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Stochastic Homogenization of Reflected Diffusion Processes

Rémi Rhodes∗

February 16, 2009

Abstract

We investigate stochastic homogenization for Reflected Stochastic Differential Equations on a

half-plane when it is necessary to analyze both the homogenized equation and the boundary condi-

tion. We prove that the limiting process is a reflected non-standard Brownian motion.

1 Introduction

Statement of the problem. This paper is concerned with homogenization of Reflected Stochastic Dif-

ferential Equations (RSDE for short) evolving in a random medium, that is (see e.g. [12])

Definition 1.1. (Random medium) Let (Ω,G, µ) be a probability space and
{

τx;x ∈ R
d
}

a group of

measure preserving transformations acting ergodically on Ω:

1) ∀A ∈ G,∀x ∈ R
d, µ(τxA) = µ(A),

2) If for any x ∈ R
d, τxA = A then µ(A) = 0 or 1,

3) For any measurable function g on (Ω,G, µ), the function (x, ω) 7→ g(τxω) is measurable on

(Rd × Ω,B(Rd) ⊗ G).

More precisely, we suppose that we are given some coefficients σ : Ω → R
d×d and b,γ : Ω →

R
d and a d-dimensional Brownian motion B defined on a complete probability space (Ω′,F ,P) (the

Brownian motion and the random medium are independant). We want to describe the limit in law, as ε
goes to 0, of RSDEs of the type

dXε
t = ε−1b(τXε

t /εω) dt+ σ(τXε
t /εω) dBt + γ(τXε

t /εω) dKε
t ,(1)

whereXε,Kε are (Ft)t-adapted processes (Ft is the σ-field generated byB up to time t) with constraint

Xε
t ∈ D̄, where D ⊂ R

d is the half-plane {(x1, . . . , xd) ∈ R
d;x1 > 0}, Kε is the so-called local

time of the process Xε, namely a continuous nondecreasing process, which only increases on the set

{t;Xε
t ∈ ∂D}. The reader is referred to [15] (see e.g [22] for the weak existence) for strong existence

and uniqueness results of (1), in particular under the assumptions on the coefficients σ, b and γ listed

below. Those stochastic processes are involved in the probabilistic representation of second order partial

differential equations in half-space with oblique derivative boundary conditions (see [19] for an insight

of the topic). In particular, we are interested in homogenization problems for which it is necessary to

identify both the homogenized equation and the homogenized boundary conditions.
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Without the reflection term γ(Xε
t /ε) dK

ε
t , the issue of determining the limit in (1) is the subject

of an extensive literature in the case when the coefficients b,σ are periodic, quasi-periodic and, more

recently, evolving in a stationary ergodic random medium. Quoting all references is beyond the scope of

this paper. Concerning the homogenization of RSDEs, there are only a few works dealing with periodic

coefficients (see [1, 2, 3, 21]). As pointed out in [2], homogenizing (1) in a random medium is a well-

known problem which remains unsolved yet. There are several difficulties in this framework that make

the classical machinery of diffusions in random media (i.e. without reflection) fall short of determining

the limit in (1). In particular, the reflection term breaks the stationarity properties of the process Xε so

that the method of the environment as seen from the particle (see [17] for an insight of the subject) is

inefficient. Moreover, the lack of compactness of a random medium prevents from using compactness

methods. The main resulting difficulty is the lack of invariant probability measure for the process Xε.

The aim of this paper is precisely to investigate the random case and prove the convergence of the process

Xε towards a reflected Brownian motion. The convergence is established in probability with respect to

the random medium and the starting point x.

We should also point out that the problem of determining the limit in (1) could be expressed in terms

of reflected random walks in random environment, and remains quite open as well. Though we don’t

treat explicitly that case, our proofs may be adapted to the discrete framework.

Structure of the coefficients. Throughout the paper, we use the convention of summation over

repeated indices
∑d

i=1 aibi = aibi and we use the superscript ∗ to denote the transpose A∗ of some given

matrix A. If a random function ϕ : Ω → R possesses smooth trajectories, i.e. ∀ω ∈ Ω the mapping

x ∈ R
d 7→ ϕ(τxω) is smooth with bounded derivatives, we can consider its partial derivatives at 0

denoted by Diϕ, that is Diϕ(ω) = ∂xi
(x 7→ ϕ(τxω))|x=0.

We define a = σσ∗. We assume that we are given an antisymmetric matrix-valued function H :
Ω → R

d×d such that H ij = 0 whenever i = 1 or j = 1. For the sake of simplicity, we assume

that ∀ω ∈ Ω the mappings x ∈ R
d 7→ σ(τxω), x 7→ H(τxω) are bounded and smooth with bounded

derivatives of all orders. We further impose these bounds do not depend on ω. Then, it makes sense to

consider the following coefficients defined on Ω:

∀j = 1, . . . , d, bj =
1

2
Diaij , γj = aj1 +DiHji.(2)

The entries of the d-dimensional vector b (resp. γ) are (bj)1≤j≤d (resp. (γj)1≤j≤d). Under these

assumptions, the generator of the Markov process Xε coincides (for a sufficiently smooth function f on

D̄) with

(3) Lεf =
1

2
∂xi

(

aij(τx/εω)∂xj
f
)

with boundary condition γi(τx/εω)∂xi
f = 0 on ∂D. Note that, in the case H is chosen equal to 0, the

reflection term γ coincides with the so-called conormal field and the associated PDE problem is said to

be of Neumann type. From the physical point of view, the conormal field is the "canonical" assumption

that makes valid the mass conservation law since the relation aj1(τx/εω)∂xj
f = 0 on ∂D means that the

flux through the boundary must vanish. It is then natural to wonder if we can consider a larger class of

reflection coefficients γ while preserving the mass conservation law. The answer is positive if γ has the

structure described in (2) and this remark motivates our definition of γ.

We assume that a is uniformly elliptic, i.e. there exists a constant Λ > 0 such that

(4) ∀ω ∈ Ω, ΛI ≤ a(ω) ≤ Λ−1I,
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and, without loss of generality, we assume that a11 = 1.

Main Result. In what follows, we indicate by P
ε
x the law of the process Xε starting from x ∈ D̄

(keep in mind that this probability measure also depends on ω though it does not appear through the

notations). Let us consider a nonnegative function χ : D̄ → R+ such that
∫

D̄ χ(x) dx = 1. Such a

function defines a probability measure denoted by χ(dx) = χ(x)dx on D̄. We are now in position to

state the main result of the paper:

Theorem 1.2. The couple of processes (Xε,Kε)ε converges weakly, in µ ⊗ χ probability, towards the

solution (X̄, K̄) of the RSDE

X̄t = x+ Ā1/2Bt + Γ̄K̄t,

with constraint X̄t ∈ D̄, K̄ is the local time associated to X̄ . In other words, for each bounded continu-

ous function F on C(D̄ × R+; R) and δ > 0, we have

lim
ε→0

µ⊗ χ
{

(ω, x) ∈ Ω × D̄;
∣

∣E
ε
x(F (Xε,Kε)) − Ex(F (X̄, K̄))

∣

∣ ≥ δ
}

= 0.

The so-called homogenized (or effective) coefficients Ā and Γ̄ are constant. Moreover Ā is invertible,

obeys a variational formula (see section 4 for the meaning of the various terms)

Ā = inf
ϕ∈C

M
[

(I +Dϕ)∗a(I +Dϕ)
]

,

and Γ̄ is the conormal field associated to Ā, that is Γ̄i = Ā1i for i = 1, . . . , d.

Remark 1.3. As explained in [2], the periodic framework remains not completely understood for general

bounded domains. Indeed, this latter situation gives rise to the issue of determining the limit in (1) when

the ratio between the period of the coefficients b,σ and the period of γ is irrational. That situation

breaks the periodicity properties of the model but can be understood with the theory of random media.

Let us explain why. Consider σ : R
d → R

d×d, 1-periodic in each direction of R
d, and γ : {0} × R

d−1,

α-periodic in each direction with α 6∈ Q. That situation boils down to the random case in the following

way: the random medium is the 2d− 1 dimensional torus T = (R/Z) × (R/Z× R/αZ)d−1 equipped

with the induced Lebesgue measure dx. For any x = (x1, . . . , xd) ∈ R
d, the translation τx : T → T is

defined by

τx
(

y1, (y2, z2), . . . , (yd, zd)
)

=
(

y1 + x1, (y2 + x2, z2 + x2), . . . , (yd + xd, zd + xd)
)

for any
(

y1, (y2, z2), . . . , (yd, zd)
)

∈ T. 1) and 3) of Definition 1.1 are obvious. 2) results from the

equipartition Weyl theorem (α 6∈ Q). Of course, the coefficients on the random medium are defined

by σ : T ∋
(

y1, (y2, z2), . . . , (yd, zd)
)

→ σ(y1, . . . , yd) and γ : T ∋
(

y1, (y2, z2), . . . , (yd, zd)
)

→
γ(z2, . . . , zd). So Theorem 1.2 applies.

The organization of this note is the following. In Section 2, we gather the main notations and detail

the preliminary background necessary for the reading of the paper. Section 3 explains how to reduce the

problem by considering a function χ with a particular structure that allows to use the Girsanov transform

to modify equation (1). The main objective of this step is to deal with a process admitting an invariant

distribution. Section 4 describes the ergodic properties of the problem and the construction of the so-

called correctors. The resulting ergodic theorems for the processXε are stated in Section 5. The tightness

of Xε is proved in Section 6. Finally, we carry through the homogenization procedure in Section 7. The

appendix gathers the proofs of several auxiliary results.

3



2 Notations and preliminary background

Before proceeding with the proofs of our main result, let us first gather a few notations to which the

reader may refer throughout the reading of the paper.

Classical spaces. Given an open domain O ⊂ R
n, For k ∈ N ∪ {∞}, Ck(O) (resp. Ck(Ō), resp.

Ck
b (Ō)) denotes the space of functions admitting derivatives up to order k over O (resp. with continuous

derivatives over Ō, resp. with continuous bounded derivatives over D̄). The spaces Ck
c (O) and Ck

c (Ō)
denote the subspaces of Ck(Ō) whose functions respectively have a compact support in O or have a

compact support in Ō.

Let C1,2
b denote the space of bounded functions f : [0, T ] × D̄ admitting bounded and continuous

derivatives ∂tf , ∂xf , ∂2
txf and ∂2

xxf on [0, T ] × D̄.

Random medium. The expectation with respect to the random medium is denoted by M. In what

follows we will use the bold type to denote a random function g from Ω×R
p into R

n (n ≥ 1 and p ≥ 0).

The space of square integrable (resp. integrable, resp. essentially bounded) functions on (Ω,G, µ) is

denoted by L2(Ω) (resp. L1(Ω), resp. L∞(Ω)), the usual norm by | · |2 (resp. | · |1, resp. | · |∞) and

the corresponding inner product by ( · , · )2. The operators on L2(Ω) defined by Txg(ω) = g(τxω) form

a strongly continuous group of unitary maps in L2(Ω). Each function g in L2(Ω) defines in this way

a stationary ergodic random field on R
d. The group possesses d generators defined, for i = 1, . . . , d,

by Dig = limh∈R→0 h
−1(Thei

g − g) whenever the limit exists in the L2(Ω)-sense ((e1, . . . , ed) stands

for the canonical basis of R
d), which are closed and densely defined. Given ϕ ∈

⋂d
i=1 Dom(Di), Dϕ

stands for the d-dimensional vector whose entries are Diϕ for i = 1, . . . , d. We distinguish Di from

the usual differential operator ∂xi
acting on sufficiently smooth functions f : R

d → R (more generally,

for k ≥ 2, ∂k
xi1

...xik
denotes the iterated operator ∂xi1

. . . ∂xik
). However, we point out that, whenever

a function ϕ ∈ Dom(D) possesses differentiable trajectories (i.e. µ a.s. the mapping x 7→ ϕ(τxω) is

differentiable in the classical sense), we have Diϕ(τxω) = ∂xi
ϕ(τxω).

