

Component Failure Behaviour: Patterns and Reuse in
Automated System Safety Analysis

Yiannis Papadopoulos
Department of Computer Science, University of Hull, U.K.

Audrey Tran, Jean Marc Faure
Laboratoire Universitaire de Recherche en Production Automatisée,'Ecole Normale Supérieure de Cachan, France

Christian Grante
Volvo Cars, Sweden

ABSTRACT

Recent work in the area of safety analysis has shown
that system Fault Trees and Failure Modes and Effects
Analyses (FMEAs) can be automatically derived from a
topological model of the system that has been annotated
with local, component-level, specifications of failure. In
this paper, the concept of a component failure
specification is extended to enable description and reuse
of generalized patterns of failure behaviour that are
commonly exhibited by components. A language for the
description of such patterns is specified, useful patterns
are presented and the use of such patterns is
demonstrated on an example of a Time-Triggered
system. The paper tentatively concludes that careful
reuse of failure patterns in conjunction with automated
fault tree and FMEA synthesis algorithms can help to
rationalize, and simplify, complex safety assessments.

INTRODUCTION

Empirical evidence shows that the safety of vehicles has
improved with the introduction of active safety functions
such as antilock braking, traction control and electronic
stability programs [1]. It is, therefore, expected that new
active safety functions will result to further safety
improvements in future vehicle technology. At the same
time, there is a growing recognition that new
technologies introduce new risks which need to be
identified and effectively contained before any new
systems are deployed.

Active safety systems may address known safety
problems but also introduce new potentially hazardous
failure modes. In a traditional design, for example, a
commission failure such as the inadvertent application of
brakes on a single wheel of the car is impossible. This
condition becomes possible, though, in a design that

enables independent by-wire control of wheel brakes.
Active safety functions that control such brakes are
carefully designed to fail silently in case of detected
malfunctions. But although the likelihood of commission
failures can be reduced via good design, the potential still
remains. The severity and probability of occurrence of
these and other failure modes likely to arise from the
introduction of new technologies in vehicles need to be
carefully considered to ensure safe deployment of such
technologies.

Although the impact of increasing technological
complexity on safety is universal, the issue is perhaps
more urgent in the automotive industry which currently
undergoes a rapid transition towards distributed
embedded vehicle control systems. Such systems bring
together a number of currently standalone functions in a
common platform where functions are implemented using
a pool of shared information and energy resources. In
practice, one of the major challenges towards
implementation of distributed active safety in vehicles is
automatic control of the steering system. Such control
shall enable the implementation of a new generation of
powerful active safety functions which include side wind
compensation, vehicle stability control with steering
intervention, lane keeping or changing aids and collision
avoidance systems. To enable this type of control, radical
changes will need to be made in the steering system.
The mechanical link between the steering wheel and the
vehicle wheels will almost certainly need to be
interrupted and a feedback actuator will be required to
provide steering feedback to the driver. Understandably,
such radical design changes raise serious safety
concerns and demand the thorough safety evaluation of
any new design concepts. Potential failure modes must
be identified and the effects of these failure modes in the
provision of sensitive active safety functions must be
established.

Safety concerns in the automotive and other industries
are further amplified by the prospect of integration of
critical and non-critical vehicle functions on networks of
embedded controllers. Indeed, the implication of such
integration, i.e. interaction, interoperation and sharing of
hardware resources create potential for hazardous
common cause failure and unpredicted dependent failure
of critical functions that could be caused by malfunction
of non-critical functions. Traditionally, such issues were
addressed using classical safety analysis such as Fault
Tree Analysis (FTA) and FMEA. Today, though,
increasing complexity in automotive technology seriously
questions the applicability of classical manual risk and
safety analysis techniques on new designs. Perhaps the
biggest source of difficulties is the manual nature of
those techniques, which makes a complete and correct
classical safety analysis increasingly more difficult to
achieve. Other problems include omissions, errors and
inconsistencies in the results from the assessment
caused by a selective and fragmented analysis which is
often restricted to assumed “critical parts” of the system.

Crucial in addressing these problems, we believe, is the
establishment of new and improved safety assessment
processes in which composability and reuse of safety
analyses becomes possible [2,3]. Such processes are
already vaguely prescribed by modern safety standards.
The CENELEC railway standards [4], for example,
introduce the concept of composable safety cases,
according to which the safety case, i.e. the collective
evidence of safety of a system, is composed of the safety
cases of its sub-systems or components, which in theory
could be produced and certified independently. This type
of composability in safety analysis is expected to bring
similar benefits to those introduced by well-tested and
trusted software components in software engineering
[5,6].

To achieve this goal, a body of work is already looking
into techniques for specification and application-level
reuse of component-based safety analyses [7-10]. Our
contribution to this work is the development of a model-
based safety and reliability analysis technique that
largely automates and simplifies a substantial part of the
assessment, the development of fault trees [8,11] and
FMEAs [12]. This technique is known as HiP-HOPS
(Hierarchically Performed Hazard Origin and Propagation
Studies) and enables a largely automated and thus
simplified form of compositional safety analysis. In this
approach, system failure models such as fault trees and
FMEAs are automatically constructed from knowledge
about the topology of the system and local specifications
of failure at component level. This has the beneficial
effect of simplifying the analysis whilst keeping the
analyses consistent with the design information.

In HiP-HOPS, component-level failure specifications are
currently formed as sets of logical expressions that
describe specific failure behaviour by relating specific
output deviations to internal malfunctions of each
component and deviations of component inputs. In this
paper, the concept of a local, component-level failure
specification is extended to enable description and reuse

of more generalised failure behaviour in the form of
patterns. Such patterns could in practice be used to
capture common types of fault propagation, fail silence
and fault tolerance that components are designed to
exhibit irrespective of environment and the number or
type of inputs handled. The Time Triggered Protocol
(TTP) communication controller [13,14], for instance, is
designed to consistently fail silent in response to any
timing or commission failures generated by the controller
hardware or by the local host. This behaviour is
independent of application and justifies the development
of a failure pattern for the TTP controller that could be
reused across different applications and safety
assessments.

In this paper, we highlight the need for more generalized
descriptions of failure behaviour or component failure
patterns. We also define a language for the description of
such failure patterns and explain the use of patterns in
conjunction with fault tree and FMEA synthesis
algorithms in the context of HiP-HOPS. Finally, we
present a number of useful patterns including one that
encapsulates the properties of the TTP controller and
demonstrate their use in a small example. We discuss
the process and results of the analysis and draw
tentative conclusions about the potential usefulness and
further direction of this work.

COMPOSITIONAL SAFETY ANALYSIS

HiP-HOPS is a model-based semi-automatic safety and
reliability analysis technique that uses tabular failure
annotations as the basic building block of analysis at
component level. In HiP-HOPS, a topological model of
the system (hierarchical if required to manage
complexity) is first annotated with formalised logical
descriptions of component failures and then used as a
basis for the automatic construction of fault trees and
FMEAs for the system. Application of the technique can
start once a concept of the system under design has
been interpreted into an engineering model which
identifies components and material, energy or data
transactions among components. Suitable models for the
application of the technique include abstract functional
block diagrams, engineering schematics, piping and
instrumentation diagrams, hardware descriptions, data
flow diagrams, and other models commonly used in
engineering and software engineering.

