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ABSTRACT 

Recent work in the area of safety analysis has shown 
that system Fault Trees and Failure Modes and Effects 
Analyses (FMEAs) can be automatically derived from a 
topological model of the system that has been annotated 
with local, component-level, specifications of failure. In 
this paper, the concept of a component failure 
specification is extended to enable description and reuse 
of generalized patterns of failure behaviour that are 
commonly exhibited by components. A language for the 
description of such patterns is specified, useful patterns 
are presented and the use of such patterns is 
demonstrated on an example of a Time-Triggered 
system. The paper tentatively concludes that careful 
reuse of failure patterns in conjunction with automated 
fault tree and FMEA synthesis algorithms can help to 
rationalize, and simplify, complex safety assessments.  

INTRODUCTION 

Empirical evidence shows that the safety of vehicles has 
improved with the introduction of active safety functions 
such as antilock braking, traction control and electronic 
stability programs [1]. It is, therefore, expected that new 
active safety functions will result to further safety 
improvements in future vehicle technology. At the same 
time, there is a growing recognition that new 
technologies introduce new risks which need to be 
identified and effectively contained before any new 
systems are deployed.  

Active safety systems may address known safety 
problems but also introduce new potentially hazardous 
failure modes. In a traditional design, for example, a 
commission failure such as the inadvertent application of 
brakes on a single wheel of the car is impossible. This 
condition becomes possible, though, in a design that 

enables independent by-wire control of wheel brakes. 
Active safety functions that control such brakes are 
carefully designed to fail silently in case of detected 
malfunctions. But although the likelihood of commission 
failures can be reduced via good design, the potential still 
remains. The severity and probability of occurrence of 
these and other failure modes likely to arise from the 
introduction of new technologies in vehicles need to be 
carefully considered to ensure safe deployment of such 
technologies.  

Although the impact of increasing technological 
complexity on safety is universal, the issue is perhaps 
more urgent in the automotive industry which currently 
undergoes a rapid transition towards distributed 
embedded vehicle control systems. Such systems bring 
together a number of currently standalone functions in a 
common platform where functions are implemented using 
a pool of shared information and energy resources. In 
practice, one of the major challenges towards 
implementation of distributed active safety in vehicles is 
automatic control of the steering system. Such control 
shall enable the implementation of a new generation of 
powerful active safety functions which include side wind 
compensation, vehicle stability control with steering 
intervention, lane keeping or changing aids and collision 
avoidance systems. To enable this type of control, radical 
changes will need to be made in the steering system. 
The mechanical link between the steering wheel and the 
vehicle wheels will almost certainly need to be 
interrupted and a feedback actuator will be required to 
provide steering feedback to the driver. Understandably, 
such radical design changes raise serious safety 
concerns and demand the thorough safety evaluation of 
any new design concepts. Potential failure modes must 
be identified and the effects of these failure modes in the 
provision of sensitive active safety functions must be 
established. 



Safety concerns in the automotive and other industries 
are further amplified by the prospect of integration of 
critical and non-critical vehicle functions on networks of 
embedded controllers. Indeed, the implication of such 
integration, i.e. interaction, interoperation and sharing of 
hardware resources create potential for hazardous 
common cause failure and unpredicted dependent failure 
of critical functions that could be caused by malfunction 
of non-critical functions. Traditionally, such issues were 
addressed using classical safety analysis such as Fault 
Tree Analysis (FTA) and FMEA. Today, though, 
increasing complexity in automotive technology seriously 
questions the applicability of classical manual risk and 
safety analysis techniques on new designs. Perhaps the 
biggest source of difficulties is the manual nature of 
those techniques, which makes a complete and correct 
classical safety analysis increasingly more difficult to 
achieve. Other problems include omissions, errors and 
inconsistencies in the results from the assessment 
caused by a selective and fragmented analysis which is 
often restricted to assumed “critical parts” of the system.  

Crucial in addressing these problems, we believe, is the 
establishment of new and improved safety assessment 
processes in which composability and reuse of safety 
analyses becomes possible [2,3]. Such processes are 
already vaguely prescribed by modern safety standards. 
The CENELEC railway standards [4], for example, 
introduce the concept of composable safety cases, 
according to which the safety case, i.e. the collective 
evidence of safety of a system, is composed of the safety 
cases of its sub-systems or components, which in theory 
could be produced and certified independently. This type 
of composability in safety analysis is expected to bring 
similar benefits to those introduced by well-tested and 
trusted software components in software engineering 
[5,6].  

To achieve this goal, a body of work is already looking 
into techniques for specification and application-level 
reuse of component-based safety analyses [7-10]. Our 
contribution to this work is the development of a model-
based safety and reliability analysis technique that 
largely automates and simplifies a substantial part of the 
assessment, the development of fault trees [8,11] and 
FMEAs [12]. This technique is known as HiP-HOPS 
(Hierarchically Performed Hazard Origin and Propagation 
Studies) and enables a largely automated and thus 
simplified form of compositional safety analysis. In this 
approach, system failure models such as fault trees and 
FMEAs are automatically constructed from knowledge 
about the topology of the system and local specifications 
of failure at component level. This has the beneficial 
effect of simplifying the analysis whilst keeping the 
analyses consistent with the design information.  

In HiP-HOPS, component-level failure specifications are 
currently formed as sets of logical expressions that 
describe specific failure behaviour by relating specific 
output deviations to internal malfunctions of each 
component and deviations of component inputs. In this 
paper, the concept of a local, component-level failure 
specification is extended to enable description and reuse 

of more generalised failure behaviour in the form of 
patterns. Such patterns could in practice be used to 
capture common types of fault propagation, fail silence 
and fault tolerance that components are designed to 
exhibit irrespective of environment and the number or 
type of inputs handled. The Time Triggered Protocol 
(TTP) communication controller [13,14], for instance, is 
designed to consistently fail silent in response to any 
timing or commission failures generated by the controller 
hardware or by the local host. This behaviour is 
independent of application and justifies the development 
of a failure pattern for the TTP controller that could be 
reused across different applications and safety 
assessments.     

In this paper, we highlight the need for more generalized 
descriptions of failure behaviour or component failure 
patterns. We also define a language for the description of 
such failure patterns and explain the use of patterns in 
conjunction with fault tree and FMEA synthesis 
algorithms in the context of HiP-HOPS. Finally, we 
present a number of useful patterns including one that 
encapsulates the properties of the TTP controller and 
demonstrate their use in a small example. We discuss 
the process and results of the analysis and draw 
tentative conclusions about the potential usefulness and 
further direction of this work.  

