
HAL Id: hal-00361815
https://hal.science/hal-00361815

Submitted on 16 Feb 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

LOGIC CONTROLLERS DEPENDABILITY
VERIFICATION USING A PLANT MODEL

José J.B. Machado, Bruno Denis, Jean-Jacques Lesage, Jean-Marc Faure,
Jaime Fereira

To cite this version:
José J.B. Machado, Bruno Denis, Jean-Jacques Lesage, Jean-Marc Faure, Jaime Fereira. LOGIC
CONTROLLERS DEPENDABILITY VERIFICATION USING A PLANT MODEL. 3rd IFAC Work-
shop on Discrete-Event System Design, DESDes’06, Rydzyna (Poland), 26-28 September 2006, Sep
2006, Poland. pp. 37- 42. �hal-00361815�

https://hal.science/hal-00361815
https://hal.archives-ouvertes.fr


 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

LOGIC CONTROLLERS DEPENDABILITY VERIFICATION 
USING A PLANT MODEL 

 
 

José M. Machado (1), Bruno Denis (2), Jean-Jaques Lesage (2), 
Jean-Marc Faure (2), (3), Jaime C. L. Ferreira Da Silva (1)

 
 

(1) University of Minho - Campus de Azurém, 4800-058 Guimarães, Portugal 
(2) LURPA-ENS de Cachan - 61, Avenue du Président Wilson, 94235 Cachan, France 

(3) SUPMECA, 93407 Saint-Ouen, France 
 
 

Abstract: This paper focuses on usefulness of a plant model for model-checking of 
untimed properties of logic controllers. Verification results obtained on a case study by 
using the symbolic model-checker NuSMV and three methods: verification of the only 
controller, constraints-based verification, in which the plant is simply modeled as a set of 
physical constraints, and model-based verification, that relies on a detailed model of the 
plant, are presented. The results yielded by these approaches enable to draw up 
application rules for formal verification of logic controllers. 
 
Keywords: Logic controller, formal verification, plant model, model-checking 
 
 

1. INTRODUCTION  
 
Formal verification of logic controllers thanks to 
untimed model-checkers has been addressed by 
numerous researchers (see for instance (Moon, et al, 
1992), (Bornot, et al, 2000), (Lampérière and Lesage, 
2000), (Huuck, et al, 2003), (Gourcuff, et al, 2006)), 
who produced valuable results, such as formal 
semantics of the IEC 61131-3  standardized 
languages (IEC 61131-3, 1993) as well as rules to 
translate PLC programs into formal models. Most of 
these works, whose objective is systems 
dependability improvement, have addressed 
verification of the only controller and, even when a 
model of the controlled system, commonly named 
plant model, has been used in conjunction with the 
controller (Rausch and Krogh, 1998), (Merkte and 
Menzel, 2000), no comparison of the results obtained 
when using and not using this plant model has been 
performed. The objective of this paper is to contribute 
to fill this gap. 
Adding a plant model to the controller model may a 
priori leads to fear that combinatory explosion occurs 
more easily, while on the other hand verification 
results may be expected more realistic when they are 
related to the couple controller and plant model. 
Hence the potential user of model-checking tools may 

reasonably wonder whether it is useful or not to 
introduce a plant model when checking properties of 
a logic controller and, if such is the case, how this 
model must be constructed and employed. Must it be 
used for all properties or only for some of them 
(safety or liveness properties)? Which is the right 
accuracy level of this plant model? 
To contribute to answer these questions, a set of 
verification experiments has been undertaken. The 
same set of properties issued from a case study has 
been verified with the symbolic model-checker 
NuSMV by using three different approaches. In the 
first one, only the model of the controller has been 
verified. In the second one, a set of logical constraints 
that represents in an abstract manner some significant 
behaviors of the plant has been introduced. Finally, a 
detailed model of the plant in the form of a set of state 
automata has been added to the formal model of the 
controller. The outcomes that yielded the model-
checker as well as the sizes of the state spaces and the 
verification times has been then compared to estimate 
the drawbacks and advantages of the two plant 
models in the frame of formal verification of logic 
controllers. 
The outline of this paper is the following. The case 
study is briefly presented in section 2. Sections 3, 4 
and 5 show respectively how formal models of the 

     



controller, of the properties to check and of the plant 
can be obtained while section 6 focuses on the 
translation of these models into the input language of 
NuSMV. The verification results obtained with the 
three approaches are discussed in section 7. 
Conclusions and prospects can be drawn from these 
results in the last section. 