HiP-HOPS can be performed on abstract or more
detailed models of the system as these are produced and
refined in the course of the design life-cycle. This of
course creates opportunities for re-use of earlier analysis
and the ability to achieve a consistent and continuous
assessment in the centre of which lies an evolving model
of the system itself. At the early stages of design, the
model that provides the basis for the analysis can be a
block diagram which shows the functional composition of
the system, input/output transactions among functions
and the recursive refinement of functions into networks of
lower level sub-functions. Later on, when functions are
allocated to hardware, the model becomes a

representation of the physical architecture of the system
which shows components such as sensors, actuators,
busses and programmable controllers enclosing
networks of tasks running upon those controllers.

The first step in the analysis of such models in HiP-
HOPS is the establishment of the local failure behaviour
of each component (i.e. function, hardware or software
element) in the model as a set of logical failure
expressions which show how output failures of the
component can be caused by internal malfunctions and
deviations of the component inputs. A variant of Hazard
and Operability Studies (HAZOP) [11] is used to identify
plausible output failures such as the omission,
commission, value (hi, low) or timing (early, late) failure
of each output and then to determine the local causes of
such events as combinations of internal component
malfunctions and similar types of input failures. Once this
analysis has been completed for all components, and the
derived failure expressions have been inserted into the
model, the topology of the model is then used to
automatically determine how the local failures specified
in those expressions propagate through connections in
the model and cause functional failures at the outputs of
the system. This global view of failure is captured in a set
of fault trees which are automatically constructed by
traversing the model and by evaluating the local failure
expressions encountered during the traversal.

The synthesised fault trees are interconnected and form
a directed acyclic graph sharing branches and basic
events that arise from dependencies in the model, e.g.
common inputs which may cause simultaneous
dependent failure of hypothetically “independent”
functions or physical components. Classical Boolean
reduction techniques and recent algorithms for fault tree
analysis that employ Binary Decision Diagrams (BDDs)
are applicable on this graph. Thus, qualitative analysis
(e.g. of abstract functional models) or quantitative
analysis (e.g. calculation of system-level failure rates
from known failure rates on component-level) can be
automatically performed on the graph to establish
whether the system meets its safety or reliability
requirements. In recent work we have shown that the
logic contained in the graph can be automatically
translated into a simple table which is equivalent to a
multiple failure mode FMEA [12]. The FMEA records, for
each component in the system and for each failure mode
of that component, any direct effects on the system and
further effects caused in conjunction with other failure
events.

Note that in hierarchical models that record the
decomposition of systems, failure annotations may also
be inserted at subsystem level to collectively capture the
effect of failure conditions that do not necessarily require
examination at basic component level. If, for example, a
subsystem as a whole is susceptible to some
environmental disturbance like high temperature, flood or
electromagnetic interference, then the effects of this
condition can be directly specified with a failure
annotation at subsystem level. Such annotations would
typically complement other annotations made at the level

of enclosed components to describe aspects of failure
behaviour at this level (e.g. mechanical and electrical
failure modes of each component). In general, when
examining the causes of failure at an output of a
subsystem, the fault tree synthesis algorithm of HiP-
HOPS creates a disjunction between any failure logic
specified at sub-system level and logic arising from the
enclosed lower levels. This feature makes HiP-HOPS a
truly hierarchical approach to the analysis of complex
systems.

Failure annotations may also optionally include failure
and repair rates which, if provided at this stage, are
embedded in the synthesised fault trees and can be used
to perform probabilistic calculations aimed at prediction
of the reliability of the system. Note, though, that such
failure rates are not essential and that qualitative
application of the technique can still produce useful
results. FMEAs, for instance, can indicate components
that represent single causes of severe system failures.

IS REUSE POSSIBLE?

In HiP-HOPS, interpretation of the synthesized fault
trees, their minimal cut sets and the FMEA helps to
identify design weaknesses and initiate design changes.
To ensure that design changes do not introduce any new
hazardous failure modes, re-establishment of the failure
behaviour of the system via iteration of safety analysis
should follow such design changes. Clearly, the ability to
iterate fast this process ultimately defines the ability to
manage effectively the evolution of the design in safety
assessment. The automated algorithms of HiP-HOPS for
the synthesis of fault trees and FMEAs clearly help in this
direction. However, the ability to effectively apply the
method on evolving designs is also heavily dependent
upon the ability to re-use the failure annotations that are
required at component level. For this reason, we turn our
attention to the question of reuse, and we try to establish
whether such reuse is possible and under which
conditions.

In addressing the question of reuse, it would be useful to
start with the local failure model of a simple component
such as the two-way computer controlled valve illustrated
in Fig.1. The figure shows the valve as it would typically
be illustrated in a plant diagram and records the results
of the local safety analysis of the component in two
tables that define valve malfunctions and output
deviations respectively.

In normal operation, the valve is normally closed and
opens only when the computer control signal has a value
of a logical one. Valve malfunctions include mechanical
failures such as the valve being stuckOpen or
stuckClosed, and blockages caused by debris such as
blocked and partiallyBlocked. For each malfunction, the
analysis records an estimated failure rate while the
effects of those malfunctions on the output of the valve
can be seen in a second table that lists output deviations.

Valve Malfunctions
Failure mode Description Failure rate
blocked e.g. by debris 1e-6
partiallyBlocked e.g. by debris 5e-5
stuckClosed Mechanically stuck 1.5e-6
stuckOpen Mechanically stuck 1.5e-5

Deviations of Flow at Valve Output
Output
Deviation

Description Causes

Omission-b Omission of
flow

blocked or stuckClosed
or Omission-a or
Low-control

Commission-b Commission
of flow

stuckOpen or
Commission-a or
Hi-control

Low-b Low flow partiallyBlocked or
Low-a

Hi-b Hi flow Hi-a
Early-b Early flow Early-a or Early-control
Late-b Late flow Late-a or Late-control

Fig.1. Failure annotations of a computer-operated
two-way valve

Here, we can see that an omission of the output flow
(Omission-b) can be caused by a number of malfunctions
such as valve blocked or stuckClosed and by input
failures such as omission of input flow (Omission-a) or a
value failure in the control signal (Low-control). Similarly,
commission of the output flow (Commission-b) can be
caused by a valve malfunction (stuckOpen), commission
of input flow (Commission-a) or a value failure in the
control signal (Hi-control). The table also provides
expressions that define the causes of value (Low-Hi) and
timing (Early-Late) failures at the output of the valve.
From such expressions describing local failure
behaviour, in HiP-HOPS it is possible to automatically
generate a set of system fault trees and an FMEA which
show how component failures cause system level effects.

