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Abstract. During the last decade, several clustering and associatienrmining techniques have been
applied to identify groups of co-regulated genes in geneesgion data. Nowadays, integrating biolog-
ical knowledge and gene expression data into a single framkelas become a major challenge to im-
prove the relevance of mined patterns and simplify the&rjretation by the biologists. The GenMiner
approach was developed for mining association rules shyppgéme groups that are both co-expressed
(sharing similar expression profiles) and co-annotatedriist) the same annotations such as function,
regulatory mechanism, etc.) from such integrated datastet®embines a new nomalized discretization
method, called NorDi, and the Close algorithm to extractimai non-redundant association rules only.
Compared with classical Apriori based approaches, GenMimproves the extraction applicability for
these datasets and reduces the number of association yuseppressing redundant rules that are un-
informative and useless. We present a new Java implemamtatiGenMiner and experimental results
obtained from microarray datasets with integrated biaalgknowledge (bio-ontologies, descriptions of
regulation pathways and literature). These results shaw@enMiner requires less memory than Apri-
ori based approaches and that it improves the relevancetrafcéed rules. Moreover, association rules
obtained revealed significant co-annotated and co-exgulegsne patterns showing important biological
relationships supported by recent biological literature.

1 Introduction

Gene expression technologies are powerful methods foyisiythiological processes through a tran-
scriptional viewpoint. Since many years these technofobave produced vast amounts of data by mea-
suring simultaneously expression levels of thousands égender hundreds of biological conditions.
One of the great potentials of these technologies is thagrgéed data contain hidden information about
the biological processes that govern cell behavior. Noysdane of the main goals of these technolo-
gies is to discover this hidden information to achieve tgatal knowledge. In other words, we want
to interpret gene expression technology results via iategr of gene expression profiles with corre-
sponding biological knowledge (gene annotations, litesgtetc.) extracted from biological databases.
Consequently, the key task in the interpretation step i®tedl the present co-expressed (sharing similar
expression profiles) and co-annotated (sharing the sanpemies such as function, regulatory mecha-
nism, etc.) gene groups.

In order to process the interpretation step in an automatsemi-automatic way, the bioinformatics
community faces an ever-increasing volume of sources tddiical information that are: Information on
microarray experiments (spotted probes, experimentajoledata processing protocols, etc.); Molecular
databases (GenBank, Embl, Unigene, etc.); Semantic soascihesaurus, ontologies, taxonomies or se-
mantic networks (UMLS, GO, etc.); Gene expression datah@EO, Arrayexpress, etc.); Bibliographic
databases (Medline, Biosis, etc.); Gene/protein relgtedic sources (KEGG, OMIM, etc.).

Several approaches dealing with the interpretation prolilave recently been reported. These ap-
proaches can be classified in three axes [@@firession-based approach&sowledge-based approaches
and co-clustering approachesThe most currently used interpretation axis is éxpression-basedxis
that gives more weight to gene expression profiles. Howeévpresents many well-known drawbacks.
First, these approaches cluster genes by similarity inesgion profiles across all biological conditions.
However, gene groups involved in a biological process miighonly co-expressed in a small subset of



conditions [2]. Second, many genes have different biokdgiales in the cell, they may be conditionally
co-expressed with different groups of genes. Since almbshustering methods used place each gene
in a single cluster, that is a single group of genes, hisiogighips with different groups of condition-
ally regulated genes may remain undiscovered [12]. Thiisbadering biological relationships among
co-expressed genes is not a trivial task and requires a latlditional work, even when similar gene
expression profiles are related to similar biological r¢f&s.