 
2. CASE STUDY 

 
2.1 Physical system to control 
 
The comparison of the three approaches will be 
performed thanks to a simple example: an assembly 
station. The aim of this station is to assembly a 
gearwheel onto the axle of a mechanical part carried 
by a pallet that moves on an horizontal conveyor 
(Figure 1). Its normal automatic operation is the 
following: 

- 
- 

- 

the incoming pallet is stopped, 
then a manipulator takes the gearwheel and puts it 
onto the axle, 
the pallet is released while the manipulator moves 
towards its waiting position (rightmost and 
uppermost position). 

For room reasons, only this normal automatic 
operation will be considered in what follows. 
The manipulator is composed of two cylinders: one 
horizontal cylinder controlled by an electro-
pneumatic bi-stable valve and one vertical cylinder 
controlled by an electro-pneumatic mono-stable 
valve. To grip the gearwheel, a vacuum system using 
suction cups is fastened to the rod of the vertical 
cylinder. A short cylinder controlled by an electro-
pneumatic mono-stable valve permits to stop the 
pallet at the desired position. When the electro-valve 
is not actuated, this cylinder is in its uppermost 
position and the pallet can’t move. When this valve is 
actuated, the cylinder moves down that releases the 
pallet stopped inside the station or allows any 
incoming palette to cross freely the station. 
 
2.2 Controller specification 
 
The list of the inputs and outputs of the logic 
controller is given below while its specification, 
according to the IEC 60848 standard (IEC 60848, 
1988) is presented in figure 2 (“/a” means “not a”). 
Controller inputs: 
pallet_at_assembly_station (p_a_s)  presence_gearwheel (p_g) 
vertical_cylinder_down (v_c_d) vertical_cylinder_up (v_c_u) 
horizontal_cylinder_left (h_c_l) aspiration_on (ason) 
horizontal_cylinder_right (h_c_r) palette_stopped (p_s) 

Controller outputs: 
RELEASE_PALETTE (R_P) 
MOVE_DOWN_VERTICAL_CYLINDER (D_V_C) 
MOVE_LEFT_HORIZONTAL_CYLINDER (L_H_C ) 
MOVE_RIGHT_HORIZONTAL_CYLINDER (R_H_C ) 
ASPIRATION (ASP) 
 
2.3 Expected properties 

In our case, formal verification of the logic controller 
implies to check whether the both following sets of 
properties hold or not. 

The first set is related to correctness of the IEC 60848 
Function Chart of Figure 2 and is the following: 

-
-
-

-

-

-

-

-

-

-

-

 each step must be reachable (PROP_R_1); 
 there is not deadlock (PROP_R_2); 
 one and only one step is always active in the steps 
set (1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14) (PROP_R_3); 

 one and only one step is always active in the steps 
set (5, 6, 7, 8, 9, 10, 12, 13) (PROP_R_4); 

 if 11 is active, then 2 must be active too 
(PROP_R_5); 

 if 2 is active, then one of the steps (3, 4, 5, 6, 7, 8, 
9, 10, 11) must be active too (PROP_R_6). 

Satisfaction of all these properties will ensure correct 
evolution of the Function Chart. 

hc_l hc_r

L_H_C R_H_C

vc_u
D_V_C

ason

vc_d

p_g

p_a_s

p_s

R_P

hc_l hc_r

L_H_C R_H_C

vc_u
D_V_C

ason

vc_d

p_g

p_a_s

p_s

R_P

hc_l hc_r

L_H_C R_H_C

vc_u
D_V_C

ason

vc_d

p_g

p_a_s

p_s

R_P

Fig. 1. Controlled plant picture and layout 
 

The second set of properties is related to correct 
operation of the actuators of the station: 

 the two opposite commands of the horizontal 
cylinder must never be simultaneously set 
(PROP1); 

 when the vertical cylinder moves down, the 
horizontal cylinder must not move (PROP2); 

 when the vertical cylinder is at its lowest position, 
the horizontal cylinder must not move (PROP3); 

 when the horizontal cylinder moves to the right or 
to the left, the vertical cylinder must always be at 
its uppermost position (PROP4); 

 the manipulator takes the gearwheel at the picking 
position and doesn’t release it until the placing 
position is reached (PROP5). 