In the analysis of Fig.1, there is an implicit assumption
that point b is always the output of the valve which may
be true in a particular system configuration but not in
general. To account for flows in the opposite direction,
we also need to consider point a as an output, which in
practice means that the table has to be extended to
include deviations of point a. The symmetry in the design
of the valve means that mechanical replication is only
required to complete this specification of how the valve
behaves in conditions of failure. This specification is
generic in the sense that it does not contain references to
the context within which the valve operates. Failure
expressions make references only to component
malfunctions and input/output ports of the component.
The failure behaviour described in these expressions has
been derived assuming a simple operation that we
expect the component to perform in every application
(valve is normally closed unless the value of control

signal is 1). For these reasons, the specification of Fig.1
provides a template that could be re-used in different
models and contexts of operation, perhaps with some
modifications, e.g. on failure rates, to reflect a different
environment. We must stress, though, that this type of
reuse is only possible because the valve has a small
number of well-defined interface points and performs the
same simple operation in any context of use.

Generalising this discussion, we can say that the failure
annotations of a component can be directly re-used in
the same application as long as design changes do not
influence the function of the component, i.e. the
component receives the same inputs and performs the
same operations on these inputs producing the same
outputs. Reuse of failure annotations is likely to be
possible across different applications for simple
components like sensors and simple actuators. On the
other hand, the failure annotations for programmable
components or components with variable functional
profiles will generally have to be re-constructed each
time the component is used in a different application with
reference to the functions performed in the context of this
application. There are, however, exceptions to this rule
and opportunities for reuse of safety analyses even for
complex components.

PATTERNS OF FAILURE BEHAVIOUR

Complex components, for example components that
perform fault tolerant functions, are often designed to
provide the same standard failure behaviour on all
outputs independently from context of application and the
number or type of inputs and outputs [15,16]. A good
example of this is the TTP communication controller, a
component that handles the communication between a
host and other controllers in a time-triggered network.
Analysis of the published specification of this component
shows that the controller has several important safety
properties that should hold in any context of operation
[13,14]. These properties collectively define a generic
pattern of controller behaviour in the failure domain.

The pattern is schematically illustrated in Fig.2, and
shows that the controller is extremely efficient in terms of
handling the various classes of failure that analysts
would typically examine in a HiP-HOPS study. Early, late
and commission failures caused by internal controller
faults or the local host are detected and therefore cannot
cross the controller-bus interface. Such failures are,
therefore, obsolete within the sphere of a TTP network.
One reason is that the controller contains mechanisms
that prevent the generation of such types of failures. In
addition, the controller detects commission and timing
failures generated by the host and transforms these
failures into omissions. Thus, the only failures that cross
the bus interface and enter the sphere of a TTP network
are omission and value failures generated by the host or
at the CNI (memory area where host and controller
exchange information). Two more types of failure can be
generated within the sphere of communications:
omission and value failures caused by external

 control

 a b

disturbances during transmission (e.g. Electro-Magnetic
Interference). From those four classes of failure only one
can propagate through and exit undetectable from the
TTP network: value failures generated by the host or at
the CNI.

The pattern of Fig.2 defines an informally specified,
convenient, generic abstraction of the controller
behaviour in the failure domain. Assuming knowledge of
the messages handled by the controller in a given
application, this informal pattern could be translated into
specific failure annotations described in the language of
HiP-HOPS that could then be used together with fault
tree and FMEA synthesis algorithms to simplify the safety
assessment of TTP networks1. Each of these annotations
would relate a specific deviation of a message handled
by the controller to its possible causes, either a controller
failure or a deviation of the message at the input of the
controller. Such useful informal use of patterns could be
achieved with no extensions to the method. However,
informal use implies a manual translation of the informal
general pattern to its specific instances within a particular
model. We believe that this manual step could be
avoided and more effective reuse of failure patterns
could be achieved by enabling the formal description of
such patterns and their automated adaptation and
application in different contexts of design using
appropriate tool support.

To achieve this goal, we have extended the language
currently used in HiP-HOPS with primitives that can be
used to make general statements about failure
behaviour. In this language, for example, it is possible to

1 It is implied that the assumptions about the properties
of the communication controller that underlie the pattern
of Fig.2 (stated as requirements in its published
specification) must be verified on any actual
implementation of the controller before the model can be
safely used for all the practical purposes of application
safety analysis.

state that “the failure of a component causes omission of
all outputs of the component” or that “any output will be
omitted if there is a timing or commission failure of the
corresponding input”. Such general statements have in
the past not been possible in HiP-HOPS (only direct
relationships between individual output failures and their
explicitly stated specific causes could be stated).
However, with the linguistic concepts described in the
following section, component failure patterns such as the
one illustrated in Fig.2 can now be formally stated. The
advantage of this approach is that failure patterns can be
mechanically interpreted and, in the context of HiP-
HOPS, reused across applications as building blocks for
the automatic synthesis of system safety analyses.

LANGUAGE FOR FAILURE PATTERNS

A language for the description of failure patterns should
be generic and abstract enough to be technology
independent and applicable on systems that integrate
diverse technologies (i.e. electrical, mechanical,
electronic, software). The definition of such a language
must be based on a suitable abstraction of a component
in the domain of failure, one that captures all aspects in
which failure behaviour is exhibited, but also one that is
generic enough to be shared by all components.

In general, all components operate on a set of inputs and
deliver a set of outputs. Inputs and outputs are important
in the domain of failure because they form the interface
to the external world through which the effects of failure
propagate. Components suffer internal malfunctions such
as electrical or mechanical failures caused by wear or
environmental conditions for which components are not
qualified (e.g. humidity, temperature, pressure, electro-
magnetic interference etc.). Hardware failures follow
probabilistic distributions defined by a constant or
variable failure rate. Component malfunctions cause local
effects on outputs, or outputs deviations which, in turn,
cause further effects as they propagate through material,
energy or data connections to other components. The
effects of failure naturally vary depending on failure
condition and type of output. However, despite

Fig.2. Pattern of failure behaviour of TTP controller (transformation and propagation of failures)

Undetectable
controller faults
that corrupt messages

Omission
TRANSMISSION

Value

Omission

Early
Late

Value

Commission
Omission

detectable by the ensemble

Value
undetectable by the ensemble

Host Bus (sphere of TTA)

Value failure
undetectable by host

Omission failure
detectable by host

HostTTP controller

Omission
Transmission

Value

Omission

Early
Late

Value

Commission
Omission

detectable by other controllersDetectable
controller faults
that violate the temporal
bus access pattern

Value

undetectable by other controllers

Host Bus (TTP network)

Value failure

undetectable by host

Omission failure

detectable by host

Host

Transmission

TTP controller

Detectable
controller faults

Undetectable
controller faults
that corrupt messages

differences, all effects fall in a small number of failure
classes that are universal and applicable to material,
energy and data parameters. These failure classes
represent extreme deviations from normal behaviour
such as the omission or commission of outputs or
qualitative deviations from correct value (i.e. hi-low) and
expected timing behaviour (i.e. early-late). This
classification of failure effects adopts a functional
viewpoint which is independent of technology and
therefore provides a common basis for describing the
local effects of component malfunctions. However, the
use of failure classes does not in itself lead to sufficient
specifications of failure behaviour, since the role of a
component in the domain of failure cannot be fully
described by simply enumerating the local effects of its
internal failure mechanisms.