COMPOSITIONAL SAFETY ANALYSIS  

HiP-HOPS is a model-based semi-automatic safety and 
reliability analysis technique that uses tabular failure 
annotations as the basic building block of analysis at 
component level. In HiP-HOPS, a topological model of 
the system (hierarchical if required to manage 
complexity) is first annotated with formalised logical 
descriptions of component failures and then used as a 
basis for the automatic construction of fault trees and 
FMEAs for the system. Application of the technique can 
start once a concept of the system under design has 
been interpreted into an engineering model which 
identifies components and material, energy or data 
transactions among components. Suitable models for the 
application of the technique include abstract functional 
block diagrams, engineering schematics, piping and 
instrumentation diagrams, hardware descriptions, data 
flow diagrams, and other models commonly used in 
engineering and software engineering. 

HiP-HOPS can be performed on abstract or more 
detailed models of the system as these are produced and 
refined in the course of the design life-cycle. This of 
course creates opportunities for re-use of earlier analysis 
and the ability to achieve a consistent and continuous 
assessment in the centre of which lies an evolving model 
of the system itself. At the early stages of design, the 
model that provides the basis for the analysis can be a 
block diagram which shows the functional composition of 
the system, input/output transactions among functions 
and the recursive refinement of functions into networks of 
lower level sub-functions. Later on, when functions are 
allocated to hardware, the model becomes a 



representation of the physical architecture of the system 
which shows components such as sensors, actuators, 
busses and programmable controllers enclosing 
networks of tasks running upon those controllers. 

The first step in the analysis of such models in HiP-
HOPS is the establishment of the local failure behaviour 
of each component (i.e. function, hardware or software 
element) in the model as a set of logical failure 
expressions which show how output failures of the 
component can be caused by internal malfunctions and 
deviations of the component inputs. A variant of Hazard 
and Operability Studies (HAZOP) [11] is used to identify 
plausible output failures such as the omission, 
commission, value (hi, low) or timing (early, late) failure 
of each output and then to determine the local causes of 
such events as combinations of internal component 
malfunctions and similar types of input failures. Once this 
analysis has been completed for all components, and the 
derived failure expressions have been inserted into the 
model, the topology of the model is then used to 
automatically determine how the local failures specified 
in those expressions propagate through connections in 
the model and cause functional failures at the outputs of 
the system. This global view of failure is captured in a set 
of fault trees which are automatically constructed by 
traversing the model and by evaluating the local failure 
expressions encountered during the traversal.  

The synthesised fault trees are interconnected and form 
a directed acyclic graph sharing branches and basic 
events that arise from dependencies in the model, e.g. 
common inputs which may cause simultaneous 
dependent failure of hypothetically “independent” 
functions or physical components. Classical Boolean 
reduction techniques and recent algorithms for fault tree 
analysis that employ Binary Decision Diagrams (BDDs) 
are applicable on this graph. Thus, qualitative analysis 
(e.g. of abstract functional models) or quantitative 
analysis (e.g. calculation of system-level failure rates 
from known failure rates on component-level) can be 
automatically performed on the graph to establish 
whether the system meets its safety or reliability 
requirements. In recent work we have shown that the 
logic contained in the graph can be automatically 
translated into a simple table which is equivalent to a 
multiple failure mode FMEA [12]. The FMEA records, for 
each component in the system and for each failure mode 
of that component, any direct effects on the system and 
further effects caused in conjunction with other failure 
events.  

Note that in hierarchical models that record the 
decomposition of systems, failure annotations may also 
be inserted at subsystem level to collectively capture the 
effect of failure conditions that do not necessarily require 
examination at basic component level. If, for example, a 
subsystem as a whole is susceptible to some 
environmental disturbance like high temperature, flood or 
electromagnetic interference, then the effects of this 
condition can be directly specified with a failure 
annotation at subsystem level. Such annotations would 
typically complement other annotations made at the level 

of enclosed components to describe aspects of failure 
behaviour at this level (e.g. mechanical and electrical 
failure modes of each component). In general, when 
examining the causes of failure at an output of a 
subsystem, the fault tree synthesis algorithm of HiP-
HOPS creates a disjunction between any failure logic 
specified at sub-system level and logic arising from the 
enclosed lower levels. This feature makes HiP-HOPS a 
truly hierarchical approach to the analysis of complex 
systems. 

Failure annotations may also optionally include failure 
and repair rates which, if provided at this stage, are 
embedded in the synthesised fault trees and can be used 
to perform probabilistic calculations aimed at prediction 
of the reliability of the system. Note, though, that such 
failure rates are not essential and that qualitative 
application of the technique can still produce useful 
results. FMEAs, for instance, can indicate components 
that represent single causes of severe system failures.  

IS REUSE POSSIBLE?  

In HiP-HOPS, interpretation of the synthesized fault 
trees, their minimal cut sets and the FMEA helps to 
identify design weaknesses and initiate design changes. 
To ensure that design changes do not introduce any new 
hazardous failure modes, re-establishment of the failure 
behaviour of the system via iteration of safety analysis 
should follow such design changes. Clearly, the ability to 
iterate fast this process ultimately defines the ability to 
manage effectively the evolution of the design in safety 
assessment. The automated algorithms of HiP-HOPS for 
the synthesis of fault trees and FMEAs clearly help in this 
direction. However, the ability to effectively apply the 
method on evolving designs is also heavily dependent 
upon the ability to re-use the failure annotations that are 
required at component level. For this reason, we turn our 
attention to the question of reuse, and we try to establish 
whether such reuse is possible and under which 
conditions.   

In addressing the question of reuse, it would be useful to 
start with the local failure model of a simple component 
such as the two-way computer controlled valve illustrated 
in Fig.1. The figure shows the valve as it would typically 
be illustrated in a plant diagram and records the results 
of the local safety analysis of the component in two 
tables that define valve malfunctions and output 
deviations respectively. 

In normal operation, the valve is normally closed and 
opens only when the computer control signal has a value 
of a logical one. Valve malfunctions include mechanical 
failures such as the valve being stuckOpen or 
stuckClosed, and blockages caused by debris such as 
blocked and partiallyBlocked. For each malfunction, the 
analysis records an estimated failure rate while the 
effects of those malfunctions on the output of the valve 
can be seen in a second table that lists output deviations. 



