tends

to infinity. Hence δ
n||un||

has to tend to someλδ as n tends to infinity and, according

to the rank assumption, λ 6= 0. As a matter of consequence

DxF (u) = λδ,

which cannot be possible for every δ in E, for the image of the differential map
DxF is finite dimensional. �

2.3. Analytical Baire property of C {z} : proof of Theorem 6.
We show here that C {z} has an analytical Baire property by supposing on the

contrary that C {z} is a countable union of analytic sets :

C {z} =
⋃

n∈N

⋃

j∈N

Fj,n (Ωj,n) ,

where Fj,n is a differentiable function defined on an open set Ωj,n of Cn. Taking if
necessary a finite covering of each Ωj,n, one can assume that Fj,n is of rank n on
Ωj,n. Indeed the set of points where Fj,n is not of maximal rank is an analytical
subset Σj,n of Ωj,n locally closed. The analytical set Σj,n admits a decomposition
Σj,n = ∪Ck where each cell Ck is biholomorphic to an open set of some Cp with
0 ≤ p < n [2]. Hence we get the following decomposition

Fj,n (Ωj,n) = Fj,n (Ωj,n\Σj,n)
⋃

k

Fj,n (Ck) .

If the rank p of Fj,n is strictly smaller than n on Ωj,n\Σj,n then one can find
a finer covering of Ωj,n\Σj,n =

⋃

k Bj,n,k and a family of smooth hypersurfaces
Sj,n,k ⊂ Bj,n,kof dimension p such that the rank of Fj,n|Sj,n,k

is n and Fj,n|Bj,n,k

and Fj,n|Sj,n,k
has the same image . Now on each cell Ck one can seek the points

where Fj,n|Ck
is not of maximal rank and do the same procedure as above. This

construction stops after finitely many steps since at each stage the dimension of the
open set we consider is strictly less than that of the previous stage. Finally since
any open set of Cp is a countable union of compact sets, we obtain the following
decomposition

C {h} =
⋃

n∈N

⋃

j∈N

⋃

q∈N

Rj,n (Kj,n,q) ,

where Ωj,n =
⋃

q∈N Kj,n,q and each Kj,n,q is a full compact subset of some Cp with
p ≤ n.
The set Rj,n (Kj,n,q) is compact and therefore closed for the topology induced by
(||·||k)k>0. According to Lemma 9 the set Rj,n (Kj,n,q) ∩ A is also closed in A for

the norm ||·||∞. It is besides of empty interior : since A is infinite dimensional if
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Rj,n (x) belongs to A we can invoke Proposition 12 to obtain δ ∈ A such that for t
small enough

Rj,n (x) + tδ 6/∈ Rj,n (Ωj,n) ,

which ensures that any small ball for the norm ||·||∞ in A around Rj,n (x) cannot
be contained in Rj,n (Ωj,n). Finally we obtain the sought contradiction since then
A can be split into a countable union of closed subset with empty interior :

A =
⋃

n∈N

⋃

j∈N

⋃

q∈N

Rj,n(Kj,n,q) ∩A ,

which is impossible since A is a Banach thus Baire space.

3. Analyticity of Martinet-Ramis invariants and proof of the main

theorem

The tool that we need is a map which to a saddle-node equation, written in the
most general form (0.1), associates its invariant of orbital classification. This is the
goal of this section, as well as proving that this map is actually analytic.

Firstly we need to put the general equation (0.1) in a prepared form; this is
done using Dulac’s prenormalization procedure in Section 3.2. We will restrict our
construction to those equations whose first topological invariant equals 1. Geo-
metrically speaking this invariant is the order of tangency between the foliation
defined by the equation and the separatrix tangent to the eigenspace associated to
the eigenvalue λ2 6= 0. This defines the stratum E1, studied in Section 3.3. After
applying Dulac’s procedure D we deal with equations in the form

x2dy = (y +R (x, y)) dx .

Define the space M := C × C × Diff (C, 0) the equivalence relation on M by

(µ, τ, φ) ∼
(

µ̃, τ̃ , φ̃
)

if, and only if, µ = µ̃ and there exists c ∈ C 6=0 such that

φ (ch) = φf̃ (h) and τ = cτ̃ .

Theorem. (Martinet-Ramis, [5]) There exists a map M : E1 → M such that

two equations E and Ẽ of E1 are orbitally conjugate if, and only if, M (E) =

M
(

Ẽ
)

. Moreover this map is onto and if t ∈ (Cn, 0) 7→ Et ∈ E1 is an analytic

family of equations written in Dulac’s form then t 7→ M (Et) is an analytic family
too (that is, for all t one can choose a representant of M (Et) such that this family
is analytic).