The use of association rule mining (ARM), that is anotherupesvised data mining technique, was
proposed to overcome these drawbacks. ARM aims at discmyeglationships between sets of variable
values, such as gene expression levels or annotationsyvipntarge datasets. Association rules identify
groups of variable values that frequently co-occur in diawas|, establishing relationships with the form:
A = B between them. This rule means that when a data line contaiiable values in4 it is also
likely to contain variable values iB. It has been shown in several research reports that ARM khasate
advantages. First, ARs can contain genes that are co-erpgr@s a subset of the biological conditions
only. From this viewpoint, it and can be considered ds-alusteringtechnique. Second, a gene can
appear in several AR, if its expression profile fulfills thesigeation criteria. That means, if a gene
is involved in several co-expressed gene groups, it willeappn each and every one of these groups.
Third, association rules are orientated knowledge patterith the formif condition then consequent
that describe directed relationships. This enables tlomdisy of any type of relationships between gene
expression measures and annotations as they can be preorissasequents of association rules. Fourth,
since all types of data are considered in the same mannerARM, several heterogeneous biological
sources of information can be easily integrated in the eatdhese features make ARM a technique that
is complementary to clustering for gene expression datlysina

The GenMiner principle was introduced, with preliminarypexmental results, in [20]. In this paper,
we present a new Java implementation of the GenMiner appraad new experimental results on the
biological significance of extracted rules, the appliaggbénd scalability of GenMiner and performance
comparisons with other ARM approaches. This paper is organas follows. Section 2 and 3 present
ARM basics and related works respectively. The GenMineraagh is described in section 4 and the
integrated dataset constituted for the experiments isepted in section 5. Experimental results are
presented in section 6 and the paper ends with a brief discuaad conclusion in section 7.

2 Association rule mining

Association rules (ARs) express correlations betweenroecaes of variable values in the dataset as
directed relationships between sets of variable valueshdrdata mining literature, variable values are
calleditemsand sets of items are call@@msets For each AR, statistical measures assess the scope, or
frequency, and the precision of the rule in the dataset. Tdssical statistics for this are respectively the
supportand theconfidenceneasures. For instance, an &Rent(A) Event(B)=- Event(C) support=20%
confidence=70%states that when eventsandB occur, evenC also occurs in 70% of cases, and that
all three events occur together in 20% of all situations.sTAR is extracted from a dataset containing
Event(A) Event(B)andEvent(C)as items and data lines of the dataset describe co-occuremtisethat
is known situations. Since all ARs are not useful or relevdaepending on their frequency and precision,
only ARs with support and confidence exceeding some useredefitinimum supportrfiinsupp and
minimum confidencenflinconj thresholds are extracted.

Extracting ARs is a challenging problem since the searchespae. the number of potential ARs, is
exponential in the size of the set of items and several datasas, that are time expensive, are required.
Several studies have shown that ARM is a NP-complete problahthat a trivial approach, considering
all potential ARs, is unfeasible for large datasets. The @fficient approach proposed to extract ARs is
the Apriori algorithm [1]. Several optimisations of thispgpach have been proposed since, but all these
algorithms give response times of the same order of magnitund have similar scalability properties.
Indeed, this approach was conceived for the analysis of sidéa and is thus efficient when data is
weakly correlated and sparse but performances drastdatifease when data are correlated or dense [5].
Moreover, with such data, a huge number of ARs are extraaeeh for highminsuppand minconf
values, and a majority of these rules are redundant, thiatjsdover the same information. For instance,
consider the following five rules that all have the same stippad confidence and the itemmnotationin



the antecedent:
1. annotation=- genel7] 4. annotation genell] = gene?7]

2. annotation=- gene?1] 5. annotation gene?(] = genel’]

3. annotation=- genel ], gene? ]
The most relevant rule from the user’s viewpoint is rule &siall other rules can be deduced by inference
from this one, including support and confidence (but therseoes not hold). Information brougth by
all other rules are summed up in rule 3, that ifoa-redundant association rule with minimal antecedent
and maximal consequerdr minimal non-redundant ARer short. This situation is frequent when mining
correlated or dense data, such as genomic data, and to suttiisggroblem the GenMiner ARM approach
uses the Close algorithm to extract minimal non-redunda®s Anly.