  
Valve Malfunctions 
Failure mode Description Failure rate 
blocked e.g. by debris 1e-6 
partiallyBlocked e.g. by debris 5e-5 
stuckClosed Mechanically stuck 1.5e-6 
stuckOpen Mechanically stuck 1.5e-5 
   
 

Deviations of Flow at Valve Output 
Output 
Deviation 

Description Causes 

Omission-b Omission of 
flow 

blocked or stuckClosed 
or Omission-a or        
Low-control  

Commission-b Commission 
of flow 

stuckOpen or 
Commission-a or         
Hi-control 

Low-b Low flow partiallyBlocked  or    
Low-a 

Hi-b Hi flow Hi-a 
Early-b Early flow Early-a or Early-control 
Late-b Late flow Late-a or Late-control   

 

Fig.1. Failure annotations of a computer-operated      
two-way valve 

 

Here, we can see that an omission of the output flow 
(Omission-b) can be caused by a number of malfunctions 
such as valve blocked or stuckClosed and by input 
failures such as omission of input flow (Omission-a) or a 
value failure in the control signal (Low-control). Similarly, 
commission of the output flow (Commission-b) can be 
caused by a valve malfunction (stuckOpen), commission 
of input flow (Commission-a) or a value failure in the 
control signal (Hi-control). The table also provides 
expressions that define the causes of value (Low-Hi) and 
timing (Early-Late) failures at the output of the valve. 
From such expressions describing local failure 
behaviour, in HiP-HOPS it is possible to automatically 
generate a set of system fault trees and an FMEA which 
show how component failures cause system level effects. 

In the analysis of Fig.1, there is an implicit assumption 
that point b is always the output of the valve which may 
be true in a particular system configuration but not in 
general. To account for flows in the opposite direction, 
we also need to consider point a as an output, which in 
practice means that the table has to be extended to 
include deviations of point a. The symmetry in the design 
of the valve means that mechanical replication is only 
required to complete this specification of how the valve 
behaves in conditions of failure. This specification is 
generic in the sense that it does not contain references to 
the context within which the valve operates. Failure 
expressions make references only to component 
malfunctions and input/output ports of the component. 
The failure behaviour described in these expressions has 
been derived assuming a simple operation that we 
expect the component to perform in every application 
(valve is normally closed unless the value of control 

signal is 1). For these reasons, the specification of Fig.1 
provides a template that could be re-used in different 
models and contexts of operation, perhaps with some 
modifications, e.g. on failure rates, to reflect a different 
environment. We must stress, though, that this type of 
reuse is only possible because the valve has a small 
number of well-defined interface points and performs the 
same simple operation in any context of use.   

Generalising this discussion, we can say that the failure 
annotations of a component can be directly re-used in 
the same application as long as design changes do not 
influence the function of the component, i.e. the 
component receives the same inputs and performs the 
same operations on these inputs producing the same 
outputs. Reuse of failure annotations is likely to be 
possible across different applications for simple 
components like sensors and simple actuators. On the 
other hand, the failure annotations for programmable 
components or components with variable functional 
profiles will generally have to be re-constructed each 
time the component is used in a different application with 
reference to the functions performed in the context of this 
application. There are, however, exceptions to this rule 
and opportunities for reuse of safety analyses even for 
complex components. 

PATTERNS OF FAILURE BEHAVIOUR 

Complex components, for example components that 
perform fault tolerant functions, are often designed to 
provide the same standard failure behaviour on all 
outputs independently from context of application and the 
number or type of inputs and outputs [15,16].  A good 
example of this is the TTP communication controller, a 
component that handles the communication between a 
host and other controllers in a time-triggered network. 
Analysis of the published specification of this component 
shows that the controller has several important safety 
properties that should hold in any context of operation 
[13,14]. These properties collectively define a generic 
pattern of controller behaviour in the failure domain.  

The pattern is schematically illustrated in Fig.2, and 
shows that the controller is extremely efficient in terms of 
handling the various classes of failure that analysts 
would typically examine in a HiP-HOPS study. Early, late 
and commission failures caused by internal controller 
faults or the local host are detected and therefore cannot 
cross the controller-bus interface. Such failures are, 
therefore, obsolete within the sphere of a TTP network. 
One reason is that the controller contains mechanisms 
that prevent the generation of such types of failures. In 
addition, the controller detects commission and timing 
failures generated by the host and transforms these 
failures into omissions. Thus, the only failures that cross 
the bus interface and enter the sphere of a TTP network 
are omission and value failures generated by the host or 
at the CNI (memory area where host and controller 
exchange information). Two more types of failure can be 
generated within the sphere of communications: 
omission and value failures caused by external 

 control 

 a  b 



disturbances during transmission (e.g. Electro-Magnetic 
Interference). From those four classes of failure only one 
can propagate through and exit undetectable from the 
TTP network: value failures generated by the host or at 
the CNI. 

The pattern of Fig.2 defines an informally specified, 
convenient, generic abstraction of the controller 
behaviour in the failure domain. Assuming knowledge of 
the messages handled by the controller in a given 
application, this informal pattern could be translated into 
specific failure annotations described in the language of 
HiP-HOPS that could then be used together with fault 
tree and FMEA synthesis algorithms to simplify the safety 
assessment of TTP networks1. Each of these annotations 
would relate a specific deviation of a message handled 
by the controller to its possible causes, either a controller 
failure or a deviation of the message at the input of the 
controller. Such useful informal use of patterns could be 
achieved with no extensions to the method. However, 
informal use implies a manual translation of the informal 
general pattern to its specific instances within a particular 
model. We believe that this manual step could be 
avoided and more effective reuse of failure patterns 
could be achieved by enabling the formal description of 
such patterns and their automated adaptation and 
application in different contexts of design using 
appropriate tool support.  

To achieve this goal, we have extended the language 
currently used in HiP-HOPS with primitives that can be 
used to make general statements about failure 
behaviour. In this language, for example, it is possible to 

                                                      
1 It is implied that the assumptions about the properties 
of the communication controller that underlie the pattern 
of Fig.2 (stated as requirements in its published 
specification) must be verified on any actual 
implementation of the controller before the model can be 
safely used for all the practical purposes of application 
safety analysis.  