Components do not only cause failures, but they also
detect and respond to failures caused by other
components, the effects of which can be sensed as
deviations of inputs. A three way valve with sensing
abilities, for example, may detect the absence of flow in
one input, and in response, it may automatically restore
output flow by switching to an alternative source. On the
other hand, in similar circumstances a two way valve will
propagate any disturbance of input flow to its output.
Although the above cases represent very common
patterns of behaviour, components do not only generate,
mitigate or propagate failures. They may also transform
input failures to different types of output failure. An
example of such a component is a controller which in
response to detected sensor failures omits any further
output to ensure that hazardous control action is avoided.
This clearly represents a case in which value failures at
the input are intentionally being transformed into
omission failures at the output.

To capture those different aspects of local failure
behaviour, in HIP-HOPS, logical expressions are used to
relate the potential output deviations of a component to a
logical combination of causes that include internal
malfunctions of the component and deviations of
component inputs. Such expressions can be
parenthesised and include conjunction, disjunction and
negation operators (i.e. and, or, not). An example
specification that encompasses different aspects of
failure behaviour has been given in Fig.1. The
annotations of the two way valve define that the valve
propagates all possible deviations of input flow to the
output. Value failures of the control signal (low and hi)
are transformed by the valve to course provision failures
at the output (i.e. omission and commission of flow
respectively). In addition a number of malfunctions of the
valve cause different effects on the outputs. These
effects are aggregated in six classes of failure (omission,
commission, etc).

In the example of Fig.1, appropriate keywords have been
used to signify omission, commission, low, hi, early and
late failures in ports a and b. In general, though, the
failure classes considered in the course of the analysis

(i.e. omission, commission, etc) and the identifiers2 used
to describe them are not predefined or strictly prescribed
in the context of the proposed language. Analysts have
the freedom to define and examine different types of
deviations as long as these types are used consistently
(i.e. identical types are referenced across the two ends of
each connection in the model)3. This gives a degree of
flexibility which is appropriate for analysis of different
types of input/output parameters. For events, i.e.
momentary stimuli and responses, for example, only
omission and commission failures could be examined
since they sufficiently cover the two possible deviations
from nominal state. Similarly for continuous binary control
signals, two types of value failure (hi and low) sufficiently
cover all possible deviations from the nominal state of the
signal. In this flexible scheme of using failure classes,
analysts also have the option of performing very detailed
analysis by specifying precise failure conditions such as
‘output value>100’ or ‘value being late by 10msec’. For
this to work, though, it is imperative that all such
conditions specified in the failure logic of one component
have also been considered in the failure logic of
connected components.

To summarise the above discussion, in the proposed
language, a component is also defined by a vector of
failure classes which are applicable to its inputs and
outputs. In a given application, a single vector may be
shared by all components, but each component may also
define its own vector as long as this vector is consistent
with the vectors of adjacent components.

One difficulty in the proposed approach is caused by
components that handle a large or variable number of
inputs and outputs. Take, for example, a communication
bus that carries large numbers of different messages in
different applications. An electrical failure of the bus,
such as a short circuit, will always cause an omission of
all outputs. In addition, any deviation of an input
message will cause an identical deviation of the
corresponding output, unless of course the bus
incorporates failure detection and control mechanisms.
Although the bus may carry different messages, the
above statements provide a pattern of its failure
behaviour which is independent of the number and type
of those messages. However, the linguistic scheme that
we presented so far does not permit the representation of
this pattern. In this scheme, each time the bus is used in
a different application, analysts must enumerate one by
one all potential effects of failure on all output messages
and their respectively causes. This is both cumbersome
and unnecessary and can be avoided with the
introduction of new operators that can make appropriate

2 For example, the identifiers O, C, Vh, Vl, Te, Tl could
have been used in Fig.1 to signify the failure classes
examined.
3 Assume, for example, that during the local analysis of
component A, analysts specify the omission of output out
as possible deviation (e.g. O-out). If out is connected to
input in of component B, then references in the failure
logic of B to an omission of in should use the same
identifier (i.e. the event should be specified as O-in).

collective references to inputs, outputs, failure modes
and failure classes. To enable such collective references,
we assume that in the general case each component has
a number of vectors of parameters which are important
from a point of view of safety analysis: input ports IP[],
output ports OP[], Failure Modes FM[] and Failure
classes FC[]. In turn, each input and output port may
carry a vector of parameters P[]. If, for example:

 OP[] = [a,b]
 OP[1].P[] = [temp,pres] and
 FC[] = [Omission,Commission,Hi,Low,Early,Late]

then Omission-a.temp and FC[1]-OP[1].P[1] are
equivalent references to an omission of parameter temp
in output port a. Making references to indexed elements
of the vectors, as above, does not really add anything in
the declaration of deviations. The introduction of vectors,
however, enables us to define four operators that make
collective references to the contents of these vectors
(even when these contents are yet unknown, vary across
applications or simply have not been explicitly stated).
The four new operators are namely:

 any, every, majority and except

When the operator any is applied on a vector referenced
in a failure pattern, it can be substituted by any of the
parameters contained in the vector to create multiple
instances of the pattern, when in the context of a specific
application the parameters of the vector become known.
On the other hand, when the operator every is applied on
a vector, a single instance of the pattern is only created
via iteration of all parameters contained in the vector.
Every can be used in conjunction with logical operators
(and & or) to create a conjunction or disjunction among
all input or output deviations generated by application of
the operator.

The except operator is used in conjunction with any or
every operators and restricts the global scope of these
operators by excluding a set of specified inputs, outputs
and failure classes that do not share the common
behaviour. Finally, when the majority operator is applied
on a set of events which are explicitly specified or
generated by every operators, it causes enumeration of
all majority combinations of these events (all 2 out of 3, 3
out of 5, etc., combinations). The effect of the operator is
the generation of a logical expression in which events
within each combination are conjoint and combinations
are disjoint.

In the remainder of the section, we present a catalogue
of useful generalized statements about failure behaviour
that can be made using the linguistic constructs that we
have introduced in this section. For each statement, we
provide an informal explanation of its meaning and
suggest potential application in the development of
patterns for components.

1. Propagation of failure from inputs to outputs

any FC[x] – any OP [y].any P[z] = FC[x]-IP[y].P[z]

Any deviation x of any parameter z on output y is
caused by the same deviation x of the corresponding
input parameter z on input y.

Statement can be used for modelling components that
directly propagate input failures to outputs, e.g. a
communication bus.

2. Global failure in the same mode, e.g. Omission

Omission - any OP[y].any P[z] = FM[1]

An omission of all output parameters is caused by a
failure mode of the component.