 
The meaning of the first property is obvious. PROP2, 
PROP3 and PROP4 have been introduced to avoid 
collisions between the manipulator and its 
environment that includes several mechanical devices 
standing between the picking and placing positions. 
At last, PROP5 describes the correct pick-and-place 
movement, without dropping the gearwheel. 
 

3. ALGEBRAIC REPRESENTATION OF THE 
CONTROLLER SPECIFICATION 

 
The assembly station is controlled by a PLC 
(Programmable Logic Controller) with a cyclic scan 
monitor. The program that is implemented within this 
PLC is written using one of the standardized 
languages (IEC 61131-3, 1993) such as Ladder 

     



Diagram, Instruction List or Structured Text. 
Whatever the programming language would be, each 
scan cycle includes three main phases: inputs reading, 
program execution and outputs updating (Figure 3). 

 
As IEC 60848 SFC is a specification language (and 
not a programming one), it matters to translate the 
above specification into a program written into a PLC 
language. This can be done by using the algebraic 
representation detailed below. In that case, the 
program will encompass three modules which will be 
sequentially executed (figure 3): computation of 
clearing conditions of the transitions, computation of 
the step variables, and computation of actions. 

 

3.1. Clearing conditions computation 

Let CC(q) (Clearing Condition) a Boolean variable 
associated to each transition of a SFC. A transition q 
(Fig. 4) can be cleared if it is enabled (all the steps 
that precede immediately this transition are active) 
and if its associated transition condition TC(q) is true. 
So, in a general case CC(q) can be formulated as 
follows: 

4 13

p_g

5

v_c_d

6

ason

7

v_c_u

8

h_c_l

9

v_c_d

10

v_c_u

11 12

h_c_r

=1

14

1

p_a_s

2 3

p_s

/p_a_s

1

2

3

4

5

6

7

8

9

10

11

12

R_P

D_V_C

D_V_C ASP

ASP

L_H_C ASP

D_V_C ASP

R_H_C

R_P

44 13

p_g

55

v_c_d

66

ason

77

v_c_u

88

h_c_l

99

v_c_d

10

v_c_u

11 12

h_c_r

=1

14

11

p_a_s

22 33

p_s

/p_a_s

1

2

3

4

5

6

7

8

9

10

11

12

R_P

D_V_C

D_V_C ASPD_V_C ASP

ASP

L_H_C ASPL_H_C ASP

D_V_C ASPD_V_C ASP

R_H_C

R_P

 
Fig. 2. SFC specification of the controller 

.TC(q))X( CC(q)
m

1j
j∏

=

=  

with: 
- Xj: step Boolean variable associated to step j, 
- TC(q): Transition Condition associated to the 

transition q, 
- m : number of steps that precede immediately step j. 

 

S 1 S 2 Sm

TC(q)(q)

S 1 S 2 Sm

TC(q)(q)  
Fig. 4. Transition condition after simultaneous 
sequences 

3.2. Step variables computation 

According to the IEC 60848 evolution rules, the 
Boolean step variable Xi associated to each SFC step i 
can be computed in the following manner: 

∏∑
==

+=+
n

1k
ki

p

1j
ji )CC(n. (t)X  )CC(p 1)(tX  

with: 
- Xi(t): value of the step variable of step i for the tth 

scan cycle, 
- Xi(t+1): value of the step variable of step i for the 

(t+1)th scan cycle, 
- p: number of transitions that precede step i (Fig. 5), 
- n: number of transitions that follow step I (Fig. 5), 
- CC(pj): Clearing Condition of the transition (pj), 
- CC(nk): Clearing Condition of the transition (nk). 
 