 

state that “the failure of a component causes omission of 
all outputs of the component” or that “any output will be 
omitted if there is a timing or commission failure of the 
corresponding input”. Such general statements have in 
the past not been possible in HiP-HOPS (only direct 
relationships between individual output failures and their 
explicitly stated specific causes could be stated). 
However, with the linguistic concepts described in the 
following section, component failure patterns such as the 
one illustrated in Fig.2 can now be formally stated. The 
advantage of this approach is that failure patterns can be 
mechanically interpreted and, in the context of HiP-
HOPS, reused across applications as building blocks for 
the automatic synthesis of system safety analyses. 

LANGUAGE FOR FAILURE PATTERNS  

A language for the description of failure patterns should 
be generic and abstract enough to be technology 
independent and applicable on systems that integrate 
diverse technologies (i.e. electrical, mechanical, 
electronic, software). The definition of such a language 
must be based on a suitable abstraction of a component 
in the domain of failure, one that captures all aspects in 
which failure behaviour is exhibited, but also one that is 
generic enough to be shared by all components.  

In general, all components operate on a set of inputs and 
deliver a set of outputs. Inputs and outputs are important 
in the domain of failure because they form the interface 
to the external world through which the effects of failure 
propagate. Components suffer internal malfunctions such 
as electrical or mechanical failures caused by wear or 
environmental conditions for which components are not 
qualified (e.g. humidity, temperature, pressure, electro-
magnetic interference etc.). Hardware failures follow 
probabilistic distributions defined by a constant or 
variable failure rate. Component malfunctions cause local 
effects on outputs, or outputs deviations which, in turn, 
cause further effects as they propagate through material, 
energy or data connections to other components. The 
effects of failure naturally vary depending on failure 
condition and type of output.  However, despite 

Fig.2. Pattern of failure behaviour of TTP controller (transformation and propagation of failures) 
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differences, all effects fall in a small number of failure 
classes that are universal and applicable to material, 
energy and data parameters. These failure classes 
represent extreme deviations from normal behaviour 
such as the omission or commission of outputs or 
qualitative deviations from correct value (i.e. hi-low) and 
expected timing behaviour (i.e. early-late). This 
classification of failure effects adopts a functional 
viewpoint which is independent of technology and 
therefore provides a common basis for describing the 
local effects of component malfunctions. However, the 
use of failure classes does not in itself lead to sufficient 
specifications of failure behaviour, since the role of a 
component in the domain of failure cannot be fully 
described by simply enumerating the local effects of its 
internal failure mechanisms.  

Components do not only cause failures, but they also 
detect and respond to failures caused by other 
components, the effects of which can be sensed as 
deviations of inputs. A three way valve with sensing 
abilities, for example, may detect the absence of flow in 
one input, and in response, it may automatically restore 
output flow by switching to an alternative source. On the 
other hand, in similar circumstances a two way valve will 
propagate any disturbance of input flow to its output. 
Although the above cases represent very common 
patterns of behaviour, components do not only generate, 
mitigate or propagate failures. They may also transform 
input failures to different types of output failure. An 
example of such a component is a controller which in 
response to detected sensor failures omits any further 
output to ensure that hazardous control action is avoided. 
This clearly represents a case in which value failures at 
the input are intentionally being transformed into 
omission failures at the output. 

To capture those different aspects of local failure 
behaviour, in HIP-HOPS, logical expressions are used to 
relate the potential output deviations of a component to a 
logical combination of causes that include internal 
malfunctions of the component and deviations of 
component inputs. Such expressions can be 
parenthesised and include conjunction, disjunction and 
negation operators (i.e. and, or, not).  An example 
specification that encompasses different aspects of 
failure behaviour has been given in Fig.1. The 
annotations of the two way valve define that the valve 
propagates all possible deviations of input flow to the 
output.  Value failures of the control signal (low and hi) 
are transformed by the valve to course provision failures 
at the output (i.e. omission and commission of flow 
respectively). In addition a number of malfunctions of the 
valve cause different effects on the outputs. These 
effects are aggregated in six classes of failure (omission, 
commission, etc).  
 
In the example of Fig.1, appropriate keywords have been 
used to signify omission, commission, low, hi, early and 
late failures in ports a and b. In general, though, the 
failure classes considered in the course of the analysis 

(i.e. omission, commission, etc) and the identifiers2 used 
to describe them are not predefined or strictly prescribed 
in the context of the proposed language. Analysts have 
the freedom to define and examine different types of 
deviations as long as these types are used consistently 
(i.e. identical types are referenced across the two ends of 
each connection in the model)3. This gives a degree of 
flexibility which is appropriate for analysis of different 
types of input/output parameters. For events, i.e. 
momentary stimuli and responses, for example, only 
omission and commission failures could be examined 
since they sufficiently cover the two possible deviations 
from nominal state. Similarly for continuous binary control 
signals, two types of value failure (hi and low) sufficiently 
cover all possible deviations from the nominal state of the 
signal. In this flexible scheme of using failure classes, 
analysts also have the option of performing very detailed 
analysis by specifying precise failure conditions such as 
‘output value>100’ or ‘value being late by 10msec’. For 
this to work, though, it is imperative that all such 
conditions specified in the failure logic of one component 
have also been considered in the failure logic of 
connected components.  
 
To summarise the above discussion, in the proposed 
language, a component is also defined by a vector of 
failure classes which are applicable to its inputs and 
outputs. In a given application, a single vector may be 
shared by all components, but each component may also 
define its own vector as long as this vector is consistent 
with the vectors of adjacent components.  
 
One difficulty in the proposed approach is caused by 
components that handle a large or variable number of 
inputs and outputs. Take, for example, a communication 
bus that carries large numbers of different messages in 
different applications. An electrical failure of the bus, 
such as a short circuit, will always cause an omission of 
all outputs. In addition, any deviation of an input 
message will cause an identical deviation of the 
corresponding output, unless of course the bus 
incorporates failure detection and control mechanisms. 
Although the bus may carry different messages, the 
above statements provide a pattern of its failure 
behaviour which is independent of the number and type 
of those messages. However, the linguistic scheme that 
we presented so far does not permit the representation of 
this pattern.  In this scheme, each time the bus is used in 
a different application, analysts must enumerate one by 
one all potential effects of failure on all output messages 
and their respectively causes. This is both cumbersome 
and unnecessary and can be avoided with the 
introduction of new operators that can make appropriate 
                                                      