Statement can be used for modelling of components in
which a single failure mode causes the same effect on all
output parameters. Omission is a typical effect observed
in practice when components fail but other common
failure effects are also possible, e.g. all parameters
produced late.

3. Fail silence & Transformation of failure

Omission - any OP[y].any P[z] =
or (every FC[]-every IP[].P[z])

Omission of all output parameters is caused by any
failure of any input parameter

Statement can be used for modelling of components that
detect input failures and in response fail silent, i.e.
transform value, timing and commission failures into
omissions. The statement implies very strong failure
detection but can be moderated to reflect more realistic
fail silent behaviour. The assumption that every failure
class at the input is detectable can be modified to
exclude value failures that are difficult to detect. In this
case the statement becomes:

Omission - any OP[y].any P[z] =
or (every FC[] except {Value}-every IP[].P[z])

The statement can also be modified to show other types
of failure transformation, e.g. of timing failures to
commissions.

4. Standby - recovery

any FC[x] – OP[1].any P[z] =
Omission-IP[1].P[z] and FC[x]-IP[2].P[z]

Any deviation x of any parameter z on the single
output port is caused by omission of the
corresponding input parameter z on the first input
followed by the same deviation x of the corresponding
input parameter z on the second input.

Statement can be used for modelling of a standby
component that monitors a primary component on IP[1]
and, when an omission is detected, it takes over to
continue the provision of the intended function. In this
case, any failure on IP[2] is propagated to the output of
the standby. However, the statement can be modified as
shown below to show a fail silent behaviour instead.

Omission FC[x] – OP[1].any P[z] =
Omission-IP[1].P[z] and (FC[x]-IP[2].P[z] or FM[1])

In this case, the standby fails silent in response to either
an internal failure mode or any deviation of IP[2] that
follows omission of IP[1].

5. Redundancy on inputs

any FC[x] – any OP [y].any P[z] =
and (FC[x]-every IP[y].P[z])

Any failure x of any parameter z on output y is caused
by a conjunction of the same failure x on the
corresponding input parameter z of every input y.

Statement can be used in the modelling of components
that rely on redundant inputs for producing correct output
as long as one of the redundant inputs is correct.

6. Voting

Omission-OP[1].any P[z] =
majority(every FC[]-every IP[].P[z])

Omission of any parameter z on the single output port
is caused by a majority of input deviations of any type
of the corresponding input parameter z on respective
inputs.

Statement can be used in the modelling of a fault tolerant
component that outputs the majority of inputs that are in
agreement. The component fails silent when the majority
of inputs have either been omitted, provided at the wrong
time, or disagree in value.

FAILURE PATTERNS FOR BUS AND TTP
CONTROLLER

The catalogue of failure behaviour presented in the
preceding section is by no means exclusive and is
intended to only provide guidance for the construction of
failure patterns. Using elements specified in this
catalogue, it is indeed possible to construct example
failure patterns for two components that we have already
discussed in preceding sections: a generic
communication bus and the TTP controller.

The general failure behaviour of a communication bus
combines two elements specified in the given catalogue:
propagation of input failures to outputs and global failure
in the same mode (in this case, omission). Indeed any
deviation of an input message sent on the bus will cause
an identical deviation of the corresponding output, while

failure of the bus causes an omission of all outputs. The
two statements below describe this behaviour and
together form the failure pattern of a generic bus.

Failure pattern of a communication bus

 any FC[x] except {Omission} - any OP [y].any P[z] =
 FC[x]-IP[y].P[z]
 Omission - any OP[y].any P[z] = FM[1]

Given a particular bus, a third statement can be added to
link the general bus failure referenced above as FM[1] to
a particular logical combination of specific bus failures,
e.g. FM[1]=disconnected or shortCircuited. The pattern
can of course be modified or extended to derive more
elaborate and detailed behaviours for particular
implementations of busses4.

Fig.3 shows an instance of a bus where two nodes
create two communication channels and send
parameters a1,a2 and b1,b2 respectively. Other nodes
can tap in the corresponding outputs of these two
channels, and, via a multiplexer, read some or all
messages in a particular order. Assuming that in this
context FC={Omission,Value} and FM[1]=busFailed,
application of the bus failure pattern can generate any of
the 8 specific output deviations listed in Fig.3 and relate
these to causes in terms of bus failure and similar
deviations of inputs. The fact that specific failure
expressions can be automatically derived from general
patterns of failure behaviour once the application context
is known is an important one. It means that the fault tree
and FMEA synthesis algorithms of HiP-HOPS can
interpret patterns into specific failure expressions and,
thus, trace the propagation of failures through
components that have been described with those
patterns.

 Omission-o1.a1=Omission-i1.a1 or busFailed
 Value-o1.a1=Value-i1.a1
 Omission-o1.a2=Omission-i1.a2 or busFailed
 Value-o1.a2=Value-i1.a2
 Omission-o2.b1=Omission-i2.b1 or busFailed
 Value-o2.b1=Value-i2.b1
 Omission-o2.b2=Omission-i2.b2 or busFailed
 Value-o2.b2=Value-i2.b2

Fig.3. Example bus with two I/O channels and specific

deviations derived by application of the bus pattern

4 We currently consider the development of concepts to
enable inheritance and polymorphism in a more
structured and familial representation of patterns

i1 o1

 i2 BUS o2

a1,a2

b1,b2

a1,a2

b1,b2

Turning now to the failure pattern of the TTP controller,
we observe that, once more, the controller combines two
elements that we have seen in the catalogue of failure
behaviours presented in the preceding section. These
are:

• propagation of undetectable value failures of the host
(catalogue element #1), and

• fail silence in cases of internal failure, timing and

commission failures of the host, and detectable value
failures caused during transmission (catalogue
element #3).

The controller can assume a dual role as a sender or
receiver of messages. The following two failure patterns
precisely correspond to these two roles:

 Failure pattern of TTP as sender

 Omission-any OP[y].any P[z] =
 or(every FC[] except {Value}-IP[y].P[z]) or FM[1]

 Value-any OP[y].any P[z] = Value-IP[y].P[z]

 Failure pattern of TTP as receiver

 Omission-any OP[y].any P[z] =
 Omission-IP[y].P[z] or Value(detectable)-IP[y].P[z]
 or FM[1]

 Value-any OP[y].any P[z] = Value-IP[y].P[z]

Note that failures of the TTP controller are collectively
represented as a single failure mode FM[1] which causes
the controller to fail silent. A new class of value failures,
Value(detectable), is also introduced to accurately
specify the failure behaviour of the controller. The
“sender” and “receiver” patterns show that value failures
of the host propagate undetected through the TTP
network and re-appear as value failures at the output of
the receiver. However, the “receiver” pattern shows that
another class of value failures, those caused during
transmission, are detectable by the receiver and result to
omission of corrupted messages.