3 Related works

Several applications of ARM to the analysis of gene expoesdata have been recently reported [8,
26, 13]. These applications aimed at discovering frequenegatterns among a subset of biological
conditions. These patterns were represented as ARs sugems]|] = gene?1], gened|]. This rule
states that, in a significant number of biological condiiowhengenelis under-expresssed, we also
observe an over-expressionggne2and an under-expression géne3 These applications successfully
highlighted correlations between gene expression profilsiding some drawbacks of classical cluster-
ing techniques [13]. However, in these applications, lgmal knowledge was not taken into account and
the task of discovering and interpreting biological similas hidden within gene groups was left to the
expert.

Recently, an approach to integrate gene expression prafiggene annotations to extract rule with
the formannotations=- expression profilea/as proposed in [6]. However, this approach presents devera
weaknesses. First, it uses the Apriori ARM algorithm [1]ttisaime and memory expensive in the case
of correlated data. Moreover, it generates a huge numbered among which many are redundant thus
complexifying the interpretation of results. This is a wikalliown major limitation of the Apriori algorithm
for correlated data [6, 26]. Second, extracted rules atdatesl to a single form: Annotations in the left-
hand-side and expression profiles in the right-hand-sidsvener, all rules containing annotations and/or
expression profiles, regardless of the side, bring impoitdarmation for the biologist. Third, it uses
the two-fold change cut-off method for discretizing exggies measures in three intervals, a dangerous
simplification that presents several drawbacks [22].

The GenMiner approach was developed to address these vesakrend fully exploit ARM capabil-
ities. It enables the integration of gene annotations ané g&pression profile data to discover intrinsic
associations between them. Gene annotations can be igdram any source of biological infor-
mation (semantic sources, bibiographic databases, ggression databases, etc.). It uses the novel
NorDi method for discretizing gene expression measuregjandrate gene expression profiles. It takes
advantage of the Close [23] algorithm that can efficientlyegate low support and high confidence non-
redundant association rules. When data is dense or cedekich as genomic data, Close reduces both
execution times and memory space usage compared with Aphois enabling the analysis of large
datasets. Furthermore, it improves the result’s relevéayoextracting a minimal set of rules containing
only non-redundant ARs, thus reducing the number of ARs axdithting their interpretation by the
biologist. With these features, GenMiner is an ARM appraett is adequate to biologists requirements
for genomic data analysis.

4 TheGenMiner approach

GenMiner follows the classical three steps of ARM approacki) data selection and preparation, (2)
ARs extraction and (3) ARs interpretation. It uses the Nalgorithm for discretizing gene expression
data during phase (1) and the Close algorithm for extraatingmal non-redundant ARs during phase
(2). Itis a co-clustering approach that discovers co-esggeé and co-annotated gene groups at the same
time according to co-ocurrences of gene expression prafildsnnotations. It is a bi-clustering approach
that finds co-annotated and co-expressed gene groups exesmiall subset of biological conditions.

The whole process of GenMiner is deterministic and extthétRs are not constrained in their form
and their size in order to ensure that all kinds of relatigpsbetween gene expression profiles and anno-



tations are discovered. The actual implementation of GaeMiloes not integrate graphical visualization
tools and complementary programs must be used to manighkatesulting file.

4.1 NorDi algorithm

The Normal Discretization(NorDi) algorithm was developed to improve gene expressi@asures
discretization into items. This phase is essential to ektralevant ARs. This algorithm is based on
statistical detection of outliers and the continuous agpion of normality tests for transforming the
initial sample distribution “almost normal” to a “more noaitone. The term “almost” means that the
sample distribution can be normally distributed withow tutlier's presence.

Let us assume that the expression data measures are pdeasraan X m matrix: E with n genes
(rows) andm samples or biological conditions (columns). Each matrittyere; ; represents the gene
expression measure of gen@ sample;j wheree; ; is continuous in all real numbers. Let's suppose that
the gene expression matifixaccomplishes the following assumptions:

1. All data is well cleaned (minimal noise).
2. Number of genes is largely enough.

3. The samples of the matri%; for everyj = 1,2,...,m are independent from each other and they
are “almost” normally distributed; ~ N (115, 0;).