2 For example, the identifiers O, C, Vh, Vl, Te, Tl could 
have been used in Fig.1 to signify the failure classes 
examined. 
3 Assume, for example, that during the local analysis of 
component A, analysts specify the omission of output out 
as possible deviation (e.g. O-out). If out is connected to 
input in of component B, then references in the failure 
logic of B to an omission of in should use the same 
identifier (i.e. the event should be specified as O-in).  



collective references to inputs, outputs, failure modes 
and failure classes. To enable such collective references, 
we assume that in the general case each component has 
a number of vectors of parameters which are important 
from a point of view of safety analysis: input ports IP[], 
output ports OP[], Failure Modes FM[] and Failure 
classes FC[]. In turn, each input and output port may 
carry a vector of parameters P[]. If, for example: 
 
   OP[] = [a,b]  
   OP[1].P[] = [temp,pres] and  
   FC[] = [Omission,Commission,Hi,Low,Early,Late]  
 
then Omission-a.temp and FC[1]-OP[1].P[1] are 
equivalent references to an omission of parameter temp 
in output port a. Making references to indexed elements 
of the vectors, as above, does not really add anything in 
the declaration of deviations. The introduction of vectors, 
however, enables us to define four operators that make 
collective references to the contents of these vectors 
(even when these contents are yet unknown, vary across 
applications or simply have not been explicitly stated). 
The four new operators are namely:  
 
 any, every, majority and except  
 
When the operator any is applied on a vector referenced 
in a failure pattern, it can be substituted by any of the 
parameters contained in the vector to create multiple 
instances of the pattern, when in the context of a specific 
application the parameters of the vector become known. 
On the other hand, when the operator every is applied on 
a vector, a single instance of the pattern is only created 
via iteration of all parameters contained in the vector. 
Every can be used in conjunction with logical operators 
(and & or) to create a conjunction or disjunction among 
all input or output deviations generated by application of 
the operator.   
 
The except operator is used in conjunction with any or 
every operators and restricts the global scope of these 
operators by excluding a set of specified inputs, outputs 
and failure classes that do not share the common 
behaviour. Finally, when the majority operator is applied 
on a set of events which are explicitly specified or 
generated by every operators, it causes enumeration of 
all majority combinations of these events (all 2 out of 3, 3 
out of 5, etc., combinations).  The effect of the operator is 
the generation of a logical expression in which events 
within each combination are conjoint and combinations 
are disjoint.  
 
In the remainder of the section, we present a catalogue 
of useful generalized statements about failure behaviour 
that can be made using the linguistic constructs that we 
have introduced in this section. For each statement, we 
provide an informal explanation of its meaning and 
suggest potential application in the development of 
patterns for components.  
 
 
 
 

1. Propagation of failure from inputs to outputs  
 
any FC[x] – any OP [y].any P[z] = FC[x]-IP[y].P[z] 
 

Any deviation x of any parameter z on output y is 
caused by the same deviation x of the corresponding 
input parameter z on input y.  

 
Statement can be used for modelling components that 
directly propagate input failures to outputs, e.g. a 
communication bus. 
  
2. Global failure in the same mode, e.g. Omission 
 
Omission - any OP[y].any P[z] = FM[1] 
 

An omission of all output parameters is caused by a 
failure mode of the component.  

 
Statement can be used for modelling of components in 
which a single failure mode causes the same effect on all 
output parameters. Omission is a typical effect observed 
in practice when components fail but other common 
failure effects are also possible, e.g. all parameters 
produced late. 
 
3. Fail silence & Transformation of failure 
 
Omission - any OP[y].any P[z] =  
or (every FC[]-every IP[].P[z])  
 

Omission of all output parameters is caused by any 
failure of any input parameter  

 
Statement can be used for modelling of components that 
detect input failures and in response fail silent, i.e. 
transform value, timing and commission failures into 
omissions. The statement implies very strong failure 
detection but can be moderated to reflect more realistic 
fail silent behaviour. The assumption that every failure 
class at the input is detectable can be modified to 
exclude value failures that are difficult to detect. In this 
case the statement becomes: 
 
Omission - any OP[y].any P[z] =  
or (every FC[] except {Value}-every IP[].P[z])  
 
The statement can also be modified to show other types 
of failure transformation, e.g. of timing failures to 
commissions.  
 
4. Standby - recovery  
 
any FC[x] – OP[1].any P[z] =  
Omission-IP[1].P[z] and FC[x]-IP[2].P[z] 
 

Any deviation x of any parameter z on the single 
output port is caused by omission of the 
corresponding input parameter z on the first input 
followed by the same deviation x of the corresponding 
input parameter z on the second input.  

 



Statement can be used for modelling of a standby 
component that monitors a primary component on IP[1] 
and, when an omission is detected, it takes over to 
continue the provision of the intended function. In this 
case, any failure on IP[2] is propagated to the output of 
the standby. However, the statement can be modified as 
shown below to show a fail silent behaviour instead. 
 
Omission FC[x] – OP[1].any P[z] =  
Omission-IP[1].P[z] and (FC[x]-IP[2].P[z]  or FM[1]) 
 
In this case, the standby fails silent in response to either 
an internal failure mode or any deviation of IP[2] that 
follows omission of IP[1]. 
 
5. Redundancy on inputs  
 
any FC[x] – any OP [y].any P[z] =  
and (FC[x]-every IP[y].P[z]) 
 

Any failure x of any parameter z on output y is caused 
by a conjunction of the same failure x on the 
corresponding input parameter z of every input y. 

 
Statement can be used in the modelling of components 
that rely on redundant inputs for producing correct output 
as long as one of the redundant inputs is correct. 
 
6. Voting  
 
Omission-OP[1].any P[z] =  
majority(every FC[]-every IP[].P[z]) 
 

Omission of any parameter z on the single output port 
is caused by a majority of input deviations of any type 
of the corresponding input parameter z on respective 
inputs.  

 
Statement can be used in the modelling of a fault tolerant 
component that outputs the majority of inputs that are in 
agreement. The component fails silent when the majority 
of inputs have either been omitted, provided at the wrong 
time, or disagree in value. 
 
FAILURE PATTERNS FOR BUS AND TTP 
CONTROLLER   

The catalogue of failure behaviour presented in the 
preceding section is by no means exclusive and is 
intended to only provide guidance for the construction of 
failure patterns. Using elements specified in this 
catalogue, it is indeed possible to construct example 
failure patterns for two components that we have already 
discussed in preceding sections: a generic 
communication bus and the TTP controller. 
 