We believe that patterns such as those presented in this
section, could be developed for libraries of components
in order to capture the experience generated in the
course of difficult and expensive safety studies. In the
context of HiP-HOPS, such patterns could be stored in
electronic libraries and then reused, either directly or
following necessary adaptation, in order to rationalize
and simplify the assessment of complex systems.

TOOL SUPPORT

HiP-HOPS is currently supported by a tool that generates
fault trees and FMEAs from models developed in

SimulationX [17] or Matlab Simulink [18]. These are both
mature and widely used engineering tools which provide
open architectures and have enabled implementation of
the techniques described in this paper5. The automated
safety analysis tool is experimental but mature and has
so far been independently used in complex case studies
by Volvo, Germanisher Lloyd and others. A prototypical
version of the tool also exists which supports the
specification and use of abstract failure patterns.

The architecture of the tool is illustrated in Fig.4. The tool
provides a Graphical User Interface (GUI) that enables
annotation of components in the model with the failure
expressions and failure patterns required for the fault tree
and FMEA synthesis. These data become part of the
model and are automatically saved and retrieved by the
modelling tool (SimulationX or Simulink) every time the
model is opened or closed by a user. Failure annotations,
including patterns, can be stored in component libraries
and be re-used either directly or following modifications
within the same model or across different models with
the obvious benefit of simplifying the manual part of the
analysis.

Once a model has been annotated, the structure of the
model and its annotations are saved in a text file. The
second component of the FMEA tool is a parser that
interprets such files, and reconstructs the enclosed
annotated models for the purposes of fault tree
synthesis. The synthesis itself is performed by the third
component of the tool, the fault tree synthesis algorithm.
To generate fault trees, the algorithm performs a
backward traversal from each output of the model, in the
course of which it evaluates the expressions and
patterns contained in the local analyses of the
components encountered during the traversal. The
resultant network of fault trees is then logically reduced
into minimal cut sets. Finally, an FMEA synthesis
algorithm operates on these cut sets, and in a single
traversal of the cut sets generates a multiple failure mode
FMEA.

Note that in a classical manual FMEA only the effects of
single failures are typically assessed. One advantage of
generating an FMEA from fault trees is that fault trees
record the effects of combinations of component failures
and this useful information can also be transferred into
the FMEA. To accommodate this additional information,
the resultant FMEA tables are split into two, one
containing the direct effects on the system, i.e. those
effects caused by single component failures, and the
other containing further effects, i.e. those effects caused
by two or more component failure modes. This allows
separate, easy access to the most critical information,
the single points of failure. Perhaps more importantly, the
FMEA shows all functional effects that a particular

5 It should be noted, however, that the applicability of the
proposed technique is not restricted to models developed
in these tools. Any model that provides the topology of
the system, i.e. components and connections, is suitable
for this type of analysis.

component failure mode causes. The latter is particularly
useful as a failure mode that contributes to multiple
system failures is potentially more significant than those
that only cause a single top event. Precisely because it
records the effects of combinations of component
failures, this type of FMEA can, in practice, help analysts
not only to locate problems in the design, but also to
determine the level of fault tolerance in the system, i.e. to
determine whether the system can tolerate any single or

any combination of two, three or more component
failures.

The synthesised fault trees, their analyses and FMEAs
are presented in interactive graphical and tabular formats
in an HTML viewer. Synthesised fault trees are also
exported to Fault Tree Plus (FT+) [19], a widely used
fault tree analysis tool, and can be further processed in
that tool.

Αutomatic Safety Analysis tool

GUI for annotation of components with failure data

Model annotated with failure
data stored in text file

Matlab Simulink or Simulation X

Web - Web - browser

Fault trees in format of Fault
Tree Plus

Cut sets

Fault trees Cut sets

Internal representation of annotated model

FMEA

Graphical representation of fault
trees. cut sets and system FMEA in
HTML format

Fault trees

Model Parser

Fault tree synthesis
algorithm

Logical reduction
to minimal cut sets

FMEA synthesis
algorithm

Interface to Fault Tree Plus HTML generator

Web-browserFault Tree Plus

Fig.4. Architecture of the automated safety analysis tool

Fig.5. Model of the braking system and component failure annotations

Pedal
Omission-any OP[x].any P[y]=pedalFailed
Value-any OP[x].any P[y]=pedalBiased
Bus
any FC[x] except {Omission, Value(detectable)}-any OP [y].any P[z=FC[x]-IP[y].P[z]
Omission-any OP[y].any P[z] = Omission-IP[y].P[z} or busFailed
Value(detectable)-any OP[y].any P[z]=EMI
TTA as sender
Omission-any OP[y].any P[z] = or(every FC[] except {Value}-IP[y].P[z]) or controllerFailed
Value-any OP[y].any P[z] = Value-IP[y].P[z]
TTA as receiver
Omission-any OP[y].any P[z] = Omission-IP[y].P[z] or Value(detectable)-IP[y].P[z] or controllerFailed
Value-any OP[y].any P[z] = Value-IP[y].P[z]
Wheel
Omission-any OP[x].any P[y]= wheelFailed or and (Omission-every IP[x].every P[y])
Value-any OP[x].any P[y]= and (Value-every IP[x].every P[y])

The speed and performance of the automated safety
analysis tool are clearly two key factors that will
determine the applicability and industrial acceptance of
this approach. The proposed fault tree synthesis process
is of linear complexity and therefore scales up well with
increasing complexity. Large trees are generated by the
tool in very short time, which is currently measured in the
order of milliseconds for models that contain hundreds of
components and thousands of component failures. On
the other hand, the synthesis of FMEAs requires
calculation of cut sets, a computationally expensive
operation where traditional cut set calculation algorithms
[20,21] do not scale up well in very large systems. To
address this problem, we have developed an
implementation of a recently proposed, efficient minimal
cut set calculation algorithm [22] which pre-processes
fault trees, converting them into BDDs. Improvements in
efficiency achieved by this algorithm ensure the
scalability of the automated FMEA and will enable, we
hope, effective application of the proposed technique in
problems of industrial scale. Experimental applications of
the tool so far indicate that this approach can indeed lead
to fast and efficient ways of generating useful safety
analyses from design representations. It generally takes
between a few seconds and a few minutes to generate
fault trees and FMEAs from models that contain
hundreds of components and failure logic that is
equivalent to hundred thousands of cut sets. To the best
of our knowledge, this performance compares favourably
with other results reported in the literature of automated
FMEA.