Denote by C the dense subspace of L2(Ω) defined by

C = Span
{

g ⋆ ϕ; g ∈ L∞(Ω), ϕ ∈ C∞
c (Rd)

}

with g ⋆ ϕ(ω) =
∫

Rd g(τxω)ϕ(x) dx. We point out that C ⊂ Dom(Di), for all 1 ≤ i ≤ d, and

Di(g ⋆ ϕ) = −g ⋆ ∂xi
ϕ. This last quantity is also equal to Dig ⋆ ϕ if g ∈ Dom(Di).

We introduce the σ-field G∗ ⊂ G generated by the subsets of Ω that are invariant under the operators

{Tx;x ∈ {0}×R
d−1}, and M1 the conditional expectation with respect to G∗, which coincides with the

orthogonal projection from L2(Ω,G, µ) into the closed subspace L2(Ω,G∗, µ).
We define the bounded antisymmetric matrix-valued function H̄ : Ω → R

d×d by H̄ i1 = DjH ij for

i = 1, . . . , d and H̄ ij = 0 if i ≥ 2 and j ≥ 2.

Green’s formula. We remind the reader of the Green formula (see [16, eq. (6.5)]). Given a smooth

matrix-valued function c : D̄ → R
d×d, and (ϕ,ψ) ∈ C2(D̄) × C1

c (D̄):

(5)

∫

D
∂xi

(

cij∂xj
ϕ
)

ψ(x) dx = −
∫

∂D
c1j∂xj

ϕψ(x) dx−
∫

D
cij∂xj

ϕ∂xi
ψ(x) dx.

As a consequence, by considering the following operator acting on C2(D̄)

(6) Lε
V =

e2V (x)

2

d
∑

i,j=1

∂xi

(

e−2V (x)aij(τx/εω)∂xj

)

,
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where V : D̄ → R is smooth, we have

∫

D
Lε

V ϕ(x)ψ(x)e−2V (x) dx+
1

2

∫

D
(a+ H̄)ij(τx/εω)∂xi

ψ(x)∂xj
ϕ(x)e−2V (x) dx

= −
∫

∂D
γi(τx/εω)∂xi

ψ(x)ϕ(x)e−2V (x) dx.(7)

Note that the Lebesgue measure on D̄ or ∂D is indistinctly denoted by dx since the domain of integration

avoids confusion.

3 Reduction of the problem

Reduction of the problem. Suppose for a while that we can prove Theorem 1.2 for any function χ that

can be rewritten as χ(x) = e−2V (x), where V : D̄ → R is a smooth function of the form

(8) V (x1, . . . , xd) = Ax1 +A(1 + x2
2 + · · · + x2

d)
1/2 + c,

for some positive constant A and some renormalization constant c such that
∫

D̄ e
−2V (x) dx = 1.

It is then plain to see that Theorem 1.2 holds for any nonnegative function χ not greater than

Ce−2V (x), for some positive constant C and some function V obeying the above conditions. Indeed,

each measurable subset A ⊂ Ω × D̄ satisfies M
∫

D̄ 1IAχ(x) dx ≤ CM
∫

D̄ 1IAe
−2V (x) dx. In particular,

Theorem 1.2 holds for any continuous function χ with compact support over D̄.

Consider now a general function χ : D̄ → R+ satisfying
∫

D̄ χ(x) dx = 1 and χ′ : D̄ → R+ with

compact support in D̄. Let Aε ⊂ Ω × D̄ be defined as

Aε =
{

(ω, x) ∈ Ω × D̄;
∣

∣E
ε
x(F (Xε,Kε)) − Ex(F (X̄, K̄))

∣

∣ ≥ δ
}

.

From the relation M
∫

D̄ 1IAεχ(x)dx ≤ M
∫

D̄ |χ(x) − χ′(x)|dx+ M
∫

D̄ 1IAεχ′(x)dx, we deduce

lim sup
ǫ→0

M

∫

D̄
1IAεχ(x)dx ≤ M

∫

D̄
|χ(x) − χ′(x)|dx,

in such a way that the Theorem 1.2 holds for χ by density arguments.

To sum up, it suffices to prove Theorem 1.2 in the case of a function χ(x) = e−2V (x) for some

function V of the form (8). We gathered below the main properties of such a function V :

∫

D̄
e−2V (x) dx = 1, and

∫

D̄
x1e

−2V (x) dx = M < +∞,(9)

V is smooth and ∂xV is bounded over D̄, as well as the derivatives of ∂xV.(10)

sup
x1≥0

∫

Rd−1

e−2V (x1,y) dy = M ′ < +∞.(11)

Girsanov’s transform. From now on, keep in mind that V is of the form (8) and thus satisfies

(9), (10) and (11). Let us fix T > 0 and define the following probability measure on the filtered space

(Ω′;F , (Ft)0≤t≤T )

dPε∗
x = exp

(

−
∫ T

0
∂xi

V (Xε
r )σij(τXε

r/εω) dBj
r −

1

2

∫ T

0
∂xi

V (Xε
r )aij(τXε

r/εω)∂xj
V (Xε

r ) dr
)

dPε
x.
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Under P
ε∗
x , the process B∗

t = Bt +
∫ t
0 σ(τXε

r/εω)∂xV (Xε
r ) dr (0 ≤ t ≤ T ) is a Brownian motion and

the process Xε solves the RSDE

(12) dXε
t = ε−1b(τXε

t /εω) dt− a(τXε
t /εω)∂xV (Xε

t ) dt+ σ(τXε
t /εω) dB∗

t + γ(τXε
t /εω) dKε

t

starting from Xε
0 = x, where Kε is the local time of Xε.

The guiding line of the remaining part of the paper is to establish estimates under P
ε∗
x and switch the

estimates to P
ε
x thanks to the inequality

(13) ∀A FT -measurable subset , P
ε
x(A) ≤ C

(

P
ε∗
x (A)

)1/2

whereC is a constant only depending on T, |a|∞ and supD̄ |∂xV | (not on ε). The proof of such a relation

follows from the Cauchy-Schwarz inequality and the boundedness of a and ∂xV .

Notations for measures. Finally, P̄
ε (resp. P̄

ε∗) stands for the probability measure M
∫

D̄ P
ε
x(·)e−2V (x) dx

(resp. M
∫

D̄ P
ε∗
x (·)e−2V (x) dx), and Ē

ε (resp. Ē
ε∗) for the corresponding expectation. P

∗
D (resp. P

∗
∂D)

denotes the probability measure e−2V (x) dx ⊗ dµ on D̄ × Ω (resp. the nonnegative finite measure

e−2V (x) dx⊗ dµ on ∂D × Ω). We further define M
∗
D and M

∗
∂D as the respective expectations.

4 Ergodic problems and correctors

Our first objective is to determine the coefficients of the homogenized equation both on the boundary

and inside the domain D.

Generator on the random medium associated to the diffusion process inside D. The construction

of the correctors inside the domain D is the same as in the stationary case (i.e. without reflection term)

and is therefore well known. So we just sum up the main tools and give references for further details.

We associate to the operator Lε (Eq. (3)) an unbounded operator acting on C ⊂ L2(Ω)

(14) L =
1

2
Di

(

aijDj ·
)

.

Following [7, Ch. 3, Sect 3.] (see also [20, Sect. 4]), we can consider its Friedrich extension, still denoted

by L, which is a self-adjoint operator on L2(Ω). The domain H of the corresponding Dirichlet form can

be described as the closure of C with respect to the norm ‖ϕ‖2
H

= |ϕ|22+|Dϕ|22. SinceL is self-adjoint, it

also defines a resolvent family (Uλ)λ>0. For each f ∈ L2(Ω), the functionwλ = Uλ(f) ∈ H∩Dom(L)
equivalently solves the L2(Ω)-sense equation

(15) λwλ −Lwλ = f

or the weak formulation equation

(16) ∀ϕ ∈ H, λ(wλ,ϕ)2 + (1/2)
(

aijDiwλ, Djϕ
)

2
= (f ,ϕ)2.

Moreover, the resolvent operator Uλ satisifes the maximum principle (see Appendix A):

Lemma 4.1. For any functionf ∈ L∞(Ω), the function Uλ(f) belongs to L∞(Ω) and satisfies

|Uλ(f)|∞ ≤ |f |∞/λ.

One can prove
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Proposition 4.2. Given f ∈ L2(Ω), the solutionwλ of the resolvent equation λwλ−Lwλ = f (λ > 0)

satisfies

|λwλ − M[f ]|2 → 0 as λ→ 0, and ∀λ > 0, |λ1/2Dwλ|2 ≤ Λ−1/2|f |2.

Proof. The first statement is a particular case, for instance, of [20, Lemma 6.2]. To follow the proof in

[20], forget the dependency on the parameter y, takeH = 0 and Ψ = f . To prove the second statement,

choose ϕ = wλ in (16) and plug the relation

(f ,wλ)2 ≤ |f |2|wλ|2 ≤ 1/(2λ)|f |22 + (λ/2)|wλ|22

into the right-hand side to obtain λ|wλ|22 +
(

aijDiwλ, Djwλ

)

2
≤ |f |22/λ. From (4), we deduce

Λ|Dwλ|22 ≤ |f |22/λ and the result follows.

Concerning the drift term b, the convergence is stronger

Proposition 4.3. For i = 1, . . . , d, let ui
λ denote the solution of the resolvent equation (λ > 0)

(17) λui
λ −Lui

λ = bi.

Then there exists ζi ∈ (L2(Ω))d such that

(18) λ|ui
λ|22 + |Dui

λ − ζi|2 → 0, as λ→ 0.

Define the random matrix-valued function ζ ∈ L2(Ω; Rd×d) by its entries ζij = ζ
j
i = limλ→0Diu

j
λ,

the matrix

(19) Ā = M[(I + ζ∗)a(I + ζ)] which also matches M[(I + ζ∗)a]

(I denotes the d-dimensional identity matrix) and the d-dimensional vector

(20) Γ̄ = M[(I + ζ∗)γ] ∈ R
d.

Then Ā obeys the variational formula:

(21) ∀X ∈ R
d, X∗ĀX = inf

ϕ∈C
M[(X +Dϕ)∗a(X +Dϕ)].

Moreover, we have Ā ≥ ΛI (in the sense of symmetric nonnegative matrices) and the first component Γ̄1

of Γ̄ satisfies Γ̄1 ≥ Λ. Finally, Γ̄ coincides with the orthogonal projection M1[(I + ζ∗)γ].

Proof. The first part of statement (18) is quite classical. The reader is referred to [17, Ch. 2] for an

insight of the method and to [20, Prop. 4.3] for a proof in a more general context. So we just have to

prove (19), (21) and the properties mentioned below. In what follows, for each i = 1, · · · , d, (ϕi
n)n

stands for a sequence in C such that Dϕi
n → ζi in L2(Ω)d as n→ +∞.

Let us first focus on (21). Fix X ∈ R
d whose entries are denoted by (Xi)1≤i≤d. We have:

D(Xiϕ
i
n) = XiDϕ

i
n → Xiζi = ζX in L2(Ω)d as n→ +∞ and

X∗ĀX =M
[

(X + ζX)∗a(X + ζX)
]

= lim
n→+∞

M
[

(X +D(Xiϕ
i
n))∗a(X +D(Xiϕ

i
n))

]

≥ inf
ϕ∈C

M[(X +Dϕ)∗a(X +Dϕ)].
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Conversely, from Lemma 4.4 below, we have:

(22) ∀Y ∈ R
d, M[(Y + ζY )∗aζX] = lim

n→+∞
M[(Y + ζY )∗aD(Xiϕ

i
n)] = 0.