In other words, once written in Dulac’s form the germ-component of Martinet-
Ramis’ map, which we will write φMR, is strongly analytic with respect to R. The
aim of this section is to provide a proof for the :

Theorem 13. The complete Martinet-Ramis map (Ady −Bdx)
D−→
(
x2dy − (y +R) dx

) φMR−→
φ ∈ Diff (C, 0) is a strongly analytic association.

Thus all that remains is to show that D is strongly analytic. Before investigating
this result we begin with giving the proof of Theorem 1 in the upcoming section.
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3.1. Proof of the existence of countably many non-algebraizable saddle-
node singularities (Theorem 1). First we show that there there exists at least
one such non-algebraizable equation. Suppose on the contrary that any saddle-node
singularity is algebraizable. We define Pd to be the set of all equations in E1 with
polynomial coefficients of maximum degree d which, as we will see in Corollary 15, is
an analytic space. Then, according to Theorem13 the restriction of φMR ◦D to the
space of polynomials must be onto : therefore, we would obtain the decomposition

Diff (C, 0) ≃ C {h} =
⋃

n∈N

φMR ◦ D (Pn)

which would be a countable union of analytical sets. This is impossible in view of
the analytic Baire property of C {h} (Theorem 6). Hence, there exists at least one
saddle-node equation which is not algebraizable.

Obviously the same argument works for countably many equations as a point of
C {h} is a compact with empty interior.

3.2. Dulac’s procedure. Let E be the set of couples (A,B) ∈ C {x, y} ×C {x, y}
such that the matrix (

∂A
∂x

∂A
∂y

∂B
∂x

∂B
∂y

)

has exactly one non-vanishing eigenvalue. One can assume that, up to a linear
change of variables, the linear part of XA,B = −B ∂

∂x
+ A ∂

∂y
is diagonal :

A (x, y) = o (||x, y||)
B (x, y) = y + o (||x, y||) .

Notice that the latter change of variable depends rationally on the coefficients of
the linear part of A and B. In all the sequel the only changes of variables we allow
will be required to preserve this diagonal form. The existence of a unique analytic
solution x = s (y) (a separatrix of XA,B) tangent to the eigenspace {x = 0} at
(0, 0) is well known (see [1] for example). The other separatrix y = ŝ (x), tangent
to {y = 0}, only exists a priori at a formal level (and generically this series, though
unique, is divergent). The reader will find in [3] the material needed to carry out
the complete prenormalization procedure. What we retain from it is the following
steps :

• Applying the change of coordinates (x, y) 7→ (x+ s (y) , y) transforms XA,B

into a vector field XA1,B1 where

A1 (x, y) ∈ xC {x, y} .

• It is possible to further orbitally normalize A1 to obtain a new vector field
XAD ,BD

such that

AD (x, y) = xk+1

BD (x, y) = y + r (x) + yR (x, y)(3.1)

with r (0) = r′ (0) = R (0, 0) = 0. The integer k ∈ N>0 is a topological
invariant (but not a complete topological invariant).

• We define the map

D : (A,B) ∈ E 7→ BD − y ∈ C {x, y} .
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At this stage this map may not be well defined. We will give a canonical
way of obtaining D (A,B) from the original vector field without ambiguity.
We do this in Section (3.4).

3.3. The stratum E1. Denote by E1 the stratum of E consisting of equations that
can be put under the previous form (3.1) with k = 1.

Proposition 14. The stratum E1 is constructable: it is the complementary of a
dimension 1 affine subspace of E.

Proof. First we apply the change of coordinates (x, y) 7→ (x+ s (y) , y) which brings
XA,B to XxÃ,B̃. In this situation the separatrix is straightened to {x = 0}. Write

Ã (x, y) = ax + by + o (||x, y||); we claim that XA,B belongs to E1 if, and only
if, a 6= 0. On the one hand suppose that there exists a local analytic change of
coordinates Ψ (x, y) = (αx + C (x, y) , βy +D (x, y)), with C and D in C {x, y}1,
defining a conjugacy between XxÃ,B̃ and some UX

x2,B̂
with η := U (0, 0) 6= 0.

Then :

U (x+ C, y +D) (αx+ C)
2

= xÃ

(

α+
∂C

∂x

)

+ B̃
∂C

∂y
.(3.2)

Written for the term of least homogeneous degree this equation becomes, since
B̃ (x, y) = y + o (||x, y||) :

ηα2x2 = αx (ax+ by) + y (δx+ γy)

where δ = ∂2C
∂x∂y

(0, 0) and γ = 1
2
∂2C
∂y2 (0, 0). Hence αη = a, meaning a 6= 0 as

requested. On the other hand we use Dulac’s result : we know that there exists
such a Ψ between XxÃ,B̃ and some UXxk+1,B̂. If a 6= 0 then necessarily k = 1, as

can be seen for the analog of (3.2) (the term
(

B̃ − y
)

∂C
∂y

is indeed of homogeneous

degree strictly greater than 2 and thus cannot cancel αax2 out). To complete the
proof we only have to mention that the condition a 6= 0 is equivalent to A2,0 6= 0.
But this is obviously the case : we even have A2,0 = a according to

A (x+ s (y) , y) = xÃ (x, y) + B̃ (x, y) s′ (y)

with s′ (0) = s (0) = 0. Hence E1 = E\ {A2,0 = 0} is constructable. �

Corollary 15. Let C [x, y]≤d be the space of all polynomials of degree at most d
and define

Pd := E1 ∩
(

C [x, y]≤d × C [x, y]≤d

)

.