4. Missing values are no significant regarding the numbeeotg.

The NorDi algorithm is based on the observation that evemypda of the expression matrx; can be
“more” normally distributedsf ~ N(u4,0;) if all outliers of each sample are momentarily removed (that
is keeping a list of thé& removed outliers for each sample, i[e.g?.) by Grubbs outliers method [14]. Each
time an outlierk is removed, a Jaque-Bera normality test [3] has to be acdsiegl for the remaining
sampIeS]’?, wherek is the number of removed outliers at each step in sasipindk = 0,1, 2,. .., clean
(k = clean means that there are no more outliers in the sample accoialitng Grubbs criterium). So,
for every sample, we obtain the remaining samﬁj@“” that is “more normally” distributed than the
original sampleS;. To verify this assertion we compa@le‘m againstS; using the QQ-plot [21] and
Lilliefors [17] normality tests. Then, we calculate the pexpressed(t, and under-expressed]t,
cutoff thresholds using the — score methodology [27] over the cleaned samﬁyéw”.

Supposing the four precedent assumptions Wif ~N(uj,05) normal distributed and & — «
predetermined confidence degree, the score threshold cutoffs for three intervals are defined as:

o Z; =L > 5,5 =0t = e : over-expressed],

93

o Zj=LH <z, =Ut = e;;: under-expressed),

¥

o Ut <e;j > 0Ot = e ;. unexpressed,
wherez, , = ®~!(1 — /2), if the cumulative distribution function i®(z,2) = P(S]C.lea" < zo2) =
1— a/2.

It is important to notice that this procedure for computihg threshold cutoffs is done over all the
cleaned sampIeSJ‘?le“" contained in the expression matix Once the computation of threshold cutoffs
is done, thek elements in each sample’s outliers ILs’Jt are integrated to the original samge and the
discretization procedure is calculated for all value$inThe main reason is that outliers values cannot be
removed from the analysis because they may contain relevanmation of the biological experiment.

4.2 Close algorithm

Close is drequent closed itemselbgsed approach [23] for extracting minimal non-redundaRtdé-
fined as follows. An AR igedundantf it brings the same or less general information than is ghuy
another rule with identical support and confidence [9]. TlMARR is a minimal non-redundant AR
if there is no ARR' with same support and confidence, which antecedent is aetalbthe antecedent
of R and which consequent is a superset of the consequdRt®©lose first extracts equivalence classes
of itemsets, defined byeneratorsandfrequent closed itemsetsnd generates from them th#ormative
Basiscontaining only minimal non-redundant ARs. This basis (mad set) is a generating set for all
ARs that captures all information brought by the set of diksun a minimal number of rules, without
information loss [9]. Experiments conducted on benchmatkskts show that the rule number reduction



factor varies from 5 to 400 according to data density andetation [23]. Moreover, when data is dense
or correlated, Close reduces extraction time and memoryeusiace the search space of frequent closed
itemsets based approaches is a subset of the search spgu@ooif #ased approaches. Several algorithms
for extracting frequent closed itemsets, using complea dauctures to improve efficiency, have been
proposed since Close. However, they do not extract gensrgtieecluding the Informative Basis genera-
tion, and their response times, that depends mainly on @gisitg and correlation, are of the same order
of magnitude.

5 Annctations enriched Eisen et al. dataset

To validate the GenMiner approach we applied it to the watikn genomic dataset used by Eistn
al. [11]. This dataset contains expression measures of 2 46f geaes under 79 biological conditions
extracted from a collection of four independent microarsaydies about th&accharomyces cerevisiae
during several biological processes:

e Cell cycle experiments [24] (variables alphal to alphall & elul4 and cdc15-1 to cdc15-15).

e Sporulation experiments [7] (variables spol to spo6, shtbspo5-3 and ndt80-1 to ndt80-2).

e Temperature shock experiments [11] (variables heatl tthhdtl to dit4 and coldl to cold4).

e Diauxic shift [10] (variables diauxicl to diauxic7).
The resulting datasets a matrix of 2465 lines representing yeast genes and 73imes representing
expression levels (discretized gene expression measamdsjene annotations. Each line contains ex-
pression levels over the 79 biological conditions and attr6b8 gene annotations (24 GO annotations,
14 KEGG annotations, 25 transcriptional regulators, 1sphges and 581 pubmed keywords). On the
whole, the dataset contains 9 839 items (variable values).