We deduce that M[(X + ζX)∗a(Dϕ− ζX)] = 0 for any ϕ ∈ C in such a way that, for ϕ ∈ C:

M
[

(X +Dϕ)∗a(X +Dϕ)
]

=M
[

(X + ζX +Dϕ− ζX)∗a(X + ζX +Dϕ− ζX)
]

=M
[

(X + ζX)∗a(X + ζX)
]

+ 2M
[

(X + ζX)∗a(Dϕ− ζX)
]

+ M
[

(Dϕ− ζX)∗a(Dϕ− ζX)
]

≥M
[

(X + ζX)∗a(X + ζX)
]

so that (21) follows. By the way, (22) also proves that Ā = M[(I + ζ∗)a].
Now we prove ΛI ≤ Ā. Fix X ∈ R

d. From (4) and Cauchy-Schwarz’s inequality, we get

X∗ĀX = M
[

(X + ζX)∗a(X + ζX)
]

≥ ΛM
[

|X + ζX|2
]

≥ Λ
∣

∣M
[

X + ζX
]
∣

∣

2
= Λ|X|2,

since M[ζX] = 0. The estimate ΛI ≤ Ā follows.

We now prove that Γ̄ = M[(I + ζ∗)γ] coincides with the orthogonal projection M1[(I + ζ∗)γ]. Note

that γ can be rewritten as γ = ae1 + H̄e1 (see Section 2 for the definition of H̄ and (2)). Clearly, the

result follows from the two relations listed below

i) M1[(I + ζ∗)H̄e1] = 0, ii) M1[(I + ζ∗)ae1] = M[(I + ζ∗)ae1].

Proof of i). The i-th entry M1[(ei + ζei)
∗H̄e1] of M1[(I + ζ∗)H̄e1] satisfies (δ denotes the Kronecker

symbol)

M1[(ei + ζei)
∗H̄e1] = M1[(I + ζ∗)ijDkHjk] = lim

n→∞
M1[(δij +Djϕ

i
n)DkHjk]

SinceH ij = 0 if i = 1 or j = 1, the index k varies from 2 to d in the latter expression. By using Lemma

4.5 iii) below, we deduce

lim
n→∞

M1[(δij +Djϕ
i
n)DkHjk] = − lim

n→∞
M1[D

2
jkϕ

i
nHjk] = 0

because of the antisymmetry ofH . i) follows.

Proof of ii). Because of the ergodicity of the measure µ (2. of Definition 1.1), we stress that a function

ψ ∈ L2(Ω,G∗, µ) invariant under the translations {τx;x ∈ R × {0}d−1} must be constant and therefore

satisfies M1[ψ] = M[ψ]. So we just have to prove that the entries M1[(ei+ζei)
∗ae1] are invariant under

the translations {τx;x ∈ R × {0}d−1}. To that purpose, we only need to check that

M
[

M1[(ei + ζei)
∗ae1]D1ϕ

]

= 0

for any i = 1, . . . , d and ϕ ∈ C. By using Lemma 4.5 ii, we get:

M
[

M1[(ei + ζei)
∗ae1]D1ϕ

]

= M
[

(ei + ζei)
∗ae1M1[D1ϕ]

]

= M
[

(ei + ζei)
∗ae1D1M1[ϕ]

]

.

Since DkM1[ϕ] = 0 for k = 2, . . . , d (see Lemma 4.5 i), we have e1D1M1[ϕ] = DM1[ϕ]. We deduce

M
[

M1[(ei + ζei)
∗ae1]D1ϕ

]

= M
[

(ei + ζei)
∗aDM1[ϕ]

]

.

Since M1[ϕ] ∈ C (Lemma 4.5 ii), the latter quantity is equal to 0 (Lemma 4.4). We complete the proof

of ii). Note that the above computations also prove that Γ̄1 = M[(e1 + ζe1)
∗ae1] = Ā11 ≥ Λ.
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Lemma 4.4. The following relation holds:

(23) ∀X ∈ R
d, ∀ψ ∈ H, M

[

(X + ζX)∗aDψ
]

= 0.

Proof. Since bi = 1
2Dkaik, the weak form of the resolvent equation (16) reads, for any ψ ∈ H:

λ(ui
λ,ψ)2 + (1/2)

(

ajkDju
i
λ, Dkψ

)

2
= (1/2)(Dkaik,ψ)2 = −(1/2)

(

aik, Dkψ
)

2
. By letting λ go to

0, we get from (18): (1/2)
(

ajkζ
i
j , Dkψ

)

2
= −(1/2)

(

aik, Dkψ
)

2
, that is:

(24) 0 = M
[

(ζi
j + δij)ajkDkψ

]

= M[(ei + ζei)
∗aDψ].

The result follows by linearity.

Lemma 4.5. The projection operator M1 saisfies the following elementary properties:

i) ∀k = 2, . . . , d and ∀ϕ ∈ Dom(Dk), DkM1[ϕ] = M1[Dkϕ] = 0,

ii) ∀ϕ ∈ C, M1[ϕ] ∈ C and M1[D1ϕ] = D1M1[ϕ],
iii) ∀k = 2, . . . , d and ∀ϕ,ψ ∈ Dom(Dk), M1[Dkϕψ] = −M1[ϕDkψ].

Proof. The properties i) and ii) are easily derived from the identities M1[Txϕ] = M1[ϕ] for any x ∈
{0}×R

d−1, TxM1 = M1Tx for any x ∈ R×{0}d−1, and M1[ψ ∗ ρ] = M1[ψ] ∗ ρ for any ψ ∈ L∞(Ω)
and ρ ∈ C∞

c (Rd). iii) results from i). Details are left to the reader.

Generator on the random medium associated to the boundary reflection. We now focus on the

asymptotic behavior of the process Xε near the boundary. Generalizing the arguments in [21], it seems

natural to look at the unbounded operator in random medium Hγ , whose construction is formally the

following: given ω ∈ Ω and a smooth function ϕ ∈ C, let us denote by ũω : D̄ → R the solution of the

problem

(25)

{

Lωũω(x) = 0, x ∈ D,
ũω(x) = ϕ(τxω), x ∈ ∂D.

where

(26) Lωf(x) = (1/2)aij(τxω)∂2
xixj

f(x) + bi(τxω)∂xi
f(x)

whenever f ∈ C2
b (D̄). Then we define

(27) Hγϕ(ω) = γi(ω)∂xi
ũω(0).

Though we don’t need (and thus don’t prove) this fact, the operator Hγ is the generator of the Ω-valued

Markov process Zt(ω) = τYt(ω)ω, where Yt(ω) = X1
K−1(t) and the function K−1 stands for the left

inverse of K1: K−1(t) = inf{s > 0;K1
s ≥ t}. The process Y describes the points on the boundary hit

by the process X1 (the superscript 1 just means that you take ε = 1 in (1)).

The main difficulty lies in constructing a solution of Problem (25) with suitable growth and integra-

bility properties because of the lack of compactness of D. To get round this difficulty, we develop a set

of tools on the random medium that makes possible to solve the "third boundary value problem on the

random medium" and, as a byproduct, to construct Hγ through its associated resolvent family.

Now we give a few notations to pursue the analysis ofHγ . In what follows, the notation (x1, y) stands

for a d-dimensional vector, where the first component x1 belongs to R (eventually R+ = [0; +∞[) and

the second component y belongs to R
d−1.
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We denote by Ω+ the product space R+ × Ω equipped with the measure dµ+ def
= dx1 ⊗ dµ where

dx1 is the Lebesgue measure on R+. Thus it makes sense to consider the standard spaces Lp(Ω+) for

p ∈ [1; +∞].
For each random function ϕ defined on Ω, we associate a function ϕ+ defined on Ω+ by

∀(x1, ω) ∈ Ω+, ϕ+(x1, ω) = ϕ(τx1
ω).

Hence, we can associate to the random matrices a and H̄ (defined in Sections 1 and 2) the corresponding

matrix-valued functions a+ and H̄
+

defined on Ω+.

From now on, keep in mind that our main purpose is to define the Dirichlet form associated to Hγ .

Given ϕ ∈ L∞(Ω) and ρ ∈ C∞
c (D̄), the function ϕ⊙ ρ : Ω+ → R is defined by:

ϕ⊙ ρ(x1, ω) =

∫

Rd−1

ϕ(τ(0,y)ω)ρ(x1, y) dy.

The subspaces C(Ω+) and Cc(Ω
+) of L∞(Ω+) are defined as the spaces respectively spanned by

C(Ω+) = Span{ϕ⊙ ρ;ϕ ∈ L∞(Ω), ρ ∈ C∞
c (D̄)}

Cc(Ω
+) = Span{ϕ⊙ ρ;ϕ ∈ L∞(Ω), ρ ∈ C∞

c (D)}

and stand, in a way, for the spaces of test functions on Ω+. For any g ∈ C(Ω+), we introduce a sort of

gradient ∂g of g, which entries are defined by

∂1g(x1, ω) = lim
h>0,h→0

g(x1 + h, ω) − g(x1, ω)

h
,

∂ig(x1, ω) = lim
h→0

g(x1, τhei
ω) − g(x1, ω)

h
, i = 2, . . . , d.

(28)

In other words, if we fix ω ∈ Ω, ∂1g is defined as the classical derivative of the function x1 ∈ R+ 7→
g(x1, ω) whereas ∂ig (for i = 2, . . . , d) coincides with the random partial derivative Di of the random

function ω ∈ Ω 7→ g(x1, ω), where x1 is fixed. We further stress that the relation ∂g = 0 does not imply

the expected relation "g = 0 is constant". However, we will make use of the fact: ∂g = 0 ⇒ g(0, ·) is

G∗-measurable and x1 7→ g(x1, ·) is constant.

We define on C(Ω+) the norm

(29) N(g)2 = |g(0, ·)|22 +

∫

Ω+

|∂g|22 dµ+,

and W1 as the closure of C(Ω+) with respect to the norm N . Obviously, the mapping

P : W1 ∋ g 7→ g(0, ·) ∈ L2(Ω)

is continuous (with norm equal to 1) and stands, in a way, for the trace operator on the random medium.

Equip the topological dual space (W1)′ of W1 with the dual norm N ′. The adjoint P ∗ of P is given by

P ∗ : ϕ ∈ L2(Ω) 7→ P ∗(ϕ) ∈ (W1)′ where the mapping P ∗(ϕ) exactly matches

P ∗(ϕ) : g ∈ W1 7→ (g, P ∗ϕ) = (ϕ, g(0, ·))2.
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For any λ > 0, we further define on W1 ×W1 the following bilinear forms

Bλ(g,h) = λ(Pg, Ph)2 +
1

2

∫

Ω+

(a+ + H̄
+
)ij ∂ig ∂jh dµ

+(30)

B∗
λ(g,h) = λ(Pg, Ph)2 +

1

2

∫

Ω+

(a+ − H̄+
)ij ∂ig ∂jh dµ

+(31)

From (4), the boundedness and the antisymmetry of H̄ , it is readily seen that they are continuous and

coercive on W1 × W1. From the Lax-Milgram theorem, we can then define two continuous resolvent

families Gλ : (W1)′ → W1 and G∗
λ : (W1)′ → W1 such that:

(32) ∀F ∈ (W1)′, ∀g ∈ W1, Bλ(GλF, g) = F (g) and B∗
λ(G∗

λF, g) = F (g).