EXAMPLE AND CASE STUDIES

In this section we present an example which
demonstrates the use of component failure patterns in
the context of HiP-HOPS. Fig.5 illustrates part of a
simplified distributed car braking system in which a pedal
node communicates the braking demand to a wheel
node via a network of TTP nodes connected on a
replicated bus. For redundancy, the braking message is
replicated and 4 messages are sent from the pedal
through the bus to the wheel node. Fig.5 shows the
failure annotations of components in this system. These
include the patterns of the TTP controller and
communication bus that we have already discussed, and
annotations for the wheel and pedal nodes. It can be
noticed that the wheel node has a single failure mode,
wheelFailed, that causes omission of braking. The same
effect is also caused by omission of all 4 braking
messages. On the other hand, a value failure at the
output of the system, i.e. incorrect braking, is caused by
a common value failure manifested in all 4 messages
received by the wheel. The pedal has two failure modes:
pedalFailed causes omission of the braking message,
while pedalBiased distorts its value. Note that the
linguistic features that we introduced in this paper have
been used to produce abbreviated descriptions of failure
behaviour for all components. It can also be noticed that
the pattern of the communication bus has been modified
to include the possibility of detectable value failures
caused by electromagnetic interference (EMI), a
condition considered possible in this environment.

Given the model and failure patterns of Fig.5, HiP-HOPS
generates two fault trees for the events of omission and
incorrect braking, and a system FMEA where these two
conditions represent the direct or further effects of
component failure modes. The fault trees and two FMEA
tables are presented in the Appendix in Figures A.1-A.4.
We focus on the FMEA as it provides a useful summary
of the results of the automated analysis. The direct
effects table in Fig.A.3 shows that only 3 component
failure modes can cause an omission of braking:
wheelFailed, pedalFailed, and controllerFailed(TTP3), i.e.
a failure of the TTP receiver. Only one failure mode of
the pedal (biasedPedal) propagates through the system
causes incorrect braking. These 4 failure modes
represent the only single points of failure and point to
areas where the design could be improved. Replication
of the pedal node is an obvious such improvement that
removes 2 out the 4 single points of failure. In addition to
critical failures revealed in the direct effects FMEA table,
the further effects FMEA table of Fig. A.4. shows
combinations of failures of the two TTP senders and the
two busses that also cause omission of braking. Note
that since qualitative data about failure modes and their
logical relationships have been given, only qualitative
analyses are returned (i.e. cut sets and system FMEA). If
failure rates have been available they would have been
incorporated in the synthesized fault trees and used for
calculation of system reliability. The example
demonstrates, we hope, the potential for generating
relatively complex and useful analyses with relative ease.
The same techniques are currently applied on much
larger case studies which include a steer-by-wire
prototype system designed by Volvo cars.

In the context of this case study, a functional model was
first developed in Matlab Simulink and this was
deliberately designed without any degraded or fallback
modes, in order to test whether the analysis could help in
the systematic identification and design of such modes.
The model was annotated with local analyses and failure
patterns and then fault trees and FMEAs were
automatically generated in several iterations of this
process. An indication of the complexity of the model is
that the analysis results to tens of thousands of cut sets.
However, it takes less than a second in an average
personal computer to generate and evaluate the fault
trees and FMEAs.

Omission and course value failures were considered in
the course of the analysis. Fault trees and FMEAs
therefore show how omissions and value failures of input,
processing and actuator functions cause system level
effects, i.e. omissions or value failures of steering
functions. The manual assessment of the severity of
those effects helped to identify the criticality of causes
(i.e. failures of input, processing and actuator functions)
and this in turn assisted the design of these basic
functions. For example, wherever the analysis indicated
that the omission of a function had only marginal effects
while a course value failure had catastrophic effects, a
design recommendation was made to design the function
in a way that it fails silent. This in turn led to the
identification of several degraded modes in which non-

critical steer-by-wire functions may fail silent with only
marginal effects on the system. A state-chart was then
constructed to show how graceful transition to such
modes could be achieved. It would be impossible to
describe in the space provided the voluminous results of
this study. However, to highlight the practical value of the
analysis, in Fig. A.5 we present the high level state-chart
that was derived as a result of the straightforward
interpretation of these results. The chart of Fig. A.5
shows how a number of “critical” (as indicated by the
analysis) failures of input, processing and actuator
functions should lead the system safely into assisted-
mechanical and progressively unassisted steering
modes. Within the main “steer-by-wire” mode it is also
possible to see how a number of “less critical” (as
indicated by the analysis) functional failures should lead
the system into sub-modes where some of the steer-by-
wire functionality is lost but the system can safely remain
in the normal “steer-by-wire” mode.

CONCLUSIONS

In this paper, we discussed a number of difficulties in
safety assessment caused by the increasing complexity
of modern systems and highlighted the need for new
safety analysis techniques that can address these
difficulties by exploiting reusable component based
specifications of failure, or context independent failure
patterns. We also proposed a linguistic concept to enable
representation and reuse of such patterns in the context
of HiP-HOPS, a recently proposed technique for
compositional safety analysis. Furthermore, we
demonstrated a set of useful patterns including one for
the TTP communications controller and demonstrated
their use in a small example derived from an automotive
system.

Using the concepts presented in this paper, component
failure patterns could be developed for libraries of
components in order to capture the experience
generated in difficult and expensive safety studies. Such
patterns could be stored in electronic libraries and then
reused, in the context of HiP-HOPS, in order to
rationalize and simplify the assessment of complex
systems. An experimental but mature tool supports the
proposed process and can be made available for
independent application of this approach. The tool has so
far dealt with design problems of medium complexity in
which annotated components are in the order of
hundreds. Problems may arise, though, in large systems
that contain thousands of annotated components and
may result in a failure logic that is composed of millions
of cut sets. One way of simplifying the analysis in such
cases is by structuring the model as a hierarchy of
subsystems. At low levels, the model may still
incorporate thousands of components, but the annotation
can now be performed at a higher level of abstraction in
the hierarchy where there are a smaller number of
components or subsystems to annotate.

Potential benefits from application of the proposed
approach in large scale are substantial and include

easing the examination of effects of design modifications
on safety and keeping the safety analyses consistent
with the design.

One area of further work is extension to enable temporal
safety analysis. Hitherto application of HiP-HOPS has
produced classical combinatorial fault trees which are
equivalent to those produced via manual analysis.
Although such fault trees are useful for establishing
critical combinations of component failures, they miss the
temporal ordering of events and cannot explain the
significance of this ordering in the failure behaviour of the
system. We currently extend HiP-HOPS to enable
synthesis and analysis of fault trees that capture
temporal relationships between events. The Priority AND
(PAND) gate, a long established but vaguely defined
component of the fault tree vocabulary [22], and a new
Simultaneous AND gate (SAND) are rigorously defined
and a set of temporal laws is formed that is used to
reduce branches of the tree containing many temporal
gates. With a temporal logic in place, fault trees
containing PAND and SAND gates can then be
qualitatively analysed, and so form a set of ordered
minimal cut sets, or 'minimal cut sequences'. We are
currently writing up the first results of this work which we
hope to publish soon. To enable further integration of
safety analysis in the design process, we are also
combining this work with recent advances in evolutionary
optimisation [23]. The aim of this work is to further
automate difficult aspects of system design such as the
cost effective allocation of component redundancies and
the apportionment of safety and reliability requirements
on components of the system during design.

REFERENCES

1. www.vv.se/aktuellt/pressmed/2003/hkpress19.htm
2. Ye F. and Kelly T. P., "Criticality Analysis for COTS,

Software Components”, 22nd International System
Safety Conference (ISSC’04), 2004.