Si

(p1) (p3)(p2) (pp)

(nn)(n2)(n1)

Si

(p1) (p3)(p2) (pp)

(nn)(n2)(n1)  
Fig. 5. Step activation/desactivation 

Initialization

Inputs reading

Clearing Conditions
Computation

Step Variables
Computation

Actions Computation

Outputs updating

Program execution

Initialization

Inputs reading

Clearing Conditions
Computation

Step Variables
Computation

Actions Computation

Outputs updating

Program execution

 
Fig. 3. Cyclic scan monitor of the PLC 

 
In the case of step 5 of the above SFC, for instance, it 
comes then: 
CC(3) = X4 . X13 . p_g CC(4) = X5 . v_c_d 
X5 (t+1) = CC3 + X5 (t) . /CC(4) 
X5 (t+1) = (X4 (t). X13 (t). p_g) + (X5 (t) . / (X5 (t). v_c_d)) 
 
3.3. Computation of actions 

Each action is set when the logical OR of the step 
variables of the steps to which this action is 
associated  is true. For instance: 

D_V_C (t) = X5(t) + X6(t) + X9(t) 
ASP(t) = X6(t) + X7(t) + X8(t) + X9(t) 

     



4. PROPERTIES FORMALIZATION 

102
P = 0

101
P = 1

100
P = 1

/Placing_position./ason

Picking_position.ason

Placing_position./ason

Picking_position = /h_c_l . h_c_r . v_c_d . /v_c_u
Placing_position = h_c_l . /h_c_r . v_c_d . /v_c_u

102
P = 0

101
P = 1

100
P = 1

/Placing_position./ason

Picking_position.ason

Placing_position./ason

102
P = 0

101
P = 1

100
P = 1

/Placing_position./ason

Picking_position.ason

Placing_position./ason

Picking_position = /h_c_l . h_c_r . v_c_d . /v_c_u
Placing_position = h_c_l . /h_c_r . v_c_d . /v_c_u  

Fig. 6. State machine for the formalization of PROP5 

 
This section is aiming at giving the formal 
expressions of the two sets of properties presented in 
natural language in section 2.3. Properties PROP_R_1 
to PROP_R_6, that are related to the correct evolution 
of controller model, can be easily formally translated: 

PROP_R_1: ∀i ∈ {1, ..., 14}, ∃ t ∈ IR+* | Xi (t) = 1 
PROP_R_2: ∀i ∈ {1, ..., 14}, ∀ t ∈ IR+* | (Xi (t) = 1),  
(∃ t’ ∈ IR+* , t’>t, | Xi = 0) 
… 
PROP_R_5: ∀ t ∈ IR+*, X11 (t) = 1 ⇒  X2 (t) = 1 
… 
Properties PROP1 to PROP5 deal with the 
correctness of actuators control. Hence their formal 
expressions will involve the inputs and outputs of the 
controller. The formal expressions of properties 
PROP1 to PROP3 are obtained straightforward given 
the inputs-outputs list of the controller: 
PROP1: ∀ t ∈ IR+*, L_H_C . R_H_C = 0 
… 
Deriving formal expressions for PROP4 and PROP5 
requires more care. To build the formal expression of 
PROP4, an auxiliary variable “Authorization to Move 
Down”(AMD) is introduced. This variable is a 
combination of input-output variables as presented 
below in the Karnaugh table: 

 
From this table, the expression of AMD is easily 
obtained: 
AMD = (h_c_l . / h_c_r . / R_H_C) + (/h_c_l. h_c_r . / L_H_C) 
The formal expression of property PROP4 is 
therefore:  
∀ t ∈ IR+*, D_V_C ⇒ AMD ; 
∀ t ∈ IR+*,  
D_V_C => ((h_c_l . / h_c_r . / R_H_C) + (/h_c_l. h_c_r . / L_H_C)) 

Property PROP4 is expressed formally by using only 
combinatory operators. This is not possible for 
PROP5 that involves a sequence of events. 
Formalization of this property will be then performed 
by introducing an auxiliary observer state machine 
(Figure 6). This state machine describes both correct 
and faulty behaviors and includes three states. States 
100 and 101 and transitions between these states 
describe the correct operation. When state 102 is 
active, PROP5 is not verified. The variable P 
associated to each state shows whether PROP5 is 
verified or not, P true meaning that the property holds 
in this state and P false that the property does not 
hold. The formal expression of PROP5 is given by the 
state machine of figure 6 and the equation: 
∀ t ∈ IR+*, P = 1 

 
5. PLANT MODEL 

 
As mentioned in (Frey and Litz, 2000), introducing a 
plant model when checking properties of logic 
controllers may be carried out according to the two 
following approaches. 