We now tackle the construction of the resolvent family associated to Hγ . For any λ > 0 and ϕ ∈
L2(Ω), we can then define the operators

(33) Rλ : L2(Ω) → L2(Ω)
ϕ 7→ PGλP

∗(ϕ)
and R∗

λ : L2(Ω) → L2(Ω)
ϕ 7→ PG∗

λP
∗(ϕ)

Given ϕ ∈ L2(Ω), we can plug F = P ∗ϕ into (32) and we get

(34) ∀g ∈ W1, Bλ(GλP
∗ϕ, g) = (g, P ∗ϕ) and B∗

λ(G∗
λP

∗ϕ, g) = (g, P ∗ϕ),

that is, by using (30) and (31):

∀g ∈ W1, λ(Rλϕ, Pg)2 +
1

2

∫

Ω+

(a+ + H̄
+
)ij ∂i(GλP

∗ϕ) ∂jg dµ
+ = (g, P ∗ϕ),(35)

∀g ∈ W1, λ(R∗
λϕ, Pg)2 +

1

2

∫

Ω+

(a+ − H̄+
)ij ∂i(G

∗
λP

∗ϕ) ∂jg dµ
+ = (g, P ∗ϕ).(36)

Proposition 4.6. The families (Rλ)λ and (R∗
λ)λ are both strongly continuous resolvent families, and:

1)the operator Rλ is the adjoint of R∗
λ in L2(Ω).

2) given ϕ ∈ L2(Ω), we have:

ϕ ∈
⋃

λ>0

Ker(λRλ − I) ⇔ ϕ = M1[ϕ] ⇔ ϕ ∈
⋃

λ>0

Ker(λR∗
λ − I).

3) for each function ϕ ∈ L2(Ω), |λRλϕ− M1[ϕ]|2 → 0 as λ→ 0.

Proof. The resolvent properties of both families can be deduced from the resolvent properties of the

operators Gλ and G∗
λ. Details are left to the reader.

So we first prove 1). Consider ϕ,ψ ∈ L2(Ω). Then, using (34), we obtain

(Rλϕ,ψ)2 =(PGλP
∗ϕ,ψ)2 = (GλP

∗ϕ, P ∗ψ) = B∗
λ

(

G∗
λP

∗ψ, GλP
∗ϕ

)

=Bλ

(

GλP
∗ϕ, G∗

λP
∗ψ

)

= (P ∗ϕ, G∗
λP

∗ψ) = (ϕ, R∗
λψ)2

so that Rλ and R∗
λ are adjoint in L2(Ω).

We now prove 2). Let us consider a function ϕ ∈ L2(Ω) satisfying λRλϕ = ϕ for some λ > 0. By

plugging g = GλP
∗ϕ ∈ W1 into (35), we obtain

(37) λ|Rλϕ|22 +
1

2

∫

Ω+

a+
ij ∂i(GλP

∗ϕ) ∂j(GλP
∗ϕ) dµ+ = (GλP

∗ϕ, P ∗ϕ) = (Rλϕ,ϕ)2.
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Since λRλϕ = ϕ, the right-hand side matches (Rλϕ,ϕ)2 = λ|Rλϕ|22 so that the integral term in

(37) must vanish, that is
∫

Ω+ a
+
ij ∂i(GλP

∗ϕ) ∂j(GλP
∗ϕ) dµ+ = 0. From (4), ∂(GλP

∗ϕ) = 0 and

GλP
∗ϕ(0, ·) is thus G∗-measurable. Moreover, we have λGλP

∗ϕ(0, ·) = λPGλP
∗ϕ = λRλϕ = ϕ so

that ϕ is G∗-measurable. Hence ϕ = M1[ϕ].
Conversely, we assume ϕ = M1[ϕ], which equivalently means ϕ is G∗ measurable. We define

the function u : Ω+ → R by u(x1, ω) = ϕ(ω). It is obvious to check that u belongs to W1 and

satisfies ∂u = 0. So B∗
λ(u, ·) = λP ∗ϕ(·) for any λ > 0. This means u = G∗

λP
∗ϕ in such a way that

λRλϕ = Pu = ϕ. The same argument holds to prove: ϕ = M1[ϕ] ⇔ ϕ ∈
⋃

λ>0 Ker(λR∗
λ − I).

We prove 3). Consider ϕ ∈ L2(Ω). Note that (37) remains valid for such a function ϕ. Since

the integral term in (37) is nonnegative, we deduce λ|Rλϕ|22 ≤ (Rλϕ,ϕ)2 ≤ |Rλϕ|2|ϕ|2. Hence

|λRλϕ|2 ≤ |ϕ|2 and we can extract a subsequence, still indexed by λ > 0, such that (λRλϕ)λ weakly

converges in L2(Ω) towards a function ϕ̂. Now we want to establish that there is a unique possible weak

limit for the family (λRλϕ)λ by proving ϕ̂ = M1[ϕ].
By multiplying the resolvent relation (λ − µ)RλRµϕ = Rµϕ − Rλϕ by µ and passing to the limit

as µ → 0, we get λRλϕ̂ = ϕ̂. Because of 2), ϕ̂ is G∗-measurable. Consider ψ ∈ L2(Ω) that is

G∗-measurable (i.e. M1[ψ] = ψ). Because of 2), we have λR∗
λψ = ψ. We deduce

(ϕ,ψ)2 = (ϕ, λR∗
λψ)2 = lim

λ→0
(λRλϕ,ψ)2 = (ϕ̂,ψ)2

and this proves that ϕ̂ = M1[ϕ]. As a consequence, there is a unique possible limit for each weakly

converging subsequence of the family (λRλϕ)λ. The whole family is therefore weakly converging in

L2(Ω).
To establish the strong convergence, it suffices to prove the convergence of the norms. As a weak

limit, ϕ̂ satisfies the property |ϕ̂|2 ≤ lim infλ→0 |λRλϕ|2. Conversely, (37) yields

lim sup
λ→0

|λRλϕ|22 ≤ lim sup
λ→0

(λRλϕ,ϕ)2 = (ϕ̂,ϕ)2 = |ϕ̂|22

and the strong convergence follows.

The remaining part of this section is concerned with the regularity properties ofGλP
∗ϕ. The proofs,

which may be omitted upon the first reading, are gathered in the appendix. Given u ∈ L2(Ω+), we will

say that u is a weakly differentiable if, for i = 1, . . . , d, we can find some function ∂iu ∈ L2(Ω+) such

that, for any g ∈ Cc(Ω
+), we have

∫

Ω+

u∂ig dµ
+ = −

∫

Ω+

∂iug dµ
+.

For k ≥ 2, the space Wk is recursively defined as the set of functions u ∈ W1 such that ∂iu is k − 1
times weakly differentiable for i = 1, . . . , d.

Remark 4.7. The above notion of differentiability on Ω+ extends that introduced in (28) for smooth

functions. That is the reason why we keep the same notation. Furthermore, we distinguish the operator

∂i acting on a functions defined on Ω+ from the classical operator ∂xi
acting on functions defined on a

domain of R
d.

Proposition 4.8. If ϕ belongs to C, then GλP
∗ϕ ∈

⋂∞
k=1 W

k.
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Proposition 4.9. Given ϕ ∈ C, the trajectories of GλP
∗ϕ are smooth. More precisely, we can find

N ⊂ Ω satisfying µ(N) = 0 and such that ∀ω ∈ Ω \N , the function

ũω : x = (x1, y) ∈ D̄ = R+ × R
d−1 7→ GλP

∗ϕ(x1, τ(0,y)ω)

belongs to C∞(D̄). Furthermore, it is a classical solution to the problem:

(38)

{

Lωũω(x) = 0, x ∈ D,
λũω(x) − γi(τxω)∂xi

ũω(x) = ϕ(τxω), x ∈ ∂D.

Proposition 4.10. (Maximum principle) Given ϕ ∈ C, we have |GλP
∗ϕ|L∞(Ω+) ≤ λ−1|ϕ|∞.

5 Ergodic theorems for the diffusion process

We now explain the connection between the operators in random medium and the asymptotic behavior of

additive functionals of the processXε andKε. The main advantage of considering the processesXε,Kε

under P̄
ε∗ is that we can exhibit an invariant distribution for the process Xε (remind the definitions of

P̄
ε∗, P̄ε,P∗

D,P
∗
∂D at the very end of Section 3). More precisely

Lemma 5.1. The process Xε satisfies:

1)For each function f ∈ L1(D̄ × Ω; P∗
D) and t ≥ 0:

(39) Ē
ε∗[f(Xε

t , τXε
t /εω)] dx = M

∗
D[f ].

2) For each function f ∈ L1(∂D × Ω; P∗
∂D) and t ≥ 0:

(40) Ē
ε∗

[

∫ t

0
f(Xε

r , τXε
r/εω) dKε

r

]

= tM∗
∂D

[

f
]

Proof. 1) We first suppose that f can be rewritten as f(x, ω) = Ψ(ω)̺(x), where Ψ ∈ C and ̺ ∈
C∞

c (D). Fix T > t. From Lemma B.1, there exists a classical bounded solution wε ∈ C∞([0, T ]×D̄)∩
C1,2

b to the problem

∂twε = Lε
V wε on [0, T ] ×D, γi(τ·/εω)∂xi

wε = 0 on [0, T ] × ∂D, and wε(0, ·) = f(·, τ·/εω),

where Lε
V is defined in (6). Moreover, Lemma B.2 provides the probabilistic interpretation:

wε(t, x) = E
ε∗
x [f(Xε

t , τXε
t /εω)].

The Green formula (7) then yields

∂t

∫

D
wε(t, x)e

−2V (x) dx =

∫

D
Lε

V wε(t, x)e
−2V (x) dx

= −
∫

∂D
γi(τx/εω)∂xi

wε(t, x)e
−2V (x) dx = 0

so that
∫

D̄ E
ε∗
x [f(Xε

t , τXε
t /εω)]e−2V (x) dx =

∫

D̄ f(x, τx/εω)e−2V (x) dx. It just remains to integrate with

respect to the measure µ and use the invariance under translations. The first point then follows from the

density of C∞
c (D) × C in L1(D̄ × Ω; P∗

D).
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Let us now focus on the second assertion. As previously, it is sufficient to consider a smooth function

f(x, ω) = ̺(x)ψ(ω), ̺ ∈ C∞
c (D̄) andψ ∈ C. Recall that the local timeKε

t is the density of occupation

time at ∂D (see [4, Prop. 1.19] with ψ(x) = x1, V0 = γ and a2(x) = 1). As a consequence,

Ē
ε∗

[

∫ t

0
f(Xε

r , τXε
r/εω) dKε

r

]

=Ē
ε∗

[

lim
δ→0

δ−1

∫ t

0
f(Xε

r , τXε
r/εω)1[0,δ](X

1,ε
r ) dr

]

= lim
δ→0

Ē
ε∗

[

δ−1

∫ t

0
f(Xε

r , τXε
r/εω)1[0,δ](X

1,ε
r ) dr

]

=t lim
δ→0

δ−1
M

∗
D

[

f(x, τx/εω)1[0,δ](x1)
]

=tM∗
∂D

[

f(x, τx/εω)
]

.

We complete the proof with the invariance of µ under the translations {τx;x ∈ R
d}.

We are now in position to state an ergodic theorem for the process Xε inside the domain D

Theorem 5.2. For each function function f ∈ L1(Ω) and T > 0, we have

(41) lim
ε→0

Ē
ε∗

[

sup
0≤t≤T

∣

∣

∫ t

0
f(τXε

r/εω) dr − tM[f ]
∣

∣

]

= 0.

Proof. We first suppose that f belongs to C. Even if it means replacing f by f − M[f ], we assume

M[f ] = 0. Consider the solution vλ ∈ L2(Ω) ∩ Dom(L) to the resolvent equation

(42) λvλ −Lvλ = f .

We let the reader check (or adapt the proof of Proposition 4.9) that µ a.s. the function ϑ : x ∈ R
d 7→

vλ(τxω) satisfies λϑ(x) − Lωϑ(x) = f(τxω) x ∈ R
d. So ϑ is smooth [8, Th. 6.17]. Applying the Itô

formula to the function x 7→ vλ(τxω) then yields

dvλ(τXε
t /εω) =ε−1Divλσij(τXε

t /εω)dB∗j
t − ε−1∂xi

V (Xε
t )aijDjvλ(τXε

t /εω) dt

+ ε−2Lvλ(τXε
t /εω) dt+ ε−1Divλγi(τXε

t /εω) dKε
t .