Then Pd is a constructable set.

Particularly Pd is a finite union of smooth analytical sets.

3.4. Strong analyticity of Dulac’s procedure. We first begin with building
the map D in a canonical way.

(1) As already stated, there exists a unique germ s (y) such that {x = s (y)} is
a separatrix of XA,B.
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(2) Applying the change of coordinates (x, y) 7→ (x− s (y) , y) transforms XA,B

into XA1,B1 where

B1 (x, y) := B (x− s (y) , y)

A1 (x, y) := A (x− s (y) , y)−B1 (x, y) s
′ (y) =: x (a0 (y) + αxA2 (x, y))

with A2 (0, 0) = 1 and α 6= 0.
(3) There exists a unique holomorphic function y 7→ C (y) such that C (0) = 0

and (x, y) 7→
(
x
α
(1 + C (y)) , y

)
transforms XA1,B1 into UXx2,BD

where

U (x, y) :=
a0 (y)

B1 (0, y)

B1 (0, y)−B1 (x, y)

αx
+A2 (x, y)

BD (x, y) :=
B1

(
x
α
(1 + C (y)) , y

)

U (x, y)
.

This function C is the unique holomorphic solution to the (regular) linear
differential equation with C (0) = 0 :

B1 (0, y)C
′ (y) = (1 + C (y)) a0 (y) ,

whose solution is given by C (y) = e
´

y

0

a0(u)

B1(0,u)
du − 1. We have U ∈ C {x, y}∗

since U (0, 0) = A2 (0, 0) = 1.

Definition 16. We define Dulac’s map as

D (A,B) := BD − y ∈ C {x, y}1 .
To prove that the map D is strongly analytic, it is enough to prove that each step
of the above construction shares this property: it should be obvious for the second
and third steps. It remains to check that it is also the case for the first step.

Lemma 17. The correspondence (A,B) ∈ E1 7→ s (y) ∈ C {z} is strongly analytic.

Proof. It is enough to prove that one can control the disc of convergence s in terms
of parameters depending on A and B . Let (Aǫ, Bǫ) be some analytic family in E1
with ǫ ∈ (Cp, 0) The lemma is deduced from the following formal computation. Let
us write

s(y) =
∑

j≥0

sjy
j , s0 = s1 = 0 .

Then for all n ∈ N :

sn(y) =
∑

j≥0




∑

j1+···+jn=j

sj1 · · · sjn





︸ ︷︷ ︸

Sn,j

yj

where for p ≥ j we have Sp,,j = 0. Write

Aǫ (x, y) =
∑

n,m

aǫn,mxnym , aǫ0,0 = aǫ1,0 = aǫ0,1 = 0

so that

Aǫ (sǫ (y) , y) =
∑

n,m

aǫn,msǫ(y)
nym =

∑

p≥0




∑

j+m=p

∑

n≤j

aǫn,mSǫ
n,,j





︸ ︷︷ ︸

W(A)p

yp .
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The equation defining sǫ, namely Aǫ (sǫ (y) , y) = Bǫ (sǫ (y) , y) s
′

ǫ (y), thus becomes
with a similar notation for Bǫ (x, y) =

∑
bǫn,mxnym :

∑

p≥0

W(Aǫ)py
p =

∑

p≥0

psǫpy
p +

∑

p≥0

(
∑

m+n−1=p

nW(Bǫ)msǫn

)

yp .

After identifying the coefficients in yp we derive

(3.3) psǫp = W(Aǫ)p +
∑

m+n=p+1

nW(Bǫ)msǫn.

Hence, in a standard fashion, for any p we have
∣
∣sǫp
∣
∣ ≤ s̄p, where s̄p satisfies the

same recurrence equation as sǫp except that we set am,n = bm,n = Mρm+n , where
M is a constant and ρ a lower bound for the radius of convergence of Aǫand Bǫ.
Thus

∣
∣sǫp
∣
∣ is less or equal than the coefficient s̄p of s̄ satisfying

1
1−ρy

× 1
1−ρs̄(y) − 1− ρy − ρs̄ (y) = s̄

′

(y)
(

y
M

+ 1
1−ρy

× 1
1−ρs̄(y) − 1− ρy − ρs̄ (y)

)

Since this equation admits a convergent solution with s̄ (0) = 0, its radius of con-
vergence is a lower bound for the radius of convergence of the family sǫ. �
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