5.1 Gene expression measures

The microarray technology used is spotted cDNA chips obthiby two color fluorochromes with
distinct emission spectra Cy3 and Cy5. The Eiseal. dataset contains the expression levels of 2 465
open reading frames of the yeast for 79 biological conditiorihis dataset was pretreated by taking the
logs ratios (to consider cellular inductions and repressiore mumerically equal way) and applying the
imputation algorithm of k-nearest neighbors [18] in ordetreat the missing values (1.9% of the total).

The studied biological processes of the yeast, that argpertient from each other, are supposed
to be normally distributed. Furthermore, each sample ¢dmmdis supposed to be “almost” normally
distributed, i.e.S; for every; = 1,2,...,79. In this manner, the Eisen dataset accomplished the four
NorDi assumptions and discretized gene expression valees galculated using NorDi algorithm at a
95% confidence level.

5.2 Gene annotations

We used thé&accharomyces cerevisiae datab&8&D) nomenclature for naming the yeast genes. All

yeast genes were annotated using five sources of biologicahation:

o the Yeast-specific cut-down version of Gene Ontology (G@jes#ic source of information (known
as GOSIlim), containing annotations from biological preess molecular functions and cellular
annotations,

¢ the bibliographic source of information from SGD’s manyailrated PubMed/Medline papers,

¢ the gene/protein related specific database KEGG [15] adntathe metabolic pathways in which
each gene is involved,

¢ the phenotype information of given yeast genes extractad 8GD'’s file,

¢ the information of transcriptional regulators that bingptomoter regions, these data were reported
in [16]. This information was used to annotate yeast geneswpromoter regions were bound by
at least one transcriptor regulator (witpavaluethreshold of 0.0005).

All gene annotations were taken as boolean variables, €€{0, 1}, indicating if an annotation pertains,
i = 1,0rnot,i = 0, to a given gene. The prefixg®:, path:, pmid:, pr:, phenot: are used to identify
Gene Ontology terms, KEGG pathways, Pubmed identifiersnpters and phenotypes respectively.

Available atht t p: / / bi oi nf o. uni ce. fr/ publications/genm ner_article.



6 Experimental results

We conducted several experiments to evaluate the biolcgjgrificance of extracted ARs, to compare
the applicability of GenMiner and Apriori based approached to evaluate the scalability of GenMiner
when mining very large dense biological datasets. For tegperiments, the Java implementation of
GenMiner? was applied to the annotations enriched Eiseal. dataset. All types of rules, containing
gene annotations or gene expression levels either or bdifeimntecedent and the consequent, were
extracted.

6.1 Biological interpretation of extracted association rules

In the following, we describe selected meaningful biolagjitiles, grouped according to their form, to
show the potential of the GenMiner approach. ARs with thenfannotations=- expression levelshow
groups of genes associated with the same annotations ehavarexpressed or under-expressed in a set
of biological conditions. Selected ARs with this form extied with GenMiner fominsupp0.003 (at
least 7 lines) andhinconf30% are presented in Tab. 1. Supports are given in numbeansactions and
confidences in percentages. Rules 1 to 11 are relative tchthek 9y high temperature experiment and
show known relationships described in [28]. Rules 12 to fi&cethe main metabolic changes associated
to the diauxic shift, manually identified in [10], and are Banto ARs presented in [6].

Table 1: Associationannotations=- expression levels

| Rule | Antecedent | Consequent | Supp. (#)] Conf. (%) |
1 g0:0006412 go:0005840 heat3 103 51
2 g0:0005840 go:0005198 heat3 96 56
3 g0:0006412 go:0042254 heat3 22 61
4 g0:0005840 go:0003723 heat3 12 57
5 g0:0005737 g0:0042254 go:0005198 heat3 20 67
6 g0:0042254 go:0005840 go:0005198 heat4 15 52
7 g0:0006412 go:0006996 go:0005198 heat3 30 65
8 path:sce03010 heat3 97 74
9 path:sce03010 heat4 69 53
10 | pr:RAP1 pr:FHL1 heat3 71 62
11 | pmid:5542014 pmid:9649613 pmid:353391teat3 12 100
12 | path:sce00190 diauxice} 17 31
13 | path:sce00190 diauxic7t 18 33
14 | path:sce00020 diauxic5| diauxic6é] diauxic7] 8 32
15 | path:sce00630 diauxic7t 7 55