In the above expression, we replace Lvλ by λvλ − f , multiply both sides of the equality by ε2 and

isolate the term f(τXε
t /εω) dt. We obtain

∫ t

0
f(τXε

r/εω)dr=ε

∫ t

0
Divλσij(τXε

r/εω)dB∗j
r −ε2

(

vλ(τXε
t /εω)−vλ(τXε

0
/εω)

)

+

∫ t

0
λvλ(τXε

r/εω)dr

+ε

∫ t

0
Divλγi(τXε

t /εω)dKε
r−ε

∫ t

0
∂xi

V (Xε
r )aijDjvλ(τXε

r/εω)dr(43)

def
=∆1,ε,λ

t + ∆2,ε,λ
t + ∆3,ε,λ

t + ∆4,ε,λ
t + ∆5,ε,λ

t .

Let us investigate the quantities ∆1,ε,λ, ∆2,ε,λ, ∆3,ε,λ, ∆4,ε,λ and ∆5,ε,λ. Using the Doob inequality and

Lemma 5.1, we have:

Ē
ε∗

[

sup
0≤t≤T

|∆1,ε,λ
t |2

]

= ε2TM
∗
D

[

|Divλσij |2
]

≤ Cε2|Dvλ|22
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for some positive constant C only depending on T and |σ|∞. Hence Ē
ε∗

[

sup0≤t≤T |∆1,ε,λ
t |2

]

→ 0 as

ε→ 0, for each fixed λ > 0. Similarly, we can prove

Ē
ε∗

[

sup
0≤t≤T

|∆4,ε,λ
t + sup

0≤t≤T
|∆5,ε,λ

t |2
]

→ 0, as ε→ 0.

By using Lemma 4.1, we have

Ē
ε∗

[

sup
0≤t≤T

|∆2,ε,λ
t |2

]

≤ 4ε4|f |2∞λ−2 → 0, as ε→ 0.

From (43), we deduce

lim sup
ε→0

Ē
ε∗

[

sup
0≤t≤T

|
∫ t

0
f(τXε

r/εω) dr|2
]

≤ lim sup
ε→0

Ē
ε∗

[

sup
0≤t≤T

|∆3,ε,λ
t |2

]

≤ T |λvλ|22.

From Proposition 4.2, we have |λvλ|2 → 0 as λ goes to 0. So it just remains to choose λ small enough

to complete the proof in the case of a smooth function f ∈ C. The general case follows from the density

of C in L1(Ω) and Lemma 5.1.

Ergodic theorem for the local time. We now investigate the ergodic theorem for the local time Kε

Theorem 5.3. If f ∈ L2(Ω), the following convergence holds

(44) lim
ε→0

Ē
ε∗

[

sup
0≤t≤T

∣

∣

∫ t

0
f(τXε

r/εω) dKε
r − M1[f ](ω)Kε

t

∣

∣

]

= 0.

Proof. Once again, from Lemma 5.1 and density arguments, it is sufficient to consider the case of a

smooth function f ∈ C. Even if it means replacing f with f − M1[f ], we assume M1[f ] = 0. Let us

define, for any λ > 0, uλ = GλP
∗f and fλ = Rλf . We still use the notation ũλ

ω(x) = uλ(x1, τ(0,y)ω)

for any x = (x1, y) ∈ R+ × R
d−1. We remind the reader that the main regularity properties of the

function ũλ
ω are summarized in Proposition 4.9. In particular, µ a.s., the mapping x 7→ ũλ

ω(x) is smooth

and we can apply the Itô formula:

d
(

εũλ
ω(Xε

t /ε)
)

=
[

ε−1Lωũλ
ω(Xε

t /ε) − ∂xj
V (Xε

t )aij(τXε
t /εω)∂xi

ũλ
ω(Xε

t /ε)
]

dt

+ ∂xi
ũλ

ω(Xε
t /ε)σij(τXε

t /εω) dB∗j
t + γi(τXε

t /εω)∂xi
ũλ

ω(Xε
t /ε) dK

ε
t

Since Lωũλ
ω = 0 inside D and γi∂xi

uλ
ω = λfλ − f on ∂D, we deduce

∫ t

0
f(τXε

r/εω) dKε
r = −

(

εũλ
ω(Xε

t /ε) − εũλ
ω(Xε

0/ε)
)

−
∫ t

0
∂xj

V (Xε
r )aij(τXε

r/εω)∂xi
ũλ

ω(Xε
r/ε) dr

+

∫ t

0
∂xi

ũλ
ω(Xε

r/ε)σij(τXε
r/εω) dB∗j

r +

∫ t

0
λfλ(τXε

r/εω) dKε
r

≡∆1,ε
t + ∆2,ε

t + ∆3,ε
t + ∆4,ε

t .(45)

The next step of the proof is to prove that ∆1,ε,∆2,ε,∆3,ε converge to 0 as ε goes to 0 for each fixed

λ > 0. Clearly, from Proposition 4.10, we have Ē
ε∗

[

sup0≤t≤T |∆1,ε
t |2

]

≤ 4ε2|uλ|L∞(Ω+) −−−→
ε→0

0.

Let us now focus on ∆2,ε
t . We use the boundedness of ∂xj

V,aij (1 ≤ i, j ≤ d) and Lemma 5.1 (the

constant C below may change from line to line but does not depend on λ, ε)

Ē
ε∗

[

sup
0≤t≤T

|∆2,ε
t |2

]

≤CTM
∗
D

[

|∂xũ
λ
ω(·/ε)|2

]

= CT

∫

R+

M|∂uλ(
x1

ε
, ·)|2

(

∫

Rd−1

e−2V (x1,y) dy
)

dx1
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By using (11) and by making the change of variables u = x1/ε, the latter term is not greater than

CM ′εT
∫

Ω+ |∂uλ|2dµ+ and therefore converges to 0 as ǫ → 0. By combining the same argument with

the Doob inequality, we prove that Ē
ε∗

[

sup0≤t≤T |∆3,ε
t |2

]

→ 0 as ε→ 0. As a consequence (see (45))

lim sup
ε→0

Ē
ε∗

[

sup
0≤t≤T

|
∫ t

0
f(τXε

r/εω) dKε
r |

]

≤ lim sup
ε→0

Ē
ε∗

[

∫ T

0
|λfλ(τXε

r/εω)| dKε
r

]

.

By using Lemma 5.1 in the right-hand side of the previous inequality, we deduce, for any λ > 0,

lim sup
ε→0

Ē
ε∗

[

sup
0≤t≤T

|
∫ t

0
f(τXε

r/εω) dKε
r |

]

≤ |λfλ|2T
∫

∂D
e−2V (x) dx ≤M ′T |λfλ|2.

From Proposition 4.6 point 3), we can choose λ small enough so as to make the latter term arbitrarily

small. So we complete the proof.

Ergodic theorems under P̄
ε. With the help of (13), we reformulate theorems 5.2 and 5.3:

Theorem 5.4. 1) Let (f ε)ε be a family converging towards f in L1(Ω). For each fixed δ > 0 and T > 0,

the following convergence holds

(46) lim
ε→0

P̄
ε
[

sup
0≤t≤T

|
∫ t

0
f ε(τXε

r/εω) dr − tM[f ]| ≥ δ
]

= 0.

2) Let (f ε)ε be a family converging towards f in L2(Ω). For each fixed δ > 0 and T > 0, the

following convergence holds

(47) lim
ε→0

P̄
ε
[

sup
0≤t≤T

∣

∣

∫ t

0
f ε(τXε

r/εω) dKε
r − M1[f ]Kε

t

∣

∣ ≥ δ
]

= 0.

Proof. 1) From (13), we only have to check that (46) holds under P̄
ε∗. It follows from Theorem 5.2 and

the estimate (obtained with Lemma 5.1)

lim
ε→0

Ē
ε∗

[

sup
0≤t≤T

|
∫ t

0
[f ε − f ](Xε

r , τXε
r/εω) dr|

]

≤ T |f ε − f |1.

The same argument holds for (47).

6 Tightness of the process X
ε

We now investigate the tightness of the process Xε (and Kε). To that purpose, it is sufficient to establish

the tightness of the process 1
ε

∫ t
0 b(τXε

r/εω) dr +
∫ t
0 γ(τXε

r/εω) dKε
r . Roughly speaking, the guiding

line of our proof may be expressed as follows: on the first hand, we estimate the functional when Xε

evolves far from the boundary and then we study the limit behaviour of these estimates when we relax

the constraint of being far from the boundary. The first part of the proof is inspired by [17, Chap. 3] and

is based on the Garsia-Rodemich-Rumsey inequality:

Proposition 6.1. (Garsia-Rodemich-Rumsey’s inequality). Let p and Ψ be strictly increasing contin-

uous functions on [0,+∞[ satisfying p(0) = Ψ(0) = 0 and limt→∞ Ψ(t) = +∞. For given T > 0 and

f ∈ C([0, T ]; Rd), suppose that there exists a finite B such that;

(48)

∫ T

0

∫ T

0
Ψ

( |g(t) − g(s)|
p(|t− s|)

)

ds dt ≤ B <∞.

Then, for all 0 ≤ s ≤ t ≤ T : |g(t) − g(s)| ≤ 8
∫ t−s
0 Ψ−1(4B/u2) dp(u).
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Fix ω ∈ Ω and a smooth function ρ ∈ C∞
b (D̄) satisfying ρ(x) = 0 whenever x1 ≤ θ for some θ > 0.

For any ε > 0 and j = 1, . . . , d, define the "truncated" drift

(49) bερ,j(x, ω) =
e2V (x)

2
∂xi

(

e−2V (x)aij(τx/εω)ρ(x)
)

that belongs to C∞
b (D̄) too. We additionally define the set

C2,ε
γ = {f ∈ C2

b (D̄);γi(τx/εω)∂xi
f(x) = 0 for x ∈ ∂D}

and the norm |φ|2D =
∫

D φ
2(x)e−2V (x) dx on L2(D̄; e−2V (x)dx) (and (·, ·)D the associated inner prod-

uct).

For κ > 0 and ω ∈ Ω, let ψε,κ
ω ∈ C∞([0, T ] × D̄) ∩ C1,2

b be the bounded solution of

∂tψ
ε,κ
ω = Lε

V ψ
ε,κ
ω + κbερ,j(ψ

ε,κ
ω + 1) on [0, T ] ×D, γi(τ·/εω)∂xi

ψε,κ
ω = 0 on [0, T ] × ∂D

with initial condition ψε,κ
ω (0, ·) = 0 on D̄ (see Lemma B.1). Then uε,κ = ψε,κ

ω + 1 ∈ C1,2
b is a bounded

classical solution of the problem

(50) ∂tu
ε,κ
ω = Lε

V u
ε,κ
ω + κbερ,ju

ε,κ
ω on [0, T ] ×D, γi(τ·/εω

)

∂xi
uε,κ

ω = 0 on [0, T ] × ∂D,

with initial condition uε,κ
ω (0, ·) = 1 on D̄. Lemma B.2 and a straightforward calculation provide the

probabilistic representation

uε,κ
ω (t, x) =E

ε∗
x

[

∫ t

0
κbερ,j(X

ε
r , ω) exp

(

∫ r

0
κbερ,j(X

ε
u, ω) du

)

dr
]

+ 1

=E
ε∗
x

[

exp
(

κ

∫ t

0
bερ,j(X

ε
r , ω) dr

)

]

.

Lemma 6.2. For each ω ∈ Ω, we have the estimate |uε,κ
ω (t, ·)|2D ≤ e2tπε,κ

ω (0 ≤ t ≤ T ), where

πε,κ
ω = sup(φ,Lε

V φ+ κbερ,jφ)D and the sup is taken over {φ ∈ C2,ε
γ , |φ|2D = 1}.