- constraints-based approach in which the plant is 
modeled by a set of Boolean constraints that 
describe some relevant physical behaviors, e.g. the 
two opposite position sensors of a cylinder never 
deliver simultaneously a true information; 

- model-based approach, in which the plant  
behavior is modeled in a more detailed fashion, 
for instance in the form of state automata. 

Both approaches will be employed in what follows. 
Moreover, to facilitate plant model construction, a 
modular method has been developed. In this method a 
module may be, for instance, a cylinder with its two 
position sensors and its command electro-valve 
(Figure 7). Reader could get detailed information 
about this method in (Machado et al., 2006). 

 
5.1 Constraints-based approach 
In this case, the models of the horizontal (vertical) 
movement points out merely that the information 
provided by the two position sensors at the leftmost 
and rightmost (top and bottom) positions are never 
simultaneously true: 
∀ t ∈ IR+*, (h_c_l . h_c_r = 0) 
∀ t ∈ IR+*, (v_c_u . v_c_d = 0) 
No other constraints have been introduced. 

10 11 01 00
1 0 1 0
0 0 1 0
0 0 0 0
1 0 0 0

00
01
11
10

h_c_l, h_c_r

L_H_C,
R_H_C

10 11 01 00
1 0 1 0
0 0 1 0
0 0 0 0
1 0 0 0

00
01
11
10

h_c_l, h_c_r

L_H_C,
R_H_C

Module
Horizontal_cylinder :
double-acting, with two

sensors and bistable
control valve

Module
Vertical_cylinder :

double-acting, with two
sensors and monostable

control valve

Module
Aspiration:
with sensor

Module
Release_palette :

single-acting, without
sensor and monostable

control valve

Module
Horizontal_cylinder :
double-acting, with two

sensors and bistable
control valve

Module
Vertical_cylinder :

double-acting, with two
sensors and monostable

control valve

Module
Aspiration:
with sensor

Module
Release_palette :

single-acting, without
sensor and monostable

control valve  
Fig. 7. Modular plant decomposition 

 

     



5.2 Model-based approach 

Each plant module is then modeled as an automaton 
that describes its different physical states and the 
transitions between these states The model of the 
horizontal movement for instance (figure 8) includes 
four states that correspond to the rightmost and 
leftmost positions as well as to the movements from 
one of this position to the opposite one.  

 
In this model, variables E1 and E3 are introduced so 
as to design a stable model (Machado, et al, 2006). 

 
6. DESIGN OF THE NuSMV CODE 

 
The formal models of the controller, of the plant and 
of the properties can be easily translated into NuSMV 
language (Cimatti, et al., 2002). 
 
6.1 Controller coding  

The NuSMV model of the controller is issued from 
the algebraic equations presented in section 3. 
 
Variables declaration: The controller input variables 
and the step variables are declared as Boolean. 
MODULE controller (p_a_s, p_s, p_g, v_c_d, v_c_u, 
h_c_l, h_c_r, ason) 
VAR 
 p_a_s : boolean; 
 ... 
 X1 : boolean; 
 ... 
Step variables treatment: These variables are 
initialized according to the SFC model. Each 
algebraic evolution equation gives rise to one 
NuSMV statement. 

ASSIGN 
 init(X1) := 1; 
 ... 
 init(X14) := 0; 
 next(X1) := CC12 | (X1 & !CC1); 
 ... 
Definitions: The values of the outputs and of the 
auxiliary variables are computed from those of the 
inputs and of the steps variables.  
DEFINE  

CC1 := X1 & p_a_s; 
 ... 
 CC12 := X14 & !p_a_s; 
 D_V_C := X5 | X6 | X9; 
 ... 
 
6.2 Plant model coding 
Logical constraints translation is straightforward, if 
the constraints-based approach is selected. When the 
plant model is represented by a set of automata, each 

of them can be translated as described below, for the 
horizontal movement. 
MODULE Horizontal_cylinder_MB (L_H_C, R_H_C)  
VAR 
 L_H_C: boolean;  
 R_H_C: boolean; 
 E1 : boolean; 
 E3 : boolean; 
 State : {left, moving_right, right, moving_left}; 
ASSIGN 