ARs with the formexpression levels> annotationsshow groups of genes that are over-expressed or
under-expressed in a set of biological conditions and haeedrresponding gene annotations. Selected
ARs with this form, extracted with GenMiner are presentedat. 2. These rules show information
related to the elutriation process (rules 1 to 5), the spdinr experiment (rules 6 to 11), the heat shock
process (rules 12 to 16), the cold shock experiment (ruleenti718) and the diauxic shift process (rules
19 and 20) reported in the corresponding biological litamt

ARs with the formannotations=- annotationscontain gene annotations both in the antecedent and
consequent. They highlight existent relationships amosmgegannotations, independently from gene
expression levels. Selected ARs with this form extractetth @ienMiner are presented in Tab. 3. These
ARs show relationships between KEGG pathways and GO terabss(d and 2), between promoters
(rules 3 and 4), between promoters and GO terms (rules 5¥ebet scientific articles and phenotypes
(rule 6) and between GO terms (rules 7 to 10).

6.2 Execution times and memory usage
These experiments were conducted to assess the appticalbilenMiner to very large dense bio-
logical datasets and to compare its results with Aprioredeaspproaches. They were performed on a PC

2Available atht t p: / / bi oi nf 0. uni ce. fr/publications/genniner_article.



Table 2: Associationexpression levels> annotations

| Rule | Antecedent | Consequent | Supp (#)] Conf (%) |
1 elus! elu6f elu7t g0:0006412 26 87
2 eludt go:0006412 39 52
3 elu4! elus! elu6l 00:0006412 17 81
4 elu6l elu7| g0:0006412 33 69
5 elu2| elu3| 00:0006996 12 55
6 spo4| spo5 spof go0:0005975 12 52
7 Spo3 spo4, spoy go:0005975 12 48
8 spo3 go:0006412 42 52
9 spo2 spo3 go:0006412 27 57
10 | spo4 spo5 spo6 g0:0006996 26 43
11 | spo3 spo4 spog path:sce0001( 13 52
12 | heat3 heat§ heat§ | go:0006412 16 76
13 | heat3 heat4 heat3 | go:0006412 35 88
14 | heatZ2 g0:0006996 41 69
15 | heat2 go:0042254 39 66
16 | heat3 heat4 heat§ | go:0006950 10 45
17 | cold3| cold4] 00:0006412 15 79
18 | cold4] g0:0006412 71 73
19 | diauxicél diauxic7] | go:0006091 23 47
20 | diauxic6] diauxic7, | go:0006412 21 66

Table 3: Associationannotations=- annotations

| Rule | Antecedent | Consequent | Supp. (#)| Conf. (%) |
1 path:sce04111 go:0007049 67 78
2 path:sce00190 g0:0005737 49 91
3 pr:FHL1 pr:RAP1 114 86
4 pr:RAP1 pr:FHL1 114 61
5 pr:RAP1, pr:FHL1 g0:0005737 go:0006412 go:0005840 93 82
6 pmid:16155567 phenot:inviable 168 93
7 | go:0005737, go:0045338go:0006091 56 100
8 | go0:0016192 g0:0006810 171 100
9 | go:0005739 go:0005737 532 100
10 | go:0005740 g0:0005737 go:0005739 165 100

with one Pentium IV processor running at 2 GHz and 1 GO of RAM wa#ocated for the execution of
GenMiner and implementations of Apriori based approacWéstested several implementations of Apri-
ori based approaches (Apriori, FP-Growth, Eclat, LCM, D&t,.). Execution times presented in Tab. 4
are these of Borgelt’s implementatfodescribed in [4] that is globally the most efficient for migiARs
(and not only frequent itemsets). We can see in this tabledkecution times of GenMiner and the
Apriori implementation are similar wheminsuppvaries between 0.02 (2%) and 0.007 (0.7%). However,
executions of Apriori based approaches for lowensuppvalues were interrupted as they required more
than 1 GO of RAM. GenMiner could be run faninsupp= 0.003, i.e. rules supported by at least 7 data
lines (genes), but the execution fiminsupp= 0.002 was interrupted as more than 1 GO of RAM was
required.