Proof. We have:

∂t|uε,κ
ω (t, ·)|2D =2(uε,κ

ω , ∂tu
ε,κ
ω (t, ·))D

=2(uε,κ
ω ,Lε

V u
ε,κ
ω + κbερ,ju

ε,κ
ω (t, ·))D ≤ 2πε,κ

ω |uε,κ
ω (t, ·)|2D.

Since |uε,κ
ω (0, ·)|2D = 1, we complete the proof with the Gronwall lemma.

Proposition 6.3. For any κ > 0, ε > 0 and 0 ≤ s, t ≤ T

Ē
ε∗

[

exp
(∣

∣κ

∫ t

s
bερ,j(X

ε
r , ω) dr

∣

∣

)]

≤ 2 exp
(

Cκ2(t− s)
)

,

for some constant C that only depends on Λ and supx∈D̄ |ρ(x)|.

Proof. By stationarity (Lemma 5.1) and Lemma 6.2, we have

Ē
ε∗

[

exp
(

κ

∫ t

s
bερ,j(X

ε
r , ω) dr

)]

≤ Ē
ε∗

[

exp
(

κ

∫ t−s

0
bερ,j(X

ε
r , ω) dr

)]

=M
∗
D[uε,κ

ω (t− s, x)] ≤ M|uε,κ
ω (t− s, ·)|D ≤ M[exp((t− s)πε,κ

ω )].
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It remains to estimate πε,κ
ω . For any function φ ∈ C2,ε

γ such that |φ|2D = 1, we have

(bερ,j(·, ω), φ2)D = −(aij(τ·/εω)ρφ, ∂xi
φ)D ≤ Λ−1 sup

x∈D̄

|ρ(x)||∂xφ|D = C|∂xφ|D

where we have set C = Λ−1 supx∈D̄ |ρ(x)|. As a consequence (the sup below are taken over {φ ∈
C2,ε

γ , |φ|2D = 1})

πε,κ
ω = sup(φ,Lε

V φ+ κbερ,jφ)D

≤ sup
{

− (1/2)(aij(τ·/εω)∂xi
φ, ∂xj

φ)D + κ(bερ,j(·, ω), φ2)D

}

≤ sup
{

− (Λ/2)|∂xφ|2D + κC|∂xφ|D
}

≤ κ2C2/(2Λ).

Gathering the previous inequalities yields Ē
ε∗

[

exp
(

κ
∫ t
s b

ε
ρ,j(X

ε
r , ω) dr

)]

≤ exp
(

C ′κ2(t − s)
)

where

C ′ = supx∈D̄ |ρ(x)|2/(2Λ3). We complete the proof by repeating the argument for −bερ,j and using the

inequality exp(|x|) ≤ exp(−x) + exp(x).

Let us now make a specific choice of ρ. For each n ∈ N
∗, let us consider the bounded con-

tinuous function ρn : D̄ → R defined by ρn(x) = 0 if x1 ≤ n−1, ρn(x) = n(x1 − n−1) if

n−1 ≤ x1 ≤ 2n−1 and 1 otherwise. With the help of a regularization procedure, Lemma 5.1 and

the inequality supx∈D̄ |ρn(x)| ≤ 1, one can prove that Proposition 6.3 remains valid for ρn. Since

supx∈D̄ |ρn(x)| = 1 for each n, we deduce

(51) ∀n ∈ N,∀0 ≤ s, t ≤ T, Ē
ε∗

[

exp
(
∣

∣κ

∫ t

s
bερn,j(X

ε
r , ω) dr

∣

∣

)]

≤ 2 exp
(

Cκ2(t− s)
)

for some constant C only depending on Λ.

Our objective is now to determine the limit of
∫ t
s b

ε
ρn,j(X

ε
r , ω) dr to pass to the limit as n → ∞

in (51). So we expand (49) with respect to the operator ∂xi
and, by using the relation ∂xi

ρn(x) =
n1I[ 1

n
; 2

n
](x), we obtain

∫ t

0
bερn,j(X

ε
r , ω) dr =

∫ t

0

[1

ε
bj(τXε

r/εω) − ∂xi
V (Xε

r )aij(τXε
r/εω)

]

ρn(Xε
r ) dr

+

∫ t

0
aij(τXε

r/εω)n1I[ 1

n
; 2

n
](X

ε
r ) dr

(52)

From [4, Prop 1.19],
∫ t
0 aij(τXε

r/εω)n1I[ 1

n
; 2

n
](X

ε
r ) dr converges almost surely towards

∫ t
0 a1j(τXε

r/εω) dKε
r

as n→ ∞. in such a way that applying the Fatou Lemma as n→ +∞ in (51) yields

∀0 ≤ s, t ≤ T, Ē
ε∗

[

exp
(
∣

∣κ(Aε
t −Aε

s)+κ

∫ t

s
a1j(τXε

r/εω) dKε
r

∣

∣

)]

≤ 2 exp
(

Cκ2(t− s)
)

(53)

where we have set Aε,j
t =

∫ t
0

[

1
εbj(τXε

r/εω) − ∂xi
V (Xε

r )aij(τXε
r/εω)

]

dr.

Proposition 6.4. We have the following estimate of the modulus of continuity

Ē
ε∗

(

sup
|t−s|≤δ;0≤s,t≤T

∣

∣Aε,j
t −Aε,j

s +

∫ t

s
a1j(τXε

r/εω) dKε
r

∣

∣

)

≤ C
√
δ ln(δ−1),(54)

for some constant C that only depends on T,Λ.
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Proof. The result follows from Propositions (53) and 6.1 (with p(t) =
√
t, ψ(t) = et − 1 and ψ−1(t) =

ln(t + 1)). Since that step of the proof does not differ from [17, Ch. 3,Th 3.5], the reader is referred to

this paper for further details.

Let us now introduce the space D([0, T ]; R+) of nonnegative right-continuous functions with left

limits on [0, T ] equipped with the S-topology of Jakubowski (see Appendix C). The space C([0, T ]; D̄)
is equipped with the sup-norm topology.

Proposition 6.5. Under the law P̄
ε∗, the family of processes (Xε)ε is tight in C([0, T ]; D̄), and the

family of processes (Kε)ε is tight in D([0, T ]; R+).

Proof. Let us first investigate the tightness ofXε. The tightness of the processAj,ε
t +

∫ t
0 a1j(τXε

r/εω) dKε
r

in C([0, T ]; R) results from Proposition 6.4. Then, observe that

Xj,ε
t = xj +Aj,ε

t +

∫ t

0
a1j(τXε

r/εω) dKε
r +

∫ t

0
(γj − a1j)(τXε

r/εω) dKε
r +

∫ t

0
σji(τXε

r/εω) dB∗i
r .

Hence, the tightness of Xε results from the tightness of the martingale part, which follows from the

boundedness of σ and the Kolmogorov criterion, and from the tightness of
∫ t
0 (γj − a1j)(τXε

r/εω) dKε
r ,

which follows from Theorem 5.3 (recall that M1[γj − a1j ] = M1[DiHji] = 0).

Let us now investigate the tightness of the family (Kε)ε. From Lemma 5.1, we have Ē
ε∗[Kε

T ] =
T

∫

∂D e
−2V (x) dx. Theorem C.2 ensures that (Kε)ε is tight in D([0, T ]; R+) (remind that Kε is increas-

ing).

To sum up, under P̄
ǫ∗, the family (Xε,Kε)ε is tight in C([0, T ]; D̄) ×D([0, T ]; R+) equipped with

the product topology. From (13), the family is tight in C([0, T ]; D̄) × D([0, T ]; R+) under P̄
ǫ. The

purpose of the next section is to identify the limit of each converging subsequence.

7 Homogenization

We now focus on the proof of Theorem 1.2 in the case χ(x) = e−2V (x). The first step consists in

introducing the functionuλ ∈ L2(Ω; Rd), the entries of which are given, for j = 1, . . . , d, by the solution

u
j
λ to the resolvent equation λuj

λ −Lu
j
λ = bj . Let ζ ∈ L2(Ω; Rd×d) be defined by ζij = limλ→0Diu

j
λ

(see Proposition 4.3).

Since, µ-almost surely, the function φ : x 7→ uλ(τxω) satisfies λφ − Lωφ = b(τ·ω) on R
d, the

function uλ(·, ω) is smooth (see [8, Th. 6.17]). Hence, we can apply the Itô formula to the function

x 7→ x+ uλ(τxω) and obtain

Xε
t =x− ε

(

uε2(τXε
t /εω) − uε2(τXε

0
/εω)

)

+ ǫ

∫ t

0
uε2(τXε

r/εω) dr(55)

+

∫ t

0
(I +Du∗

ε2)γ(τXε
r/εω) dKε

r +

∫ t

0
(I +Du∗

ε2)σ(τXε
r/εω) dBr.

≡ x−G1,ε
t +G2,ε

t +G3,ε
t +M ε

t .

Proposition 7.1 below investigates the convergence of the various terms involved in (55) (see the proof

at the end of this section).

Proposition 7.1. For each subsequence of the family (Xε,Kε)ε, we can extract a subsequence (still

indexed with ε > 0) such that:
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1) under P̄
ε, the family of processes (Xε,M ε,Kε)ε converges in law inC([0, T ]; D̄)×C([0, T ]; Rd)×

D([0, T ]; R+) towards (X̄, M̄ , K̄), where M̄ is a centered non-standard d-dimensional Brownian mo-

tion with covariance

Ā = M[(I + ζ∗)a(I + ζ)]

and K̄ is a right-continuous increasing process.

2) the finite-dimensional distributions of the families (G1,ε
t )ε, (G2,ε

t )ε and (G3,ε − Γ̄Kε)ε converge

towards 0 in P̄
ε-probability, that is for each t ∈ [0, T ]

∀δ > 0, lim
ε→0

P̄
ε
(

|Gi,ε
t | > δ

)

= 0 (i = 1, 2), lim
ε→0

P̄
ε
(

|G3,ε
t − Γ̄Kε

t | > δ
)

= 0.

Conclusion. We can find a countable subset S ⊂ [0, T [ (see Theorem C.2) such that the finite-

dimensional distributions of the process (Xε,M ε,Kε)ε converge along [0, T ] \S. So we can pass to the

limit in (55) along s, t ∈ [0, T ] \ S (s < t), and this leads to

(56) X̄t = X̄s + Ā1/2(B̄t − B̄s) + Γ̄(K̄t − K̄s).

Since (56) is valid for s, t ∈ [0, T ] \S (note that this set is dense and contains T ) and since the processes

are at least right continuous, (56) remains valid on the whole interval [0, T ]. As a by-product, K̄ is con-

tinuous and the convergence of (Xε,M ε,Kε)ε actually holds in the spaceC([0, T ]; D̄)×C([0, T ]; Rd)×
C([0, T ]; R+) (see Lemma C.3).

It remains to prove that K̄ is associated to X̄ in the sense of the Skorokhod problem, that is to

establish that {Points of increase of K̄} ⊂ {t; X̄1
t = 0} or

∫ T
0 X̄1

r dK̄r = 0. This results from the fact

that ∀ε > 0
∫ T
0 X1,ε

r dKε
r = 0 and Lemma C.4. Since uniqueness in law holds for the solution (X̄, K̄)

of Equation (56) (see [22]), we have proved that each converging subsequence of the family (Xε,Kε)ε

converges in law in C([0, T ]; D̄ × R+) as ε → 0 towards the same limit (the unique solution (X̄, K̄) of

(56)). As a consequence, the whole sequence (Xε,Kε)ε is converging.

Proof of Proposition 7.1. 1) The tightness of (Xε,Kε) results from Section 6. To prove the tightness of

the martingales (M ε)ε, it suffices to prove the tightness of the brackets (< M ε >)ε, which are given by

< M ε >t=

∫ t

0
(I +Duε2)a(I +Duε2)∗(τXε

r/εω) dr.