0
h_c_r = 1
h_c_l = 0

2
h_c_r = 0
h_c_l = 1

1
h_c_r = 0
h_c_l = 0

3
h_c_r = 0
h_c_l = 0

L_H_C.
/R_H_C

E1./R_H_C

E3./L_H_C

R_H_C.
/L_H_C

R_H_C./L_H_C

L_H_C./R_H_C

0
h_c_r = 1
h_c_l = 0

2
h_c_r = 0
h_c_l = 1

1
h_c_r = 0
h_c_l = 0

3
h_c_r = 0
h_c_l = 0

L_H_C.
/R_H_C

E1./R_H_C

E3./L_H_C

R_H_C.
/L_H_C

R_H_C./L_H_C

L_H_C./R_H_C

 
Fig. 8. Horizontal movement model 

init(state) := right; 
next(state) := case 
state = right & L_H_C & ! R_H_C: moving_left; 
state = moving_left & E1 & ! R_H_C : left; 
state = moving_left & R_H_C & ! L_H_C: moving_right; 
state = left & R_H_C & ! L_H_C: moving_right; 
state = moving_right & E3 : right; 
state = moving_right & L_H_C & ! R_H_C: moving_left; 
1 : state; 
 esac; 
DEFINE 
 h_c_l := state=left; 
 h_c_r := state=right; 

 
6.3 Properties coding 

The properties can be formalized by temporal logic 
expressions (Clarke et al., 1986) in Computation Tree 
Logic (CTL) or Linear Temporal Logic (LTL) 
(Emerson and Halpern, 1986). Both are well defined 
in (Bérard et al. 1999)): 
PROP_R_1: EF Xi 
PROP_R_2: AG (Xi ⇒ EF ¬Xi) 
... 
PROP_R_5: AG X11 ⇒ X2) 
... 
PROP1: AG ¬ (R_H_C ∧ L_H_C) 
... 
PROP4: AG D_V_C ⇒ ((h_c_l ∧ ¬h_c_r ∧ ¬ R_H_C) ∨ 
(¬h_c_l ∧ h_c_r ∧ ¬L_H_C)) 
PROP5: AG P 

 
These CTL statements can be directly coded into 
NuSMV language as follows: 
SPEC EF X1; -- PROP_R_1_X1 
... 
SPEC EF X14; -- PROP_R_1_X14 
SPEC AG (X1 -> EF !X1); -- PROP_R_2_X1 
... 
SPEC AG (X1 -> EF !X14); -- PROP_R_2_X14 
SPEC AG (X11 -> X2); -- PROP_R_5 
... 
SPEC AG !(R_H_C & L_H_C); -- PROP1 
... 
SPEC AG  D_V_C ->((h_c_l & ! h_c_r & ! R_H_C)  
|(!h_c_l  &  h_c_r  & ! L_H_C)); -- PROP4 
SPEC AG P --  PROP5 

 
7. VERIFICATION RESULTS 

 
Once the formal models of the controller, of the 
properties and of the plant designed, it is possible to 
check whether the two sets of properties hold or not: 

− on the model of the only controller (approach non-
model-based); 

− on the model of the whole system 
{controller + plant} when some parts of the plant 
are modeled as a set of constraints (approach 
constrained-based); 

     



− on the model of the whole system 
{controller + plant} when the plant is modeled in 
a detailed fashion (approach model-based). 

The results that yield these three approaches are given 
in Table 1. 
 
Table 1 – Results for the three verification approaches 
 

Properties Non model-
based 

Constraints-
based 

Model-
based 

PROP_R_1 true true true 
PROP_R_2 true true true 
PROP_R_3 true true true 
PROP_R_4 true true true 
PROP_R_5 true true true 
PROP_R_6 true true true 
PROP1 true true true 
PROP2 true true true 
PROP3 false false true 
PROP4 false false true 
PROP5 true true true 
Reachable states 19456 10994 23552 
Computing time (s) 2,7 2,4 23,4 

 
Several significant conclusions can be drawn up from 
these experiments. First, as pointed out clearly in the 
table, constraints based approach gives the same 
results than non-model-based approach but both state 
space size and computing time are shortened with the 
first approach. Hence introducing constraints which 
roughly model the plant can reduce memory needs 
and verification time. 
Two safety properties (PROP3 and PROP4) are only 
verified when the model-based approach is employed. 
This does not mean that the controller specification 
includes design errors but merely that it has been 
designed assuming that the controller is coupled with 
a plant which generates relevant signals for each SFC 
situation, e.g. a true level of a position sensor at the 
end of the movement leading to this sensor. This 
enables to state that, generally speaking: 

− a negative proof with non model-based 
verification means either that the controller 
includes design errors or that is correct, but 
assumed to be connected to a non-faulty plant; 

− a positive proof with non model-based verification 
is more meaningful than with model-based 
verification. In the first case indeed the property 
holds whatever the plant behavior would be 
(correct or faulty); in the second case, the property 
is only verified when the plant behaves in the right 
manner.  