Experimental results presented in Tab. 5 were conducteddinae execution times and memory
usage of GenMiner when thminsuppandminconfthresholds vary. Three series of executions were run
for minconfequals to 0.9 (90%), 0.5 (50%) and 0.3 (30%). For each smiressuppwas varied between
0.02 (2%) and 0.002 (0.2%). As in the previous experimentiMieer could not be run fominsupp
lower than 0.003, independently from thenconfvalue. We can also see that the longest executions, for
minsuppequals to 0.003, took from 4 to 5 hours depending omtireonfvalue.

SAvailable atht t p: //fimi . cs. hel sinki.fi/.



Table 4: Execution times and memory usagencon£0.3).

| minsupp (#)| GenMiner (s)] Apriori (s) |

0.020 (50) 10 5
0.015(37) 21 16
0.010 (25) 72 76
0.009 (22) 101 110
0.008 (19) 187 182
0.007 (17) 289 264
0.006 (14) 673 | Out of memory
0.005 (12) 1415 Out of memory
0.004 (9) 5353 | Out of memory
0.003 (7) 18424 | Out of memory
0.002 (4) Out of memory| Out of memory

Table 5: Scalability of GenMiner.

| minsupp (#)| minconf | Time (s) | minconf | Time (s) | minconf | Time (s) |
0.020 (50) 0.9 9.18 0.5 10.40 0.3 10.88
0.015 (37) 0.9 16.47 0.5 19.58 0.3 21.21
0.010 (25) 0.9 47.50 0.5 63.47 0.3 72.63
0.009 (22) 0.9 65.10 0.5 87.68 0.3 101.49
0.008 (19) 0.9 118.78 0.5 162.17 0.3 187.33
0.007 (17) 0.9 182.27 0.5 249.60 0.3 289.41
0.006 (14) 0.9 435.41 0.5 595.23 0.3 673.27
0.005 (12) 0.9 974.14 0.5 1274.57 0.3 1415.38
0.004 (9) 0.9 4065.05 0.5 4937.74 0.3 5353.63
0.003 (7) 0.9 14163.02 0.5 17412.65 0.3 18424.72
0.002 (4) 0.9 Out of Memory 0.5 Out of Memory 0.3 Out of Memory

6.3 Number of association rules

The number of ARs in the Informative Basis extracted by Gerdviiand the total number of ARs
extracted by Apriori based approaches are presented ir6T&or this experimentninconfwas fixed to
0.3 (30%) andminsuppwas varied between 0.02 (2%) and 0.003 (0.3%). We can se&thainsupp
between 0.02 (2%) and 0.007 (0.7%), the Informative Badisin 6 to 68 times smaller than the set of all
ARs, that contains up to more than 21 millions of rules. Hoevethe number of ARs in the Informative
Basis is important for lowminsuppvalues and it cannot be manually explored without tools tecte
subsets of ARs. Examining the basis, we note that an impopiaportion of rules contain similar
information at different levels of precision. These rulé@her contain annotations linked in the bio-
ontology hierarchies or are identical except that theyaordifferent annotations that are hierarchically
related in the bio-ontology. This is related to the preseria®ry general annotations, that are common to
numerous genes and are thus present in an important papoftrules, among GO terms for exemple.
In order to improve the relevance of extracted ARs, only ARE the most specific of these annotations
should be conserved as they represent the most preciseddagevl This problem can also be addressed
during the data selection and preparation phase by suppgdbge most general annotations.