The general failure behaviour of a communication bus 
combines two elements specified in the given catalogue: 
propagation of input failures to outputs and global failure 
in the same mode (in this case, omission). Indeed any 
deviation of an input message sent on the bus will cause 
an identical deviation of the corresponding output, while 

failure of the bus causes an omission of all outputs. The 
two statements below describe this behaviour and 
together form the failure pattern of a generic bus.  
 
Failure pattern of a communication bus 
 
 any FC[x] except {Omission} - any OP [y].any P[z] = 
  FC[x]-IP[y].P[z] 
 Omission - any OP[y].any P[z] = FM[1] 
 
Given a particular bus, a third statement can be added to 
link the general bus failure referenced above as FM[1] to 
a particular logical combination of specific bus failures, 
e.g. FM[1]=disconnected or shortCircuited. The pattern 
can of course be modified or extended to derive more 
elaborate and detailed behaviours for particular 
implementations of busses4.   
 
Fig.3 shows an instance of a bus where two nodes 
create two communication channels and send 
parameters a1,a2 and b1,b2 respectively.  Other nodes 
can tap in the corresponding outputs of these two 
channels, and, via a multiplexer, read some or all 
messages in a particular order.  Assuming that in this 
context FC={Omission,Value} and FM[1]=busFailed, 
application of the bus failure pattern can generate any of 
the 8 specific output deviations listed in Fig.3 and relate 
these to causes in terms of bus failure and similar 
deviations of inputs. The fact that specific failure 
expressions can be automatically derived from general 
patterns of failure behaviour once the application context 
is known is an important one. It means that the fault tree 
and FMEA synthesis algorithms of HiP-HOPS can 
interpret patterns into specific failure expressions and, 
thus, trace the propagation of failures through 
components that have been described with those 
patterns. 
 

 
    Omission-o1.a1=Omission-i1.a1 or busFailed 
  Value-o1.a1=Value-i1.a1 
  Omission-o1.a2=Omission-i1.a2 or busFailed 
  Value-o1.a2=Value-i1.a2 
  Omission-o2.b1=Omission-i2.b1 or busFailed 
  Value-o2.b1=Value-i2.b1 
  Omission-o2.b2=Omission-i2.b2 or busFailed 
  Value-o2.b2=Value-i2.b2 
 
 

 
Fig.3. Example bus with two I/O channels and specific 

deviations derived by application of the bus pattern 
 

                                                      
4 We currently consider the development of concepts to 
enable inheritance and polymorphism in a more 
structured and familial representation of patterns  
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Turning now to the failure pattern of the TTP controller, 
we observe that, once more, the controller combines two 
elements that we have seen in the catalogue of failure 
behaviours presented in the preceding section. These 
are:  
 

• propagation of undetectable value failures of the host 
(catalogue element #1), and 

 
• fail silence in cases of internal failure, timing and 

commission failures of the host, and detectable value 
failures caused during transmission (catalogue 
element #3). 

 
The controller can assume a dual role as a sender or 
receiver of messages. The following two failure patterns 
precisely correspond to these two roles: 
 
 
 Failure pattern of TTP as sender 
 
 Omission-any OP[y].any P[z] =  
 or(every FC[] except {Value}-IP[y].P[z]) or FM[1] 
 
 Value-any OP[y].any P[z] = Value-IP[y].P[z] 
 
 
 Failure pattern of TTP as receiver 
 
 Omission-any OP[y].any P[z] =  
 Omission-IP[y].P[z] or Value(detectable)-IP[y].P[z] 
 or FM[1]  
 
 Value-any OP[y].any P[z] = Value-IP[y].P[z] 
 
 
Note that failures of the TTP controller are collectively 
represented as a single failure mode FM[1] which causes 
the controller to fail silent. A new class of value failures, 
Value(detectable), is also introduced to accurately 
specify the failure behaviour of the controller. The 
“sender” and “receiver” patterns show that value failures 
of the host propagate undetected through the TTP 
network and re-appear as value failures at the output of 
the receiver. However, the “receiver” pattern shows that 
another class of value failures, those caused during 
transmission, are detectable by the receiver and result to 
omission of corrupted messages. 
 
We believe that patterns such as those presented in this 
section, could be developed for libraries of components 
in order to capture the experience generated in the 
course of difficult and expensive safety studies. In the 
context of HiP-HOPS, such patterns could be stored in 
electronic libraries and then reused, either directly or 
following necessary adaptation, in order to rationalize 
and simplify the assessment of complex systems. 
 

TOOL SUPPORT  

HiP-HOPS is currently supported by a tool that generates 
fault trees and FMEAs from models developed in 

SimulationX [17] or Matlab Simulink [18]. These are both 
mature and widely used engineering tools which provide 
open architectures and have enabled implementation of 
the techniques described in this paper5. The automated 
safety analysis tool is experimental but mature and has 
so far been independently used in complex case studies 
by Volvo, Germanisher Lloyd and others. A prototypical 
version of the tool also exists which supports the 
specification and use of abstract failure patterns.  
 
The architecture of the tool is illustrated in Fig.4. The tool 
provides a Graphical User Interface (GUI) that enables 
annotation of components in the model with the failure 
expressions and failure patterns required for the fault tree 
and FMEA synthesis. These data become part of the 
model and are automatically saved and retrieved by the 
modelling tool (SimulationX or Simulink) every time the 
model is opened or closed by a user. Failure annotations, 
including patterns, can be stored in component libraries 
and be re-used either directly or following modifications 
within the same model or across different models with 
the obvious benefit of simplifying the manual part of the 
analysis.     
 
Once a model has been annotated, the structure of the 
model and its annotations are saved in a text file. The 
second component of the FMEA tool is a parser that 
interprets such files, and reconstructs the enclosed 
annotated models for the purposes of fault tree 
synthesis. The synthesis itself is performed by the third 
component of the tool, the fault tree synthesis algorithm. 
To generate fault trees, the algorithm performs a 
backward traversal from each output of the model, in the 
course of which it evaluates the expressions and 
patterns contained in the local analyses of the 
components encountered during the traversal. The 
resultant network of fault trees is then logically reduced 
into minimal cut sets. Finally, an FMEA synthesis 
algorithm operates on these cut sets, and in a single 
traversal of the cut sets generates a multiple failure mode 
FMEA.  
 