Proposition 4.3 and Theorem 5.4 lead to < M ε >t→ Āt in probability in C([0, T ]; Rd×d) where Ā =
M

[

(I +Duε2)a(I +Duε2)∗
]

. The martingales (M ε)ε thus converge in law in C([0, T ]; Rd) towards a

centered Brownian motion with covariance matrix Ā (see [9]).

2) the convergence of (Gi,ε)ε (i = 1, 2) follows (18), Lemma 5.1 Theorem 5.4:

lim
ε→0

Ē
ε∗

[

|εuε2(τXε
t /εω)|2 + |

∫ t

0
εuε2(τXε

r/εω) dr|2
]

≤ (1 + t) lim
ε→0

(ε2|uε2 |22) = 0.

From (13), we deduce P̄
ε
x

(

|G1,ε
t | + |G2,ε

t | > δ
)]

= 0 for any δ > 0. The convergence of (G3,ε)ε results

from Theorem 5.4 and (20).

Replication method

Let us use the shorthands CD and C+ to denote respectively the spaces C([0, T ], D̄) and C([0, T ],R+).
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Remark 7.2. For the sake of clarity, we sum up the results obtained previously. We have proved the

convergence, as ε → 0, of Ē
ε[F (Xε,Kε)] towards Ē[F (X̄, K̄)], for each continuous bounded function

F : CD×C+ → R. Here Ē denotes the expectation with respect to the law P̄ of the process (X̄, K̄), solv-

ing the RSDE (56) with initial distribution P̄(X̄0 ∈ dx) = e−2V (x)dx. From [22], the law P̄ coincides

with
∫

D̄ P̄x(·)e−2V (x)dx where P̄x denotes the law of (X̄, K̄) solving (56) and starting from x ∈ D̄.

Remark 7.3. In the classical framework of Brownian motion driven SDE (i.e. without reflection term in

(1)), it is plain to see that, under the invariant measure, the convergence in law of the processXε towards

a Brownian motion (the so-called annealed convergence) implies the convergence in probability of the

law of Xε, as stated in Theorem 1.2. Indeed, the convergence in law towards 0 of the correctors (the

terms G1,ε, G2,ε in (55)) implies their convergence in probability towards 0. Moreover the convergence

in probability of the law of the martingale term M ε in (55) is obvious since the brackets converge in

probability (it does not cost much more to prove that they converge almost surely). In our case, we have

proved that the additional term G3,ε corresponding to the local time converge, under the annealed law

P̄
ε, towards a random variable Γ̄K̄, but there is no obvious way to switch from convergence in law to

convergence in probability. That is the purpose of the computations below.

So we have to establish the convergence in µ⊗χ-probability of E
ε
x[F (Xε,Kε)] towards Ēx[F (X̄, K̄)]

for each continuous bounded function F : CD × C+ → R. To that purpose, we will prove

(57) lim
ε→0

M
∗
D

[

(

E
ε
x[F (Xε,Kε)] − Ēx[F (X̄, K̄)]

)2
]

= 0.

The expression M
∗
D

[

(

E
ε
x[F (Xε,Kε)] − Ēx[F (X̄, K̄)]

)2
]

expands as

M
∗
D

[

(

E
ε
x[F (Xε,Kε)]

)2
]

− 2M
∗
D

[

E
ε
x[F (Xε,Kε]Ēx[F (X̄, K̄)]

]

+ M
∗
D

[

(

Ēx[F (X̄, K̄)]
)2

]

.

Clearly, the mapping x 7→ Ēx

[

F (X̄, K̄)
]

is bounded and continuous. So

G : (x, k) ∈ CD × C+ 7→ F (x, k)Ex(0)

[

F (X̄, K̄)
]

is bounded and continuous. From Remark 7.2, the following convergence holds as ε→ 0

M
∗
D

[

E
ε
x[F (Xε,Kε)]Ēx[F (X̄, K̄)]

]

= Ē
ε[G(Xε,Kε)] → Ē[G(X̄, K̄)]

]

= M
∗
D

[

(Ēx

[

F (X̄, K̄)]
)2

]

So, we just have to prove that

(58) M
∗
D

[

(

E
ε
x[F (Xε,Kε)]

)2
]

→ M
∗
D

[

(

Ēx[F (X̄, K̄)]
)2

]

as ε→ 0.

We consider 2 independant Brownian motions (B1, B2) and solve (1) for each Brownian motion. This

provides two independant couple of processes (with respect to the randomness of the Brownian motion)

(Xε,1,Kε,1) and (Xε,2,Kε,2). Furthermore, we have

M
∗
D

[

(

E
ε
x[F (Xε,Kε)]

)2
]

= M
∗
D

[

E
ε
xx

[

F (Xε,1,Kε,1)F (Xε,2,Kε,2)
]]

where P
ε
xx denotes the law of (Xε,1,Kε,1, Xε,2,Kε,2) when both Xε,1 and Xε,2 start from x ∈ D̄, and

E
ε
xx the corresponding expectation. Under M

∗
DP

ε
xx, the results of Section 5 and 6 remain valid since the

marginal laws of each couple of processes coincide with P̄
ε
x. So we can repeat the arguments of Section
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7 and prove that the processes (Xε,1,Kε,1, Xε,2,Kε,2)ε converge in law in CD ×C+×CD ×D+, under

M
∗
DE

ε
xx, towards a process (X̄1, K̄1, X̄2, K̄2) satisfying:

(59) ∀t ∈ [0, T ], X̄1
t = X̄1

0 +A1/2B̄1
t + K̄1

t , X̄2
t = X̄2

0 +A1/2B̄2
t + K̄2

t ,

where (B̄1, B̄2) is a standard 2d-dimensional Brownian motion and K̄1, K̄2 are the local times respec-

tively associated to X̄1, X̄2. Let P̄ denote the law of (X̄1, K̄1, X̄2, K̄2) and P̄xx the law of (X̄1, K̄1, X̄2, K̄2)
solution of (59) where both X̄1 and X̄2 start from x ∈ D̄. Under P̄, the initial distribution of the limiting

process is given by P̄ (X̄1
0 ∈ dx, X̄2

0 ∈ dy) = δx(dy)e−2V (x)dx. To obtain (58), it just remains to remark

that

Ē
[

F (X̄1, K̄1)F (X̄2, K̄2)
]

=

∫

D̄
Ēxx

[

F (X̄1, K̄1)F (X̄2, K̄2)
]

e−2V (x)dx

=

∫

D̄
Ēx

[

F (X̄1, K̄1)
]

Ēx

[

F (X̄2, K̄2)
]

e−2V (x)dx,

since, under P̄xx, the couples (X̄1, K̄1) and (X̄2, K̄2) are adapted to the filtrations generated respectively

by B̄1 and B̄2 and are therefore independent.

Appendix

A Proofs of section 4

We stick to the notations introduced in Section 4.

Proof of Proposition 4.8. The strategy is based on the well-known method of difference quotients (see

[8, Sect. 7.11 & Th. 8.8] for instance, on which the proof below is based). The main properties of

difference quotients in random media are summarized below (see e.g. [20, Sect. 5]):

i) for j = 2, . . . , d, r ∈ R \ {0} and g ∈ Cc(Ω+), we define

∆j
rg(x1, ω) =

1

r
(g(x1, τrej

ω) − g(x1, ω)).

ii) for each r ∈ R \ {0} and g ∈ Cc(Ω+), we define

∆1
rg =

1

r
(g(x1 + r, ω) − g(x1, ω)).

iii) for any j = 1, . . . , d, r ∈ R \ {0} and g,h ∈ Cc(Ω+), the discrete integration by parts holds

∫

Ω+

∆j
rgh dµ

+ = −
∫

Ω+

g∆j
−rh dµ

+

provided that r is small enough to ensure ∆j
rg,∆

j
rh ∈ Cc(Ω+).

iv) for any j = 1, . . . , d, r ∈ R \ {0} and g ∈ Cc(Ω+) such that ∆j
rg ∈ Cc(Ω+), we have

∫

Ω+

|∆j
rg|2 dµ+ ≤

∫

Ω+

|∂jg|2 dµ+.

Up to the end of the proof, we omit the parameter λ from the notations and note u for GλP
∗ϕ. The

strategy consists in differentiating the resolvent equationBλ(u, ·) = P ∗ϕ(·) to prove that the derivatives
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satisfy some equation of the same type. For p = 2, . . . , d, it raises no difficulty to adapt the method

explained in [20, Sect. 5] and prove that the "tangential derivatives" ∂pu belongs to W1 and solves the

equation

(60) Bλ(∂pu, ·) = P ∗Dpϕ(·) − Fp(·),

where Fp : W1 → R is defined by

Fp(g) = (1/2)

∫

Ω+

(Dpa
+ +DpH

+)ij∂iu∂jg dµ
+.

In particular, ∂iju ∈ L2(Ω+;µ+) for (i, j) 6= (1, 1). We let the reader check the details.

The main difficulty lies in the "normal derivative" ∂1u: we have to prove that ∂1u is weakly dif-

ferentiable. Actually, it just remains to prove that there exists a function ∂2
11u ∈ L2(Ω+;µ+) such that

∀g ∈ Cc(Ω+):

(61)

∫

Ω+

∂2
11ug dµ

+ = −
∫

Ω+

∂1u∂1g dµ
+.

To that purpose, we have to plug a generic function g ∈ Cc(Ω+) into the resolvent equation (35). The

boundary terms (P ∗ϕ, g) = (ϕ, g(0, ·))2 and λ(Pu, Pg)2 vanish. We obtain (remind that a11 = 1 and

H̄11 = 0)
∫

Ω+

∂1u∂1g dµ
+ = −

∑

(i,j) 6=(1,1)

∫

Ω+

(a+ + H̄
+
)ij∂iu∂jg dµ

+

=
∑

(i,j) 6=(1,1)

∫

Ω+

∂j(a
+ + H̄

+
)ij∂iug dµ

+ +
∑

(i,j) 6=(1,1)

∫

Ω+

(a+ H̄)ij∂
2
ijug dµ

+

Since ∂iju ∈ L2(Ω+;µ+) for (i, j) 6= (1, 1), we deduce that

∫

Ω+

∂1u∂1g dµ
+ ≤ C

(

∫

Ω+

g2 dµ+
)1/2

for some positive constant C. So the mapping g ∈ Cc(Ω+) 7→
∫

Ω+ ∂1u∂1g dµ
+ is L2(Ω+;µ+)-

continuous and there exists a unique function denoted by ∂2
11u such that (61) holds. As a consequence,

∂1u is weakly differentiable, that is u ∈ W2. Note that (60) only involves the functions a, H̄,ϕ and

their derivatives in such a way that we can iterate the argument in differentiating (60) and so on. So we

complete the proof recursively.

Proof of Proposition 4.9. The function u still stands for GλP
∗ϕ. To begin with, we state the following

lemma (see the proof thereafter)

Lemma A.1. For each function ̺ ∈ C∞
c (D̄), χ ∈ C and v ∈ W1, we define ṽω : (x1, y) ∈ D̄ 7→

v(x1, τ(0,y)ω). We have:

1) M
[

χ(ω)

∫

D̄
ṽω̺(x) dx

]

=

∫

Ω+

v(χ⊙ ˇ̺) dµ+,

2) M
[

χ(ω)

∫

D̄
(a+ H̄)ij(τxω)∂xi

ṽω(x)∂xj
̺(x) dx

]

=

∫

Ω+

(a+ + H̄
+
)ij∂iv∂j(χ⊙ ˇ̺) dµ+

where ˇ̺(x1, y) = ̺(x1,−y) for each (x1, y) ∈ D̄.
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We first prove that µ a.s., the function x 7→ ũω(x) admits weak derivatives in the classical sense on

D̄. So we consider ̺ ∈ C∞
c (D) and we want to compute

∫

D ũω∂xi
̺(x) dx for i = 1, . . . , d. To that

purpose, we consider χ ∈ C. By using Lemma A.1 above and the relation ∂i(χ⊙ ˇ̺) = χ⊙ ˇ(∂xi
̺), we

have

M
[

χ(ω)

∫

D̄
ũω∂xi

̺(x) dx
]

=

∫

Ω+

u(χ⊙ ˇ(∂xi
̺)) dµ+ =

∫

Ω+

u∂i(χ⊙ ˇ̺) dµ+

= −
∫

Ω+

∂iu(χ⊙ ˇ̺) dµ+ = −M

[

χ(ω)

∫

(x1,y)∈D̄
∂iu(x1, τ(0,y)ω)̺(x1, y) dx1dy

]

It follows that µ a.s.