3. Shamus P. Smith and Michael D. Harrison,
“Measuring reuse in hazard analysis”, Reliability
Engineering & System Safety, 89(1) 93-104, 2005.

4. CENELEC, “Railway applications: Specification and
demonstration of dependability, reliability, maintain-
ability and safety”, EN 50126-9, 2000.

5. Mernick M., Viljem Zumer V., “Reusability of formal
specifications in programming language description”,
8th Annual Workshop on Software Reuse, WISR8,
Columbus, Ohio, pp. 1 - 4, 1997.

6. Thane H., Wall A, “Formal and Probabilistic
Arguments for Component Reuse in Safety-Critical
Real Time Systems”, Technical report CBSE – State
of the Art, Mälardalen University, 2000.

7. Fenelon, P., McDermid, J.A., Nicholson, M.,
Pumfrey, D.J., “Towards Integrated Safety Analysis
and Design”, ACM Applied Computing Review, 1994.

8. Papadopoulos, Y., McDermid, J. A., “Hierarchically
Performed Hazard Origin and Propagation Studies”,
SAFECOMP '99, LNCS, 1698 139-152, 1999.

9. Kaiser, B., Liggesmeyer, P., Mäckel, O., “A New
Component Concept for Fault Trees”, 8th Australian
Workshop on Safety Critical Systems and Software
(SCS'03), Adelaide, 2003.

10. Kaiser, B., Gramlich, C., “State-Event-Fault-Trees: A
Safety Analysis Model for Software Controlled
Systems”, SAFECOMP’04, LNCS, 3219:195-209,
2004.

11. Papadopoulos Y., McDermid J. Sasse A. R., Heiner
G., “Analysis and Synthesis of the Behaviour of
Complex Programmable Electronic Systems in
Conditions of Failure”, Reliability Engineering and
System Safety, 71(3):229-247, 2001.

12. Papadopoulos Y., Parker D., Grante C., “A method
and tool support for model-based semi-automated
Failure Modes and Effects Analysis (FMEA)”, 9th
Australian Workshop Safety Critical Programmable
Systems (SCS'04), Brisbane, 2004

13. Kopetz, H., “The time-triggered approach to real-time
system design”, Predictably Dependable Computing
Systems, ESPRIT basic research series, Springer-
Verlag, Berlin, 1995.

14. Kopetz, H. and Grunsteidl, G., “TTP-A protocol for
fault tolerant real-rime systems”, IEEE Computer,
27(1):14-23. 1994.

15. Fliege I., Geraldy A., Gotzhein R., Kuhn T.and Webel
C., “Developing safety-critical real-time systems with
SDL design patterns and components”, Computer
Networks, June 2005.

16. Grunske, L., “Transformational Patterns for the
Improvement of Safety Properties in Architectural
Specification”, 2nd Nordic Conf. on Patterns
Languages, Norway, Sept. 2003.

17. ITI, “Simulation X”, www.iti.de, 2003.
18. Mathworks, “Matlab”,www.mathworks.com, 2005.
19. Isograph, “Fault Tree +”, www.isograph.com, 2005.
20. Fussell, J.B., Vesely, W.E., “A new methodology for

obtaining cut sets for fault trees”, Transactions of the
American Nuclear Society, 15:262-263, 1972.

21. Pande, P.K., Spector, H.E., Chatterjee, P.,
“Computerized fault tree analysis: TREEL and
MICSUP”, Operations Research Center, University of
California, Berkeley, ORC 75-3, 1975.

22. Sinnamon, R. M., Andrews, J. D., “New approaches
to evaluating fault trees”, Reliability Engineering and
System Safety, 58:89-96, 1997.

23. Vesely, W.E., Goldberg, F.F., Roberts, N.H., Haasl,
D.F., “Fault Tree Handbook”. Washington D.C., USA.
US Nuclear Regulatory Commission¸1981.

24. Papadopoulos Y., Grante C., “Evolving car designs
using model-based automated safety analysis and
optimisation techniques”, Journal of Systems and
Software, Elsevier Science, 76(1):77-89, 2005.

APPENDIX

Fig A.1. Fault tree for Omission of braking.

Fig A.2. Fault tree for incorrect braking.

Fig A.3. Direct effects FMEA.

Fig. A.4. Further effects FMEA.

Fig. A.5. Modes of a steer-by-wire prototype derived with the aid of automatically synthesized safety analyses

Steer-By - Wire

Lateral acceleration
bases feedback Traditional

feedback

Lateral_Accelration

Vehicle speed Vehicle speed
set 200 km/h

Input_Vehicle_Speed

Yaw acceleration Yaw acceleration
set to 0

Input_Yaw

Selected mode Selected mode set
to start mode

Input_Selected_Mode

Not_Rack_Force

Rack force Rack force
Rack_Force

Input_Rack_Position
OR Input_SteeringWheel_Angle
OR Required_Torque
OR Torque_Provider
OR Required_Rack_Position
OR Wheel_Positon_Provider

OR Input_Torque_reading
OR Required_EndStop_Left
OR EndStop_Left
OR Required_EndStop_Right
OR EndStop_Right

Mechanical Backup

Steering assisted by
Rack_Position

_Provider
Steering assisted by

Torque_Provider

Without steering
assisted

(Required_Rack_Position
OR Wheel_Positon_Provider)

Vehicle speed Vehicle speed
set 200 km/h

Input_Vehicle_Speed

Powert assisted

((Required_Rack_Position
OR Wheel_Positon_Provider)
AND (Input_Rack_Position
OR Input_SteeringWheel_Angle
OR Required_Torque
OR Torque_Provider))
OR Input_Torque_reading

Steering System

Steer-By - Wire

Lateral acceleration
bases feedback Traditional

feedback

Lateral_Accelration

Vehicle speed Vehicle speed
set 200 km/h

Input_Vehicle_Speed

Yaw acceleration Yaw acceleration
set to 0

Input_Yaw

Selected mode Selected mode set
to start mode

Input_Selected_Mode

Not_Rack_Force

Rack force Rack force
Rack_Force

Input_Rack_Position
OR Input_SteeringWheel_Angle
OR Required_Torque
OR
OR Required_Rack_Position
OR Wheel_Positon_Provider

OR Input_Torque_reading
OR Required_EndStop_Left
OR EndStop_Left
OR Required_EndStop_Right
OR EndStop_Right

Mechanical Backup

Steering assisted by
Rack_Position

_Provider
Steering assisted by

Torque_Provider

Without steering
assisted

(Required_Rack_Position
OR Wheel_Positon_Provider)

Vehicle speed Vehicle speed
set 200 km/h

Input_Vehicle_Speed

Powert assisted

((Required_Rack_Position
OR Wheel_Positon_Provider)
AND (Input_Rack_Position
OR Input_SteeringWheel_Angle
OR Required_Torque

OR Input_Torque_reading

Steering System