Note that in a classical manual FMEA only the effects of 
single failures are typically assessed. One advantage of 
generating an FMEA from fault trees is that fault trees 
record the effects of combinations of component failures 
and this useful information can also be transferred into 
the FMEA. To accommodate this additional information, 
the resultant FMEA tables are split into two, one 
containing the direct effects on the system, i.e. those 
effects caused by single component failures, and the 
other containing further effects, i.e. those effects caused 
by two or more component failure modes. This allows 
separate, easy access to the most critical information, 
the single points of failure. Perhaps more importantly, the 
FMEA shows all functional effects that a particular 
                                                      
5 It should be noted, however, that the applicability of the 
proposed technique is not restricted to models developed 
in these tools. Any model that provides the topology of 
the system, i.e. components and connections, is suitable 
for this type of analysis.  
 



component failure mode causes. The latter is particularly 
useful as a failure mode that contributes to multiple 
system failures is potentially more significant than those 
that only cause a single top event. Precisely because it 
records the effects of combinations of component 
failures, this type of FMEA can, in practice, help analysts 
not only to locate problems in the design, but also to 
determine the level of fault tolerance in the system, i.e. to 
determine whether the system can tolerate any single or 

any combination of two, three or more component 
failures.  
 
The synthesised fault trees, their analyses and FMEAs 
are presented in interactive graphical and tabular formats 
in an HTML viewer. Synthesised fault trees are also 
exported to Fault Tree Plus (FT+) [19], a widely used 
fault tree analysis tool, and can be further processed in 
that tool.  

Αutomatic Safety Analysis tool

GUI for annotation of components with failure data 

Model annotated with failure 
data stored in text file  

Matlab Simulink or Simulation X 

Web -  Web - browser

Fault trees in format of Fault 
Tree Plus 

Cut sets 

Fault trees Cut sets

Internal representation of annotated model  

FMEA  

Graphical representation of fault 
trees. cut sets and system FMEA in 
HTML format  

Fault trees 

Model Parser 

Fault tree synthesis 
algorithm 

Logical reduction  
to minimal cut sets

FMEA synthesis 
algorithm 

Interface to Fault Tree Plus HTML generator 

Web-browserFault Tree Plus 

Fig.4. Architecture of the automated safety analysis tool 



Fig.5. Model of the braking system and component failure annotations 

Pedal  
Omission-any OP[x].any P[y]=pedalFailed 
Value-any OP[x].any P[y]=pedalBiased 
Bus 
any FC[x] except {Omission, Value(detectable)}-any OP [y].any P[z=FC[x]-IP[y].P[z] 
Omission-any OP[y].any P[z] = Omission-IP[y].P[z} or busFailed 
Value(detectable)-any OP[y].any P[z]=EMI 
TTA as sender 
Omission-any OP[y].any P[z] = or(every FC[] except {Value}-IP[y].P[z]) or controllerFailed 
Value-any OP[y].any P[z] = Value-IP[y].P[z] 
TTA as receiver 
Omission-any OP[y].any P[z] = Omission-IP[y].P[z] or Value(detectable)-IP[y].P[z] or controllerFailed  
Value-any OP[y].any P[z] = Value-IP[y].P[z] 
Wheel 
Omission-any OP[x].any P[y]= wheelFailed or and (Omission-every IP[x].every P[y])  
Value-any OP[x].any P[y]= and (Value-every IP[x].every P[y]) 
 

The speed and performance of the automated safety 
analysis tool are clearly two key factors that will 
determine the applicability and industrial acceptance of 
this approach. The proposed fault tree synthesis process 
is of linear complexity and therefore scales up well with 
increasing complexity. Large trees are generated by the 
tool in very short time, which is currently measured in the 
order of milliseconds for models that contain hundreds of 
components and thousands of component failures. On 
the other hand, the synthesis of FMEAs requires 
calculation of cut sets, a computationally expensive 
operation where traditional cut set calculation algorithms 
[20,21] do not scale up well in very large systems. To 
address this problem, we have developed an 
implementation of a recently proposed, efficient minimal 
cut set calculation algorithm [22] which pre-processes 
fault trees, converting them into BDDs. Improvements in 
efficiency achieved by this algorithm ensure the 
scalability of the automated FMEA and will enable, we 
hope, effective application of the proposed technique in 
problems of industrial scale. Experimental applications of 
the tool so far indicate that this approach can indeed lead 
to fast and efficient ways of generating useful safety 
analyses from design representations. It generally takes 
between a few seconds and a few minutes to generate 
fault trees and FMEAs from models that contain 
hundreds of components and failure logic that is 
equivalent to hundred thousands of cut sets. To the best 
of our knowledge, this performance compares favourably 
with other results reported in the literature of automated 
FMEA.   

EXAMPLE AND CASE STUDIES 

In this section we present an example which 
demonstrates the use of component failure patterns in 
the context of HiP-HOPS. Fig.5 illustrates part of a 
simplified distributed car braking system in which a pedal 
node communicates the braking demand to a wheel 
node via a network of TTP nodes connected on a 
replicated bus. For redundancy, the braking message is 
replicated and 4 messages are sent from the pedal 
through the bus to the wheel node. Fig.5 shows the 
failure annotations of components in this system. These 
include the patterns of the TTP controller and 
communication bus that we have already discussed, and 
annotations for the wheel and pedal nodes. It can be 
noticed that the wheel node has a single failure mode, 
wheelFailed, that causes omission of braking. The same 
effect is also caused by omission of all 4 braking 
messages. On the other hand, a value failure at the 
output of the system, i.e. incorrect braking, is caused by 
a common value failure manifested in all 4 messages 
received by the wheel. The pedal has two failure modes: 
pedalFailed causes omission of the braking message, 
while pedalBiased distorts its value. Note that the 
linguistic features that we introduced in this paper have 
been used to produce abbreviated descriptions of failure 
behaviour for all components. It can also be noticed that 
the pattern of the communication bus has been modified 
to include the possibility of detectable value failures 
caused by electromagnetic interference (EMI), a 
condition considered possible in this environment. 