∫

D̄
ũω(x)∂xi

̺(x) dx = −
∫

(x1,y)∈D̄
∂iu(x1, τ(0,y)ω)̺(x1, y) dx1dy.

Hence, µ a.s., ũω admits weak derivatives (in the classical sense) of first order and they are given by

∂xi
ũω(x) = ∂iu(x1, τ(0,y)ω) for x = (x1, y) ∈ D̄. Recursively, we can prove that, µ a.s., ũω ad-

mits weak derivatives (in the classical sense) of all orders and they are given by ∂k
xi1

...xik
ũω(x) =

∂k
i1...ik

u(x1, τ(0,y)ω), for x = (x1, y) ∈ D̄. Since those weak derivatives are locally square-integrable,

we deduce that, µ a.s., ũω belongs to the classical Sobolev space H∞,2
loc (D̄) (the space of functions hav-

ing weak derivatives of all orders that are locally square-integrable). From the Sobolev embeddings, ũω

belongs to C∞(D̄).
It remains to prove that ũω solves (38). We first prove that Lωũω = 0 on D. To that purpose, let us

consider ̺ ∈ C∞
c (D) and prove that

∫

D̄ L
ωũω(x)̺(x) dx = 0 µ a.s. by establishing

∀χ ∈ C, M
[

χ(ω)

∫

D̄
Lωũω(x)̺(x) dx

]

= 0.

By integrating by parts and using Lemma A.1, we obtain:

−M
[

χ(ω)

∫

D̄
Lωũω(x)̺(x) dx

]

= (1/2)M
[

χ(ω)

∫

D̄
(a+ H̄)ij(τxω)∂xi

ũω(x)∂xj
̺(x) dx

]

=(1/2)

∫

Ω+

(a+ + H̄
+
)ij∂iu∂j(χ⊙ ˇ̺) dµ+

=Bλ(u,χ⊙ ˇ̺) = (χ⊙ ˇ̺, P ∗ϕ) = 0,

the last equality resulting from the relation χ⊙ ˇ̺ ∈ Cc(Ω
+).

Finally, we identify the boundary condition. Let us consider ̺ ∈ C∞
c (D̄), χ ∈ C. By using the

Green formula (5) and Lemma A.1, we have

M
[

χ(ω)

∫

∂D

(

λũω(y) − γi(τyω)∂xi
ũω(y)

)

̺(y) dy
]

=M
[

χ(ω)

∫

∂D
λũω(y)̺(y) dy

]

+ (1/2)M
[

χ(ω)

∫

D̄
(a+ H̄)ij(τxω)∂xi

ũω(x)∂xj
̺(x) dx

]

=λ(Pu, P (χ⊙ ˇ̺))2 + (1/2)

∫

Ω+

(a+ + H̄
+
)ij∂iu∂j(χ⊙ ˇ̺) dµ+

=Bλ(u,χ⊙ ˇ̺) = (χ⊙ ˇ̺, P ∗ϕ) = M
[

χ(ω)

∫

∂D
ϕ(τyω)̺(y) dy

]
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so that µ a.s. λũω(y) − γi(τyω)∂xi
ũω(y) = ϕ(τyω), y ∈ ∂D.

Proof of Lemma A.1. Consider ̺ ∈ C∞
c (D̄) and χ ∈ C. We use the invariance of µ under translations:

M
[

χ(ω)

∫

D̄
ũω̺(x) dx

]

=M

[

∫

(x1,y)∈D̄
χ(ω)u(x1, τ(0,y)ω)̺(x1, y) dx1dy

]

=M

[

∫

(x1,y)∈D̄
χ(τ−(0,y)ω)u(x1, ω)̺(x1, y) dx1dy

]

.

After making the change of variables u = −y, it is readily seen that the latter quantity exactly matches
∫

Ω+ u(χ⊙ ˇ̺) dµ+. We let the reader follow the same strategy to prove 2).

Proof of Proposition 4.10. We adapt the Stampacchia truncation method. More precisely, we introduce

a function H : R → R of class C1(R) such that

i)∀s ∈ R, |H ′(s)| ≤ C, ii)∀s > 0, H ′(s) > 0, iii)∀s ≤ 0, H ′(s) = 0.

We define K = |ϕ|∞/λ and uλ = GλP
∗ϕ. We let the reader check that H(uλ −K) ∈ W1. Then we

plug g = H(uλ −K) into (35) and we obtain:

λ(Puλ, PH(uλ −K))2 +
1

2

∫

Ω+

a+
ij ∂iuλ ∂juλH

′(uλ −K) dµ+ = (PH(uλ −K),ϕ)2.

Hence

λ(Puλ −K,H(Puλ −K))2 +
1

2

∫

Ω+

a+
ij ∂iuλ ∂juλH

′(uλ −K) dµ+ = (H(Puλ −K),ϕ− λK)2.

Observe that the right-hand side is negative sinceϕ−λK ≤ 0 andH(s) ≥ 0 for any s ≥ 0. Furthermore,

the left-hand side is positive since H ′(s) ≥ 0 and sH(s) ≥ 0 for s ∈ R. We deduce that both terms

of the left-hand side reduce to 0. This implies Puλ ≤ K and (from (4)) |∂uλ|2H ′(uλ − K) = 0
µ+ a.s., in particular PH(uλ − K) = 0 and 1

2

∫

Ω+ |∂uλH
′(uλ − K)|2 dµ+ = 0. In other words,

N(H(uλ −K)) = 0. So H(uλ −K) = 0 and this means uλ ≤ K.

Proof of Lemma 4.1. The proof is quite similar to that of Proposition 4.10. So we let the reader check

the details.

B Proofs of Section 5

Lemma B.1. For any functions f ∈ C∞
c (D) and g, h ∈ C∞

b (D̄), there exists a unique classical solution

wε ∈ C∞([0, T ]; D̄) ∩ C1,2
b to the problem

(62)

∂twε = Lε
V wε + gwε + h on [0, T ] ×D, γi(τ·/εω)∂xi

wε = 0 on [0, T ] × ∂D, and wε(0, ·) = f.

Proof. First of all, we remind the reader that all the coefficients involved in the operator Lε
V (see the

definition of Lε
V in (6)) belong to C∞

b (D̄). From [14, Th V.7.4], we can find a unique generalized

solution w′
ε in C1,2

b to the equation

∂tw
′
ε = Lε

V w
′
ε + gw′

ε + Lε
V f + gf + h, w′

ε(0, ·) = 0 on D, γ(τ·/εω)∂xi
w′

ε = 0 on [0, T ] × ∂D.
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From [14, IV.§10], we can prove that w′
ε is smooth up to the boundary. Then the function

wε(t, x) = w′
ε(t, x) + f(x) ∈ C∞([0, T ] × D̄) ∩ C1,2

b

is a classical solution to the problem (62).

Lemma B.2. The solution wε given by Lemma B.1 admits the following probabilistic representation:

∀(t, x) ∈ [0, T ] × D̄, wε(t, x) = E
ε∗
x

[

f(Xε
t ) exp

(

∫ t

0
g(Xε

r )dr
)]

.

Proof. Applying the Itô formula to the function (r, x, y) 7→ wε(t − r, x) exp(y) and to the triple of

processes (r,Xε
r ,

∫ r
0 g(X

ε
u)du) yields (see for instance [10, Ch. II, Th. 5.1]):

d
(

wε(t− r,Xε
r ) exp

(

∫ r

0
g(Xε

u)du
)

)

= exp
(

∫ r

0
g(Xε

u)du
)(

(−∂twε + Lε
V wε)(t− r,Xε

r )
)

dr

+ exp
(

∫ r

0
g(Xε

u)du
)

∂xi
wε(t− r,Xε

r )σij(τXε
r/εω)dB∗j

r

+ wε(t− r,Xε)g(Xε
r ) exp

(

∫ r

0
g(Xε

u)du
)

dr

+ exp
(

∫ r

0
g(Xε

u)du
)

γi(τXε
r/εω)∂xi

wε(t− r,Xε
r )dKε

r ,

that is, by using (62),

f(Xε
t ) exp

(

∫ t

0
g(Xε

u)du
)

=wε(t, x) −
∫ t

0
h(Xε

r ) exp
(

∫ r

0
g(Xε

u)du
)

dr

+

∫ t

0
exp

(

∫ r

0
g(Xε

u)du
)

∂xi
wε(t− r,Xε

r )σij(τXε
r/εω)dB∗j

r .

Sincewε ∈ C1,2
b , the stochastic integral is a martingale and its expectation reduces to 0. So it just remains

to take the expectation in the above expression to prove the Lemma.

C J-topology

We summarized below the main properties of the Jakubowski topology (J-topology) on the spaceD([0, T ]; R)
and refer the reader to [11] for further details and proofs. We denote by V the set of of functions

v : [0, T ] → R with bounded variations. The J-topology is a sequential topology defined by

Definition C.1. A sequence (xn)n in D([0, T ]; R) converges to x0 ∈ D([0, T ]; R) if for every ε > 0,

one can find elements (vn,ε)n∈N ⊂ V such that

1)∀n ∈ N, sup[0,T ] |xn − vn,ε| ≤ ε,

2) for each continuous function f : [0, T ] → R,
∫ T
0 f(r)dvn,ε(r) →

∫ 1
0 f(r)dv0,ε(r) as n→ +∞.

Gathering [11, Th. 3.8] and [11, Th. 3.10], one can state:
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Theorem C.2. Let (Vα)α ⊂ D([0, T ]; R) be a family of nondecreasing stochastic processes. Suppose

that the family (Vα(T ))α is tight. Then the family (Vα)α is tight for the J-topology. Moreover, there

exists a sequence (Vn)n ⊂ (Vα)α, a nondecreasing right-continuous process V0 and a countable subset

C ⊂ [0, T [ such that for all finite sequence (t1, . . . , tp) ⊂ [0, T ] \ C, the family (Vn(t1), . . . , Vn(tp))n

converges in law towards (V0(t1), . . . , V0(tp))n.

Equip the set V+
c ([0, T ]; R) of continuous nondecreasing functions on [0, T ] with the J-topology and

C([0, T ]; R) with the sup-norm topology. We claim:

Lemma C.3. Let (Vn)n be a sequence in V+
c converging towards V0 ∈ V+

c . Then (Vn)n converges

towards V0 for the sup-norm topology.

Proof This results from Corollary 2.9 in [11] and the Dini theorem.

Lemma C.4. The following mapping is continuous

(x, v) ∈ C([0, T ]; R) ×V+
c ([0, T ]; R) 7→

∫ ·

0
xr dv(r) ∈ C([0, T ]; R).

Proof This results from Lemma C.3 and the continuity of the mapping

(x, v) ∈ C([0, T ]; R) ×V+
c ([0, T ]; R) 7→

∫ ·

0
xr dv(r) ∈ C([0, T ]; R),

where both C([0, T ]; R) and V+
c ([0, T ]; R) are equipped with the sup-norm topology. The reader may

find a proof of the continuity of the above mapping in the proof of Lemma 3.3 in [18] (remark that the

S-topology on C([0, T ]; R) coincides with the sup-norm topology).
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