7 Discussion and conclusion

The GenMiner approach was developed for mining associatitms from very large dense datasets
containing both gene expression data and annotationsa ttdsclustering technique that extracts intrinsic
associations among gene expression levels and annotaligns bi-clustering technique that discovers
patterns describing genes co-expressed in a subset ofjlmaleonditions. Contrarily to most approaches
for gene expression interpretation, as wetpression-baseds knowledge-basedn which biological
information and gene expression profiles are incorporateaniindependent manner, with GenMiner
both data sources are integrated in a single framework.

GenMiner implements a new discretization algorithm, cNerDi, that was designed for processing



Table 6: Number of association rulesificon£0.3).

| minsupp (#)| Informative Basis| All association ruleg

0.020 (50) 10028 65312
0.015 (37) 28492 325482
0.010 (25) 110989 3605486
0.009 (22) 147 966 6115366
0.008 (19) 230255 12138561
0.007 (17) 315090 21507415
0.006 (14) 542746 Out of memory
0.005 (12) 824518 Out of memory
0.004 (9) 1675811 Out of memory
0.003 (7) 2883710 Out of memory

data generated by gene expression technologies in the tiasiependent biological conditions. Experi-
ments conducted on the Eisehal. dataset show that its results are relevant. However, tloeadization
issue is delicate when using data mining methods such as ARdthus propose to use several dis-
cretization scenarios, analyzing the pertinence of obthiesults against expected results, to validate the
discretization method. As pointed out in [22]: “The robwesia of biological conclusions made by using
microarray analysis should be routinely assessed by exagnihe validity of the conclusions by using

a range of threshold parameters issued from different etigettion algorithms”. Unfortunately, to our
knowledge no discretization algorithm, specially desiyfar time process data, can integrate the time
variable without an important loss of temporal information

GenMiner also integrates the Close algorithm [23] devaldpeextract ARs from dense and correlated
data. With such data, classical ARM algorithms, based oifreori approach [1], have high execution
times and memory usage [5]. They can thus only extract ARs midh support and confidence values,
that is concerning large groups of genes. Moreover, the rardbARs extracted by these algorithms
from such data is most often very important and many of thakesrare redundant as they bring the
same information [9]. This is an important drawback for AR®ipretation by the analysts as redundant
rules sometimes represent the majority of extracted ARsseCis based on the frequent closed itemsets
framework that allows to reduces both the search space anduimber of dataset accesses, and thus
the memory usage, for dense and correlated data. It exaaniaimal set of non-redundant ARs called
Informative Basis [23] in order to reduce the number of esterd ARs and improve the result’s relevance.
In this basis, all information is summarized in a minimal rhenof ARs, each rule bringing as much
information as possible, without information loss.

Gene expression data are highly correlated, due to the murmigroups of genes that are co-expressed
in different biological conditions, and when gene annotaiare integrated the average number of items
per gene becomes important. As GenMiner integrates thee@lgsrithm, it can efficiently extract mean-
ingful associations between gene expression profiles amelayenotations, even for small groups of genes,
from such data. To evaluate its efficiency and scalabilitwés run on a dataset combining the Eigtn
al. gene expression data [11] and annotations of these geneKB&G, phenotype information, tran-
scriptional regulators information and information ofesg&d articles). Experimental results show that
GenMiner can deal with such large datasets and that its meusage, as well as the number of ARs
generated, are significantly smaller than these of Apriasigal approaches. Moreover, ARs extracted by
GenMiner are not constrained in their form and can contath gene annotations and gene expression
profiles in the antecedent and the consequent. The analythesd ARs has shown important relation-
ships supported by recent biological literature. Theseli®show that GenMiner is a promising tool for
finding meaningful relationships between gene expressitieqms and gene annotations. Furthermore, it
enables the integration of thousands of gene annotations lieterogenous sources of information with
related gene expression data. This is an essential feattine éntegration of different types of biological
information is indispensable to fully understand the uhgieg biological processes. In addition, quali-
tative variables such as gender, tissue and age could d&asihytegrated in order to extract ARs among
these features and gene expression patterns. In the fute@an to integrate in GenMiner tools to filter,
select, compare and visualize ARs during the interpratgiltase to simplify these manipulations.
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