Given the model and failure patterns of Fig.5, HiP-HOPS 
generates two fault trees for the events of omission and 
incorrect braking, and a system FMEA where these two 
conditions represent the direct or further effects of 
component failure modes. The fault trees and two FMEA 
tables are presented in the Appendix in Figures A.1-A.4. 
We focus on the FMEA as it provides a useful summary 
of the results of the automated analysis. The direct 
effects table in Fig.A.3 shows that only 3 component 
failure modes can cause an omission of braking: 
wheelFailed, pedalFailed, and controllerFailed(TTP3), i.e. 
a failure of the TTP receiver. Only one failure mode of 
the pedal (biasedPedal) propagates through the system 
causes incorrect braking. These 4 failure modes 
represent the only single points of failure and point to 
areas where the design could be improved. Replication 
of the pedal node is an obvious such improvement that 
removes 2 out the 4 single points of failure. In addition to 
critical failures revealed in the direct effects FMEA table, 
the further effects FMEA table of Fig. A.4. shows 
combinations of failures of the two TTP senders and the 
two busses that also cause omission of braking. Note 
that since qualitative data about failure modes and their 
logical relationships have been given, only qualitative 
analyses are returned (i.e. cut sets and system FMEA). If 
failure rates have been available they would have been 
incorporated in the synthesized fault trees and used for 
calculation of system reliability. The example 
demonstrates, we hope, the potential for generating 
relatively complex and useful analyses with relative ease. 
The same techniques are currently applied on much 
larger case studies which include a steer-by-wire 
prototype system designed by Volvo cars.  

In the context of this case study, a functional model was 
first developed in Matlab Simulink and this was 
deliberately designed without any degraded or fallback 
modes, in order to test whether the analysis could help in 
the systematic identification and design of such modes. 
The model was annotated with local analyses and failure 
patterns and then fault trees and FMEAs were 
automatically generated in several iterations of this 
process. An indication of the complexity of the model is 
that the analysis results to tens of thousands of cut sets. 
However, it takes less than a second in an average 
personal computer to generate and evaluate the fault 
trees and FMEAs. 

Omission and course value failures were considered in 
the course of the analysis. Fault trees and FMEAs 
therefore show how omissions and value failures of input, 
processing and actuator functions cause system level 
effects, i.e. omissions or value failures of steering 
functions. The manual assessment of the severity of 
those effects helped to identify the criticality of causes 
(i.e. failures of input, processing and actuator functions) 
and this in turn assisted the design of these basic 
functions. For example, wherever the analysis indicated 
that the omission of a function had only marginal effects 
while a course value failure had catastrophic effects, a 
design recommendation was made to design the function 
in a way that it fails silent. This in turn led to the 
identification of several degraded modes in which non-

critical steer-by-wire functions may fail silent with only 
marginal effects on the system. A state-chart was then 
constructed to show how graceful transition to such 
modes could be achieved. It would be impossible to 
describe in the space provided the voluminous results of 
this study. However, to highlight the practical value of the 
analysis, in Fig. A.5 we present the high level state-chart 
that was derived as a result of the straightforward 
interpretation of these results. The chart of Fig. A.5 
shows how a number of “critical” (as indicated by the 
analysis) failures of input, processing and actuator 
functions should lead the system safely into assisted-
mechanical and progressively unassisted steering 
modes. Within  the main “steer-by-wire” mode it is also 
possible to see how a number of “less critical” (as 
indicated by the analysis) functional failures should lead 
the system into sub-modes where some of the steer-by-
wire functionality is lost but the system can safely remain 
in the normal “steer-by-wire” mode.  

 
CONCLUSIONS 

In this paper, we discussed a number of difficulties in 
safety assessment caused by the increasing complexity 
of modern systems and highlighted the need for new 
safety analysis techniques that can address these 
difficulties by exploiting reusable component based 
specifications of failure, or context independent failure 
patterns. We also proposed a linguistic concept to enable 
representation and reuse of such patterns in the context 
of HiP-HOPS, a recently proposed technique for 
compositional safety analysis. Furthermore, we 
demonstrated a set of useful patterns including one for 
the TTP communications controller and demonstrated 
their use in a small example derived from an automotive 
system. 

Using the concepts presented in this paper, component 
failure patterns could be developed for libraries of 
components in order to capture the experience 
generated in difficult and expensive safety studies. Such 
patterns could be stored in electronic libraries and then 
reused, in the context of HiP-HOPS, in order to 
rationalize and simplify the assessment of complex 
systems.  An experimental but mature tool supports the 
proposed process and can be made available for 
independent application of this approach. The tool has so 
far dealt with design problems of medium complexity in 
which annotated components are in the order of 
hundreds. Problems may arise, though, in large systems 
that contain thousands of annotated components and 
may result in a failure logic that is composed of millions 
of cut sets. One way of simplifying the analysis in such 
cases is by structuring the model as a hierarchy of 
subsystems. At low levels, the model may still 
incorporate thousands of components, but the annotation 
can now be performed at a higher level of abstraction in 
the hierarchy where there are a smaller number of 
components or subsystems to annotate.  
 
Potential benefits from application of the proposed 
approach in large scale are substantial and include 



easing the examination of effects of design modifications 
on safety and keeping the safety analyses consistent 
with the design.  
 
One area of further work is extension to enable temporal 
safety analysis. Hitherto application of HiP-HOPS has 
produced classical combinatorial fault trees which are 
equivalent to those produced via manual analysis. 
Although such fault trees are useful for establishing 
critical combinations of component failures, they miss the 
temporal ordering of events and cannot explain the 
significance of this ordering in the failure behaviour of the 
system. We currently extend HiP-HOPS to enable 
synthesis and analysis of fault trees that capture 
temporal relationships between events. The Priority AND 
(PAND) gate, a long established but vaguely defined 
component of the fault tree vocabulary [22], and a new 
Simultaneous AND gate (SAND) are rigorously defined 
and a set of temporal laws is formed that is used to 
reduce branches of the tree containing many temporal 
gates. With a temporal logic in place, fault trees 
containing PAND and SAND gates can then be 
qualitatively analysed, and so form a set of ordered 
minimal cut sets, or 'minimal cut sequences'.  We are 
currently writing up the first results of this work which we 
hope to publish soon. To enable further integration of 
safety analysis in the design process, we are also 
combining this work with recent advances in evolutionary 
optimisation [23]. The aim of this work is to further 
automate difficult aspects of system design such as the 
cost effective allocation of component redundancies and 
the apportionment of safety and reliability requirements 
on components of the system during design.     
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APPENDIX  

 

Fig A.1. Fault tree for Omission of braking. 



 

Fig A.2. Fault tree for incorrect braking. 

 

Fig A.3. Direct effects FMEA. 

 

Fig. A.4. Further effects FMEA. 

 

 



 

Fig. A.5. Modes of a steer-by-wire prototype derived with the aid of automatically synthesized safety analyses 
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