At last, it shall be noted that model-based verification 
does not increase significantly the state space size but 
slows down verification. 
 

8 CONCLUSIONS AND PERSPECTIVES 
 

In this paper we showed that the use of a plant model 
has a great impact on formal verification of discrete 
event systems. In scientific literature, model-based 
and non model-based approaches are often brought 
into conflict but never compared. We pointed out 
through a study case that in fact those two approaches 

complement each other. Furthermore, we showed 
which approach must be preferred depending on class 
of properties. 

Nevertheless, model-based verification asks the 
problem of the construction of the plant model. 
Current and future works aim at producing generic 
models and modular method for the design of such 
plant model: including time or not, deterministic or 
not, including faulty behavior or not. 

 
REFERENCES 

 
B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. 

Petrucci, and P. Schnoebelen. (1999). Systems and 
software verification: model-Checking techniques and 
tools. Springer, 1999. 

S. Bornot, R. Huuck, Y. Lakhnech, B. Lukoschus. (2000) 
Verification of sequential function charts using SMV, 
Proc of PDPTA'2000, 2000. 

A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. 
Pistore, M. Roveri, R. Sebastiani, and A. Tacchella. 
(2002). NuSMV Version 2: An OpenSource Tool for 
Symbolic Model Checking. Proc. CAV’02, Copenhagen 
(Denmark), July 2002. 

E.M. Clarcke, E.A. Emerson, A.P. Sistla. (1986). Automatic 
verification of finite-state concurrent systems using 
temporal logic specification. ACM Transaction on 
Programmation Languages and Systems, Vol. 8, n°2, 
pp. 244-266, 1986. 

E.A Emerson and J.Y. Halpern. (1986). Sometimes and Not 
Never revisited : on branching versus linear time 
temporal logic. Journal of the ACM, 33, 1, p. 151-178. 

G. Frey and L. Litz. (2000). Formal method in PLC 
programming. Proc. of IEEE SMC’2000, CDRom 
paper n°2431, 6 pages, October 8-11, Nashville, 
Tennessee-USA. 

V. Gourcuff, O. de Smet, J.-M. Faure (2006). Efficient 
representation for formal verification of PLC programs. 
Proc. of WODES 2006, July 10-12, Ann Arbor, USA. 

R. Huuck, B. Lukoschus, and N. Bauer. (2003). A model-
checking approach to safe SFCs. Proc. of CESA’03, 
Lille (France), July 2003. 

IEC 60848. (1988). Preparation of function charts for 
control systems. IEC Standard, 1988. 

IEC 61131-3. (1993). Programmable Controllers – 
Programming languages. IEC Standard, march 1993. 

S. Lampérière, J.-J. Lesage. (2000). Formal verification of 
the sequential part of PLC programs. Proc. of 5th IFAC 
Wodes, pp. 247-254, Ghent (Belgium), August 2000. 

J. Machado, B. Denis and J.-J. Lesage (2006). A generic 
approach to build plant models for DES verification 
purposes. Proc. of WODES 2006, July 10-12, Ann 
Arbor, USA. 

I. Moon, G.J. Powers, J.R. Burch, E.M. Clarke. (1992). 
Automatic Verification of Sequential Control Systems 
Using Temporal Logic, AIChE Journal, Vol. 38, n°1, 
pp.67-75, 1992. 

M. Rausch, B. H. Krogh. (1998). Formal Verification of 
PLC Programs, Proc. of AAC'98, Philadelphia, PA, 
USA, June 1998. 

T. Merkte and T. Menzel. (2000). Methods and tools to the 
verification of safety-related control software. Proc. 
IEEE SMC’00, pp. 2455-2457, Nashville, Tennessee, 
USA, October 2000. 

 

     


	SPEC EF X14; -- PROP_R_1